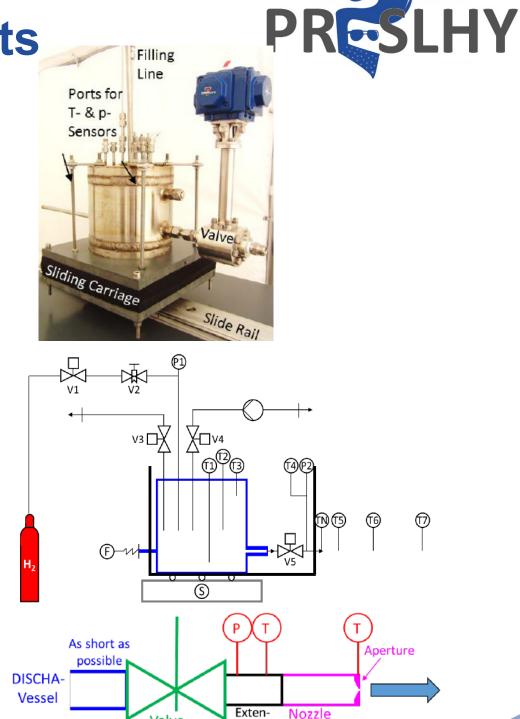


LH2 Safety Workshop, 6 March 2019, Bergen Alexandros Venetsanos (NCSRD)

Pre-normative REsearch for Safe use of Liquid HYdrogen

WP3 / Overview of Activities

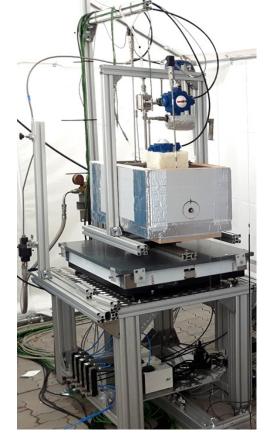

- Experiments (KIT, PS)
 - GH2 and LN2 blowdown tests at DisCha facility, V ≈ 2,81 L
 - T_{stag,min} ≈ 80K, up to 200 bar
 - LH2 steady releases at Cryostat facility, V \approx 225 L
 - T_{stag}≈ 20K, up to 5 bar
 - Pool facility
 - Basin with size 50 x 50 cm filled with ground material

Experiments (HSL)

- HSL test site
- Steady LH2 releases (T_{stag}≈ 20K, 1 barg)
- Modeling and Simulations (NCSRD, KIT, UU, UWAR, AL)
 - Validation against existing experiments
 - Simulations of PRESLHY experiments
 - Engineering tools

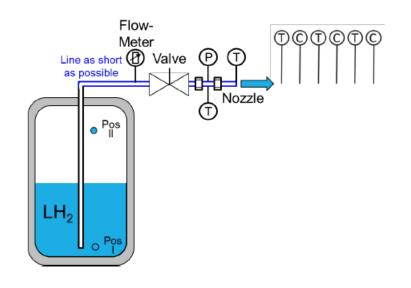
DisCha-Facility experiments

- Instrumentation
 - Inside Vessel:
 - 1 pressure sensor,
 - 3 closed and 3 open thermocouples
 - In release line:
 - 1 thermocouple in flow and
 - 1 pressure sensor in flow.
 - Nozzle
 - 1 thermocouple in nozzle material
 - Outside vessel
 - 1 force sensor and 1 scale
 - 5 thermocouples
 - 5 H2-concentration sensors
 - 3 cameras for BOS photography


