

#### Prenormative REsarch for Safe use of Liquid HYdrogen

Thomas Jordan, KIT

Joint Workshop on Liquid Hydrogen Safety - Bergen, Norway, 6 March 2019

**Pre-normative REsearch for Safe use of Liquid HYdrogen** 



Air Liquide

**INERIS** 

PRESLHY

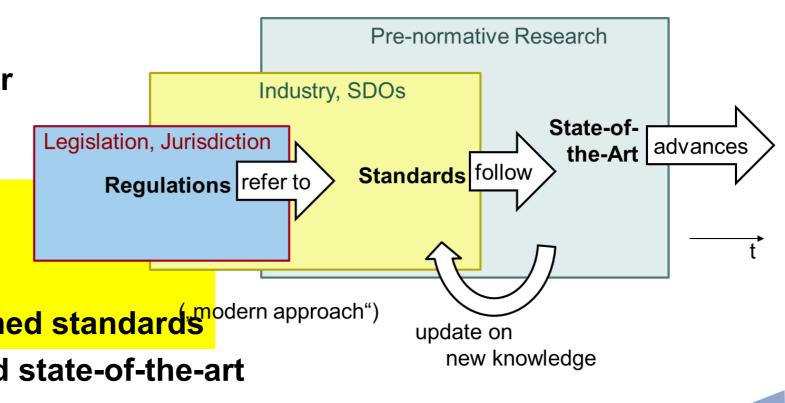
## Outline

- Motivation
- PRESLHY Overview
- WP3 Release
- WP4 Ignition
- WP5 Combustion
- Exploitation
- Closure

### Motivation



- Scale-up of existing and new applications increase demand.
- Liquid hydrogen (LH2) provides larger densities and gains in efficiency over gaseous transport and storage.
- The hazards and risks associated with LH2 are different from the relatively well-known compressed gaseous hydrogen (CGH2).
   (There are indications for reduced risk potential compared to CGH2)
- PRESLHY project addresses the pre-normative research for a safer use of cryogenic and liquid hydrogen as energy carrier.