Valve

sion

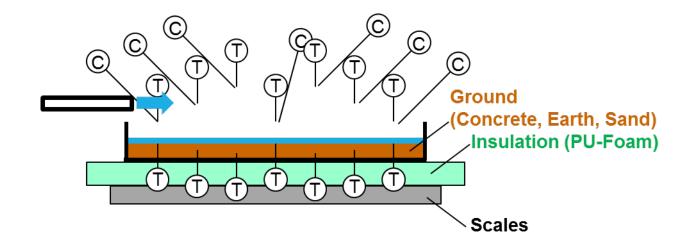
DisCha-Facility experiments


PRESLHY

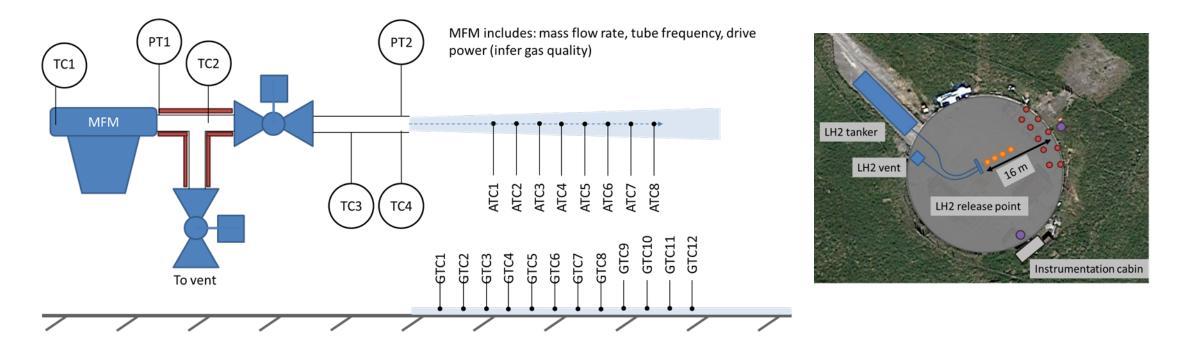
- DisCha-Facility put into operation,
- Few "Warm" (ambient temperature) tests performed with N₂ to check functionality,
- "Warm" (ambient temperature) test series with H₂ completed,
 - Only Blowdown tests,
 - Nozzle diameters: 0.5, 1.0, 2.0, 4.0 mm,
 - Initial pressures: 5, 10, 50, 100, 150, 200 bar,
 - Numerous BOS-Photos to visualize shape of Jet
 - In total > 50 experiments (at least one repetition/experiment),
- "Warm" experiments used to identify improvement potential of set-up:
 - 3 Open thermocouples added to vessel for faster T-measurement,
 - Measuring frequency of thermocouples increased to 100 Hz,
 - Measuring frequency of pressure sensors increased to 2 kHz,
 - Response-time of concentration measurements reduced to approx. 2 s,
 - Force and weight-sensors still problematic (torques during release).
- Facility already prepared to perform "Cold" Tests (LN₂-temperature).

Cryostat-Facility Experiments

- Cryostat-Facility still under construction (top flange missing),
- Design of missing top flange is almost complete,
- Safety valve for LN₂-shield already available,
- Important expensive infrastructure and technical support will be provided by other KIT-Institute,
- Remote test-site for experiments found close to KIT,
- Amount of LH₂ to be released has to be carefully estimated.



Pool-Facility Experiments

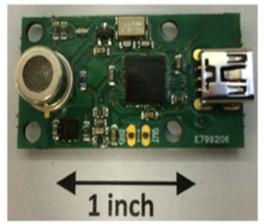

- Suitable test-site for experiments found close to KIT,
- Test-site is owned by institute of KIT-Campus South which has no obligations against use for the experiments,
- Test-site is remote and surrounded by woods and thus allows release of large amounts of H2,
- Even ignition of released H2 is possible,
- Test site is connected to electricity and water supply,
- Site visit planned for March.

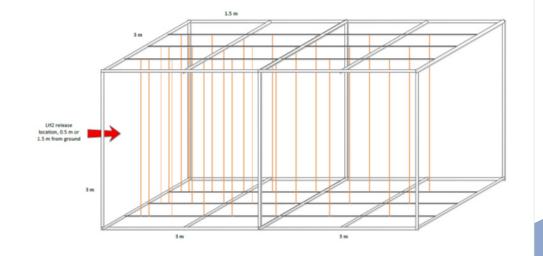
WP3 HSL experiments

- WP3: Unignited releases focussing on dispersion / source term
- Main objective is to investigate LH₂ vaporization / pool formation for elevated release points.