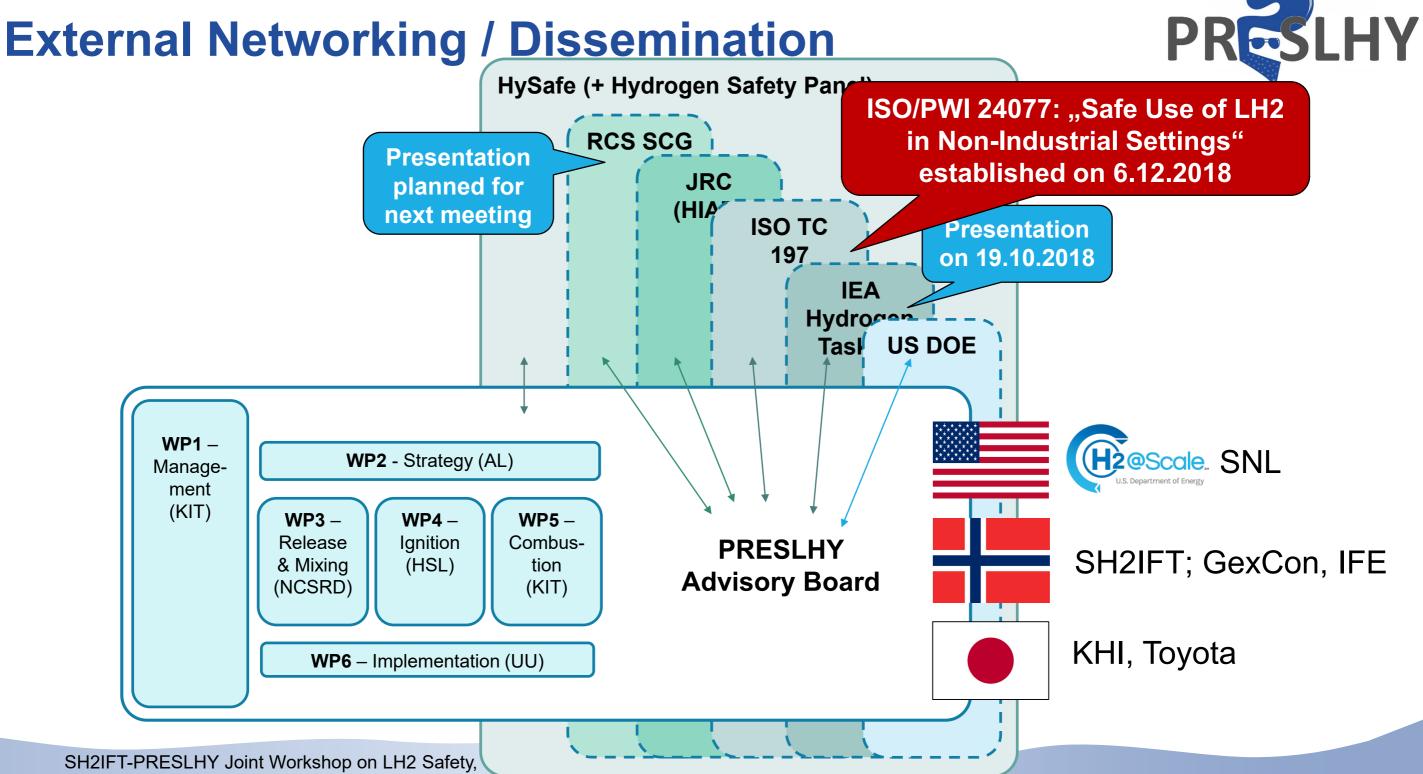



# **PRESLHY Objectives**

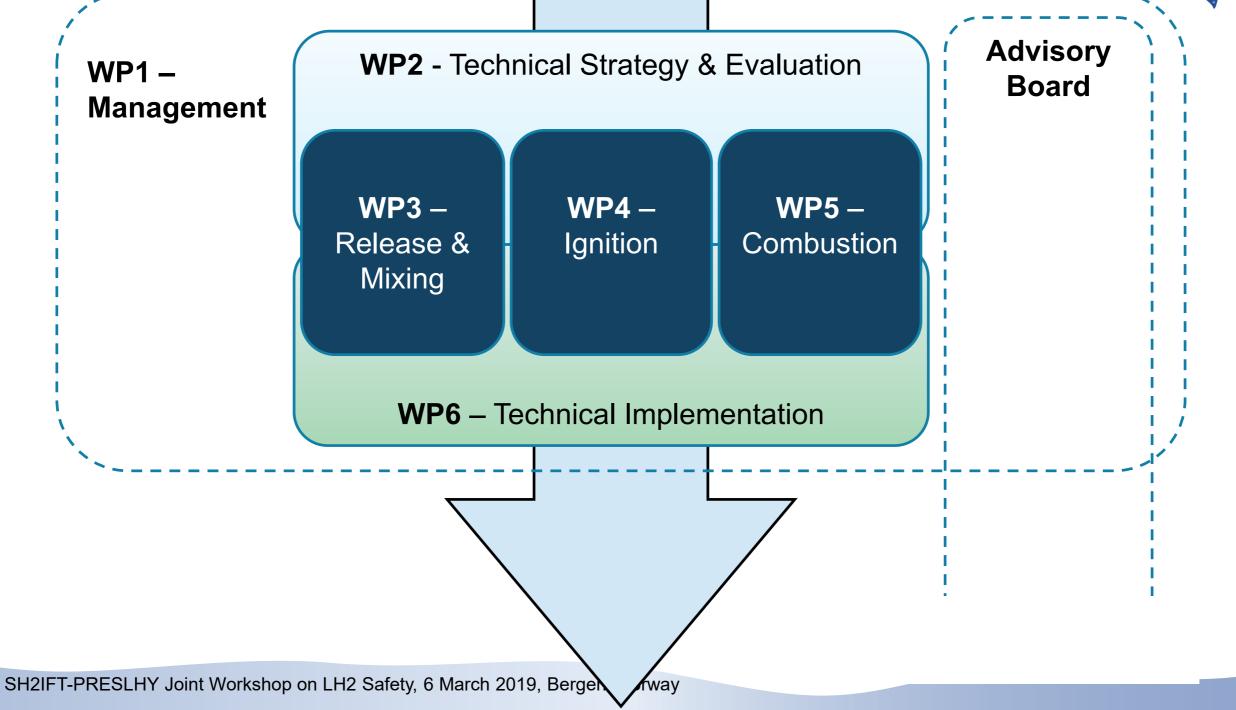
- Report **initial state-of-the-art and knowledge gaps** with priorities wrt intended use of LH2
- Execute adjusted experimental program addressing release, ignition and combustion phenomena with highest priorities
- Document and publish detailed, aggregated and interpreted data in a FAIR way
- Develop suitable models and engineering correlations and integrate them in a suitable open risk assessment toolkit
- Provide enhanced recommendations for safe design and operations of LH2 technologies
- Support international SDOs in

4

- updating of existing standards or
- developing of new international performance based and risk informed standards<sup>modern approach")</sup>
- Document and disseminate the enhanced state-of-the-art



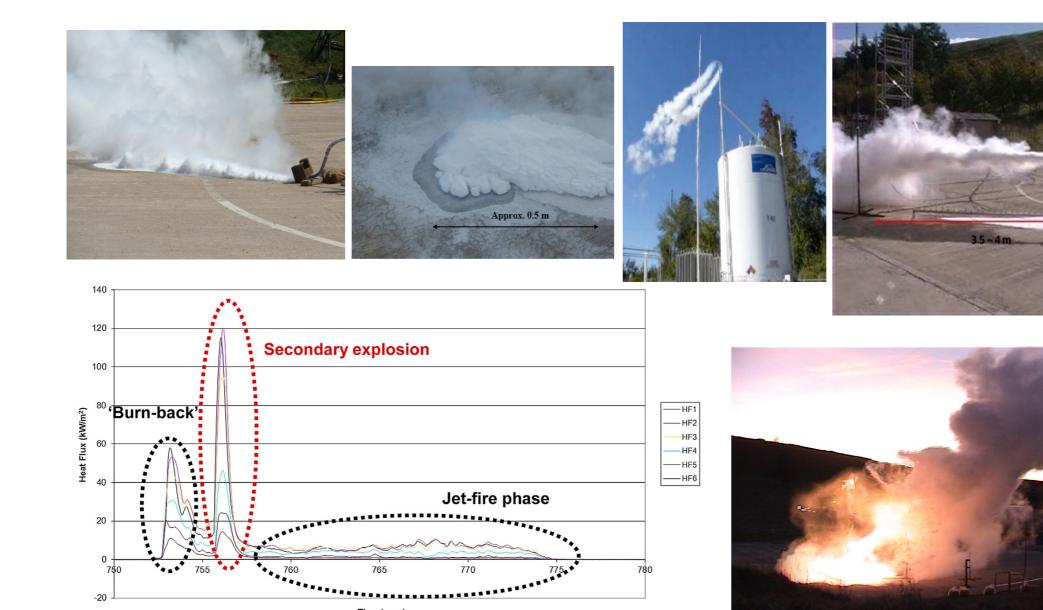

PRESLH




| Participant orga                                 | nisation name                                           | Short name | Country           |
|--------------------------------------------------|---------------------------------------------------------|------------|-------------------|
| Karlsruher Institut für Technologie              | Karlsruhe Institute of Technology                       | KIT        | Germany           |
| <b>Air Liquide</b>                               | Air Liquide                                             | AL         | France            |
| HEALTH & SAFETY<br>LABORATORY                    | Health & Safety Laboratory                              | HSL        | United<br>Kingdom |
| INTERNATIONAL ASSOCIATION<br>FOR HYDROGEN SAFETY | International Association for<br>Hydrogen Safety        | HYSAFE     | Belgium           |
| <b>INERIS</b>                                    | INERIS                                                  | INERIS     | France            |
| AT ANA                                           | National Center for Scientific<br>Research "Demokritos" | NCSRD      | Greece            |
| Pro-Science                                      | Pro-Science GmbH                                        | PS         | Germany           |
| Ulster<br>University                             | University of Ulster                                    | UU         | United<br>Kingdom |
| WARWICK<br>THE UNIVERSITY OF WARWICK             | The University of Warwick                               | UWAR       | United<br>Kingdom |

| Advisor name         | Company<br>Institution | Nation |  |  |  |
|----------------------|------------------------|--------|--|--|--|
| Derek Miller         | Air Products           | US     |  |  |  |
| Andrei Tchouvelev    | AVT                    | CAN    |  |  |  |
| Klaus Schäfer        | DLR                    | D      |  |  |  |
| Franz Grafwallner    | ET                     | D      |  |  |  |
| Trygve Skjold        | GexCon                 | N      |  |  |  |
| Karl Verfondern      | Jülich                 | D      |  |  |  |
| Shoji Kamiya         | KHI                    | JP     |  |  |  |
| Salvador Aceves      | LLNL                   | US     |  |  |  |
| Lee Philips          | Shell                  | UK     |  |  |  |
| Ethan Hecht          | SNL                    | US     |  |  |  |
| Christoph Haberstroh | Uni Dresden            | D      |  |  |  |
| Olav Hansen          | Loyds                  | N      |  |  |  |
| Gerd-Michael Würsig  | DNV GL                 | D      |  |  |  |
| Pietro Moretto       | JRC                    | NL     |  |  |  |
| Volker Schröder      | BAM                    | D      |  |  |  |
| Steve Woods          | NASA                   | US     |  |  |  |




# General Approach PRESLHY



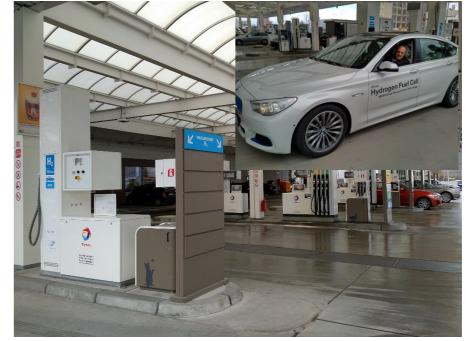
# Motivation - WP2 Results - WP4 Ignition - WP5 Combustion – Exploitation - Closure Visuals for RCS Priority Topics



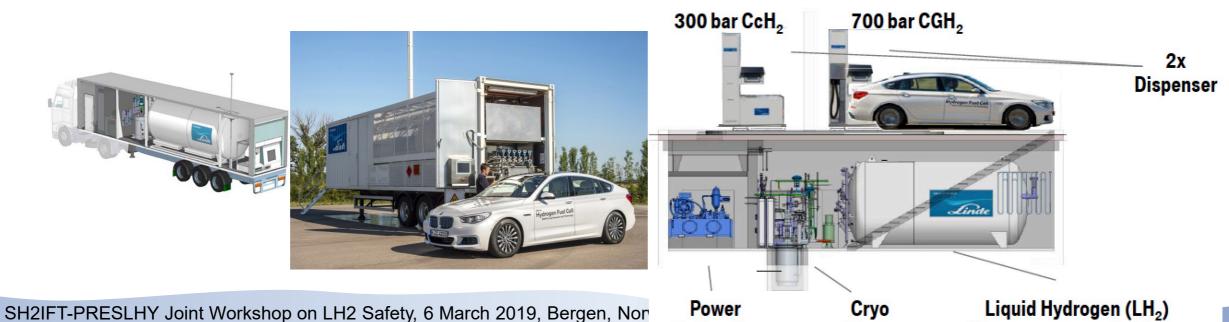
02:50



8


Time (secs)