Instrumentation

Release measurements will include:


- Pressure inside the tanker (visual)
- Pressure and temperature along the release pipe (PT1, TC1, TC2)
- Pressure and temperature at the exit nozzle (PT2, TC3, TC4)
- Mass flow meter (flow rate, drive gain (vapour quality) and infer density)
- Exit velocity and exit vapour quality will be derived from flow and density (see flow meter above)
- Spray vaporization/rainout (optical techniques i.e. 4k video, IR camera and thermocouples)
- Pool formation (thermocouple rake on ground, thermocouples in ground, 4k video and IR camera)
- Gas concentration through temperature and thermal conductivity (HYWAM vol% system, Draeger PPM, LEL, O₂ and co-located thermocouples)
- Ambient atmospheric conditions: temperature, pressure, humidity, wind speed and direction (two positions, site and release point)


Near-field concentration measurements

- Collaboration with National Renewable Energy Laboratory (NREL) for near-field concentration measurements
 - System of pumped sampling tubes and remote sensors
- Up to 32 detectors based on thermal conductivity
- Up to 12 co-located TC's
- Deployment of NREL's system for measurements in the jet
- Collaborative paper going in to ICHS 2019

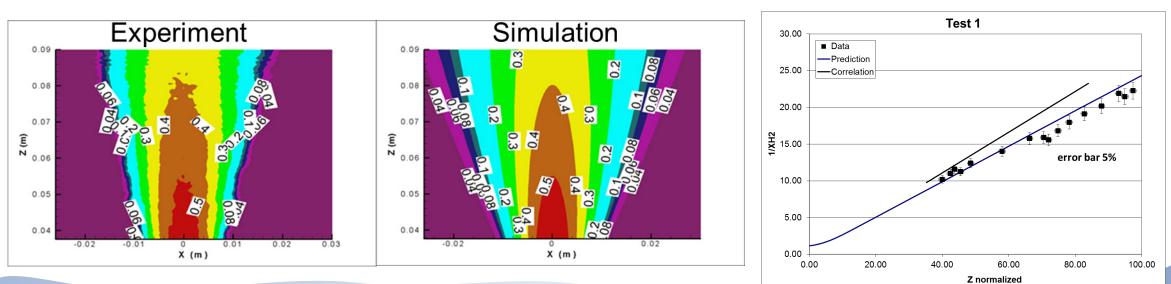
9

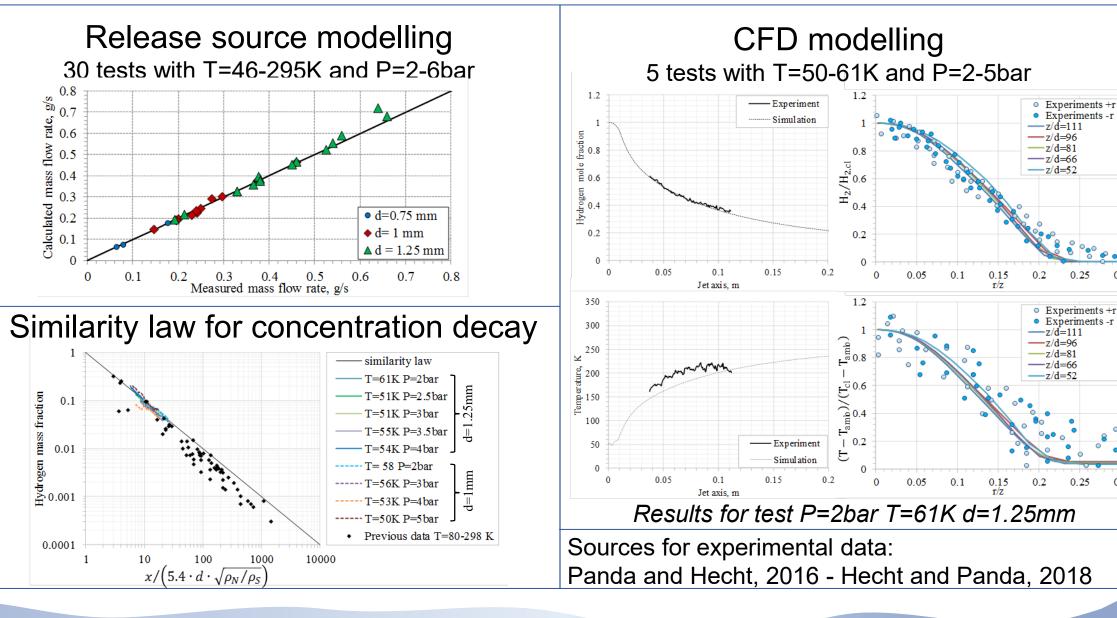
Far-field concentration measurements

- 30 Draeger X-am 5000 units mounted at three heights on stands in the far field, 0.5, 1.5 and 2.5 m
- Each instrument contains:
 - PPM H₂ sensor
 - LEL H₂ sensor
 - O₂ sensor
- Each instrument co-located with a TC

Test matrix

Work Package	Experimental Subtask	Test No.	Experiment Title	Release Orientation	Release Height	Orifice/Nozzle Diameter
3	3.5	3.5.1	Rainout experiments	Horizontal	0.50 m	1"
3	3.5	3.5.2	Rainout experiments	Horizontal	0.50 m	1/2"
3	3.5	3.5.3	Rainout experiments	Horizontal	0.50 m	1⁄4″
3	3.5	3.5.4	Rainout experiments	Horizontal	1.50 m	1"
3	3.5	3.5.5	Rainout experiments	Horizontal	1.50 m	1/2"
3	3.5	3.5.6	Rainout experiments	Horizontal	1.50 m	1⁄4"
3	3.5	3.5.7	Rainout experiments	Vertically upward	NA	1/2"
3	3.5	3.5.8	Rainout experiments	Vertically downward	0.50 m	1/2"
3	3.5	3.5.9	Rainout experiments	Horizontal into baffle	0.50 m	1/2"


CFD validation


- SANDIA cryogenic h2 releases (Hecht and Panda IJHE, 2018)
 - Tests shared within PRESLHY for benchmarking

T _{noz} (K)	P_{noz} (bar _{abs})	d _{noz} (mm)	n _{heights}	T _{throat} (K)	P _{throat} (bar _{abs})	$ ho_{\mathrm{throat}}$	v _{throat} (m/s)
58	2.0	1.0	4	43.5	0.972	0.55	544.5
56	3.0	1.0	4	41.9	1.457	0.86	533.3
53	4.0	1.0	4	39.6	1.940	1.22	516.4
50	5.0	1.0	5	37.4	2.422	1.65	498.2
61	2.0	1.25	6	45.7	0.973	0.52	558.9
51	2.5	1.25	2	38.2	1.215	0.79	508.4
51	3.0	1.25	6	38.2	1.457	0.95	507.5
55	3.5	1.25	3	41.2	1.699	1.03	527.6
54	4.0	1.25	2	40.4	1.940	1.20	521.6

- Preliminary CFD results NCSRD for test1: (58K, 2 bar, 1mm)