#### Motivation - WP2 Results - WP4 Ignition - WP5 Combustion - Exploitation - Closure RCS- Visuals for LH2 Separation Distance RESLHY




Density LH<sub>2</sub> / CGH<sub>2</sub> (@35MPa) Temperature -250°C Liquid Phase

- $\rightarrow$  4 t LH<sub>2</sub> vs. 0,5t CGH<sub>2</sub> per trailer
- → Cooling capacity at filling station
- → Transfer from vessel to vessel w/o loss of expended energy (e.g. pressurization)



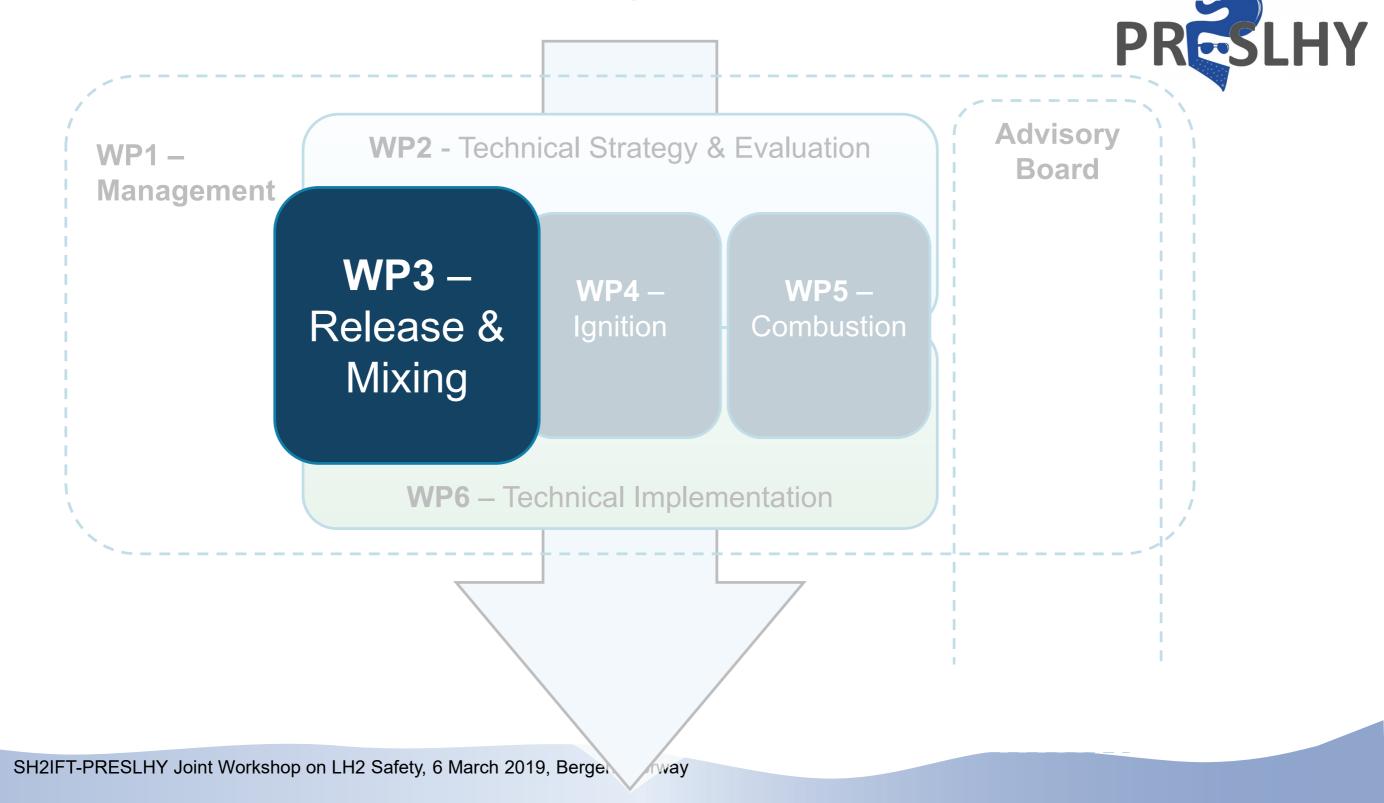
Storage; approx. 1.000 kg



Hydraulics

Pump

#### Motivation - WP2 Results - WP4 Ignition - WP5 Combustion – Exploitation - Closure RCS Status - NFPA2:2016 LH2, Separation Distance LH2 HURDGEN TECHNOLOGIES CODE


|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total Bulk Liquefied Hydrogen [LH] Storage |                             |                           |                         |                             |                           |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------|---------------------------|-------------------------|-----------------------------|---------------------------|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39.7 gal to<br>3500 gal                    | 150 L to<br>13,250 L        | 3501 gal to<br>15,000 gal | 13,251 L to<br>56,781 L | 15,001 gal to<br>75,000 gal | 56,782 L to<br>283,906 L  |  |  |  |
| Type of Exposure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ft                                         | m                           | ft                        | m                       | ft                          | m                         |  |  |  |
| Group 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                             |                           |                         |                             |                           |  |  |  |
| . Lot lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25                                         | 6.6                         | 50                        | 15                      | 1.                          | 23                        |  |  |  |
| <ul> <li>Air intakes [heating, ventilating, or air conditioning<br/>equipment (HVAC, compressors, other]</li> <li>Wall openings</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75                                         | 23                          | 75                        | 23                      | 75                          | 23                        |  |  |  |
| Operable openings in buildings and structures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75                                         | 23                          | 75                        | 23                      | 75                          | 23                        |  |  |  |
| . Ignition sources such as open flames and welding<br>Group 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50                                         | 15                          | 50                        | 15                      | 50                          | 15                        |  |  |  |
| . Places of public assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75                                         | 23                          | 75                        | 23                      | 75                          | 23                        |  |  |  |
| Parked cars (distance shall be measured from the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25                                         | 7.6                         | 25                        | 7.6                     | 25                          | 7.6                       |  |  |  |
| container fill connection)<br>Group 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | o the                                      | ese n                       | umbe                      | ers ma                  | ke ser                      | se?                       |  |  |  |
| Building or structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |                             |                           |                         |                             |                           |  |  |  |
| (a) Buildings constructed of noncombustible or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vhat :                                     | are c                       | orrect                    | t crite                 | ria / m                     | ethor                     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | That i                                     |                             |                           |                         |                             | CIIIO                     |  |  |  |
| (1) Sprinkler, Ubuilding or structure or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 <sup>a</sup>                             | 1.5                         | $5^{a}$                   | 1.5                     | $5^{\mathrm{a}}$            | 1.5                       |  |  |  |
| unsprinklered building or structure having<br>noncombustible contents<br>(2) Unsprinklered building or structure with<br>combustible contents                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |                             |                           |                         |                             |                           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25                                         | 7.6                         | 50                        | 15                      | 75                          | 23                        |  |  |  |
| (i) Adjacent wall(s) with fire resistance rating less than 3 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                             |                           |                         |                             |                           |  |  |  |