13 LH2 Safety Workshop, 6 March 2019, Bergen

Analytical and CFD studies

z/d=111

-z/d=96 z/d=81

·z/d=66

z/d=52

0.25

z/d = 111

 $\frac{7}{d} = 96$

z/d=81

z/d=66

z/d=52

0.25

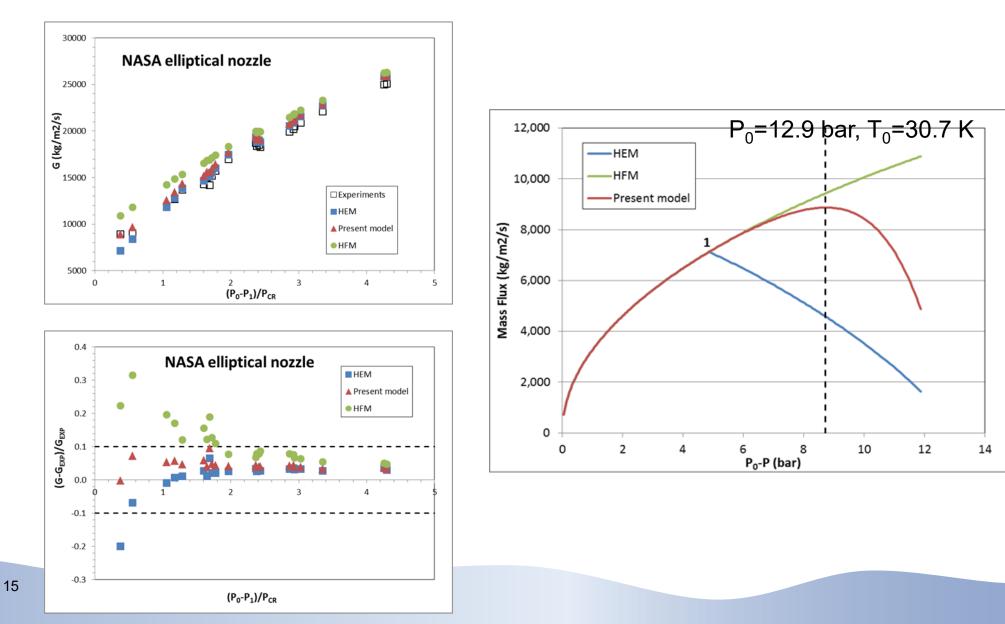
0.3

0.3

CFD validation

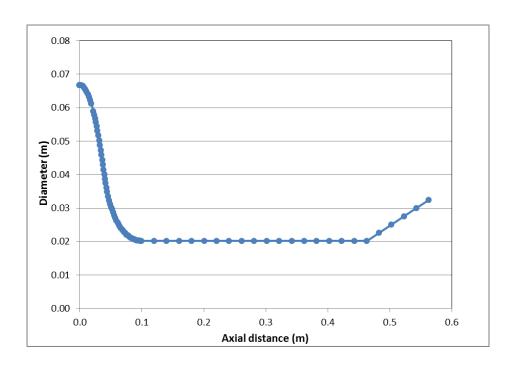
- INERIS large scale LHe releases on flat ground (Proust et. al 2001)
 - Tests 1 and 3 shared within PRESLHY for benchmarking.
 - Simulations by NCSRD on-going

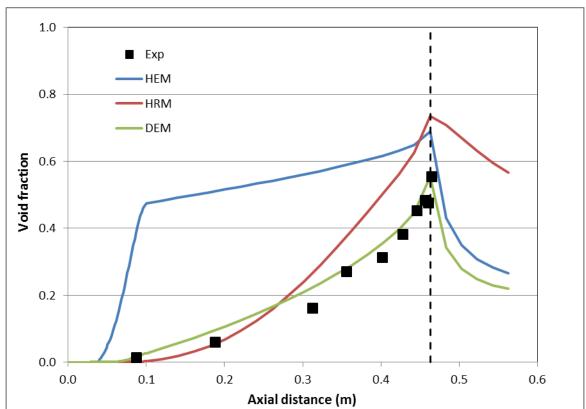
Issue n°	duration (s)	Mass flow rate (kg/s)	Wind speed (m/s) at 3 m height	Humidity (%)	Temp (°C)	H1 (m)	H2 (m)	L (m)
0	60	1,5	6	/	16	3	5	20
1	50	1,4	$4,0\pm1,0$	86	17	5	17	50
2	52	1,4	$5,2\pm1,0$	90	17	5	17	50
3	52	2,1	3,0±0,5	84	12	12	32	80
4	43	2,1	4,0±0,5	84	12	7	35	75
5	34	2,1	5,5±0,5	88	12	7	30	70
6	43	2,1	4,5±0,5	88	11	7	30	70
7	63	1,2	2,0±0,5	85	12			
8	65	1,2	2,0±0,5	85	12			
9	71	2,2	$2,0\pm0,5$	85	12			



L the length of the cloud on the ground H_1 the height of the base of the cloud H_2 the height at the top of the cloud.

Engineering tools


- HNEM model for two-phase choked flow (Venetsanos, IJHE 2018)
 - Short pipe lengths)
 - Validation against Simoneau and Hendricks (1979) tests



Engineering tools (2)

- Two-phase choked flow with large pipe length effects
 - Solve 1d steady state pipe mass, momentum and energy equations using PIF algo
 - EoS based on free energy formulation. Heat transfer effects ignored.
 - Preliminary results against Super Moby Dick data (liquid water, 20bar, 212.3 C)
 - Models compared: HEM, HRM (Homogeneous Relaxation) and DEM (Delayed Equilibrium).

The research leading to these results was financially supported by the PRESLHY project, which has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement No 779613.