| less than 3 hours<br>(ii) Adjacent wall(s) with fire resistance rating<br>of 3 hours or greater <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                          | 1.5                         | 5                         | 1.5                     | 5                           | 1                         |  |  |  |
| less than 3 hours<br>(ii) Adjacent wall(s) with fire resistance rating<br>of 3 hours or greater <sup>b</sup><br>(b) Buildings of combastible construction                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                          |                             |                           | 1.5                     |                             | 1<br>15                   |  |  |  |
| <ul> <li>less than 3 hours <ul> <li>(ii) Adjacent wall(s) with fire resistance rating of 3 hours or greater<sup>b</sup></li> </ul> </li> <li>(b) Buildings of combastible construction <ul> <li>(1) Sprinklered building or structure</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                          | 5<br>50                                    | 15                          | 50                        | 1.5<br>1                | 50                          | 1.<br>15<br>30.5          |  |  |  |
| <ul> <li>less than 3 hours <ul> <li>(ii) Adjacent wall(s) with fire resistance rating of 3 hours or greater<sup>b</sup></li> </ul> </li> <li>(b) Buildings of combustible construction <ul> <li>(1) Sprinklered building or structure</li> <li>(2) Supprimetered building or structure</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                         | 5                                          |                             |                           | 13                      |                             | 30.5                      |  |  |  |
| <ul> <li>less than 3 hours <ul> <li>(ii) Adjacent wall(s) with fire resistance rating</li> <li>of 3 hours or greater<sup>b</sup></li> </ul> </li> <li>(b) Buildings of combastible construction <ul> <li>(1) Sprinklered building or structure</li> <li>(2) Comparing rest building or structure</li> </ul> </li> <li>Flammable gas storage or systems (other than</li> </ul>                                                                                                                                                                                                                         | 5<br>50<br>50                              | 15<br>15                    | 50<br>75                  | 1.5<br>1<br>3<br>23     | 50<br>100                   |                           |  |  |  |
| <ul> <li>less than 3 hours <ul> <li>(ii) Adjacent wall(s) with fire resistance rating</li> <li>of 3 hours or greater<sup>b</sup></li> </ul> </li> <li>(b) Buildings of compastible construction <ul> <li>(1) Sprinklered building or structure</li> <li>(2) CompanyIered building or structure</li> </ul> </li> <li>Flammable gas storage or systems (other than hydrogen) above or below ground</li> </ul>                                                                                                                                                                                           | 5<br>50<br>50                              | 15<br>15                    | 50<br>75                  | 13                      | 50<br>100                   | 30.5                      |  |  |  |
| <ul> <li>ess than 3 hours <ul> <li>(ii) Adjacent wall(s) with fire resistance rating</li> <li>of 3 hours or greater<sup>b</sup></li> </ul> </li> <li>b) Buildings of compastible construction <ul> <li>(1) Sprinklered building or structure</li> <li>(2) Chaptinklered building or structure</li> <li>Clammable gas storage or systems (other than hydrogen) above or below ground</li> </ul> </li> <li>b) Between stationary liquefied hydrogen containers</li> </ul>                                                                                                                               | 5<br>50<br>50<br>50                        | 15<br>15<br>15              | 50<br>75<br>75            | 1<br>3<br>23            | 50<br>100<br>75             | 30.5<br>23                |  |  |  |
| <ul> <li>less than 3 hours <ul> <li>(ii) Adjacent wall(s) with fire resistance rating of 3 hours or greater<sup>b</sup></li> <li>(b) Buildings of combastible construction</li> <li>(1) Sprinklered building or structure</li> <li>(2) Comparistered building or structure</li> </ul> </li> <li>Flammable gas storage or systems (other than hydrogen) above or below ground</li> <li>Between stationary liquefied hydrogen containers</li> </ul>                                                                                                                                                     | 5<br>50<br>50<br>50                        | 15<br>15<br>15<br>1.5       | 50<br>75<br>75<br>5       | 1<br>3<br>23<br>1.5     | 50<br>100<br>75<br>5        | 30.5<br>23<br>1.5         |  |  |  |
| <ul> <li>less than 3 hours <ul> <li>(ii) Adjacent wall(s) with fire resistance rating</li> <li>of 3 hours or greater<sup>b</sup></li> </ul> </li> <li>(b) Buildings of combastible construction <ul> <li>(1) Sprinklered building or structure</li> <li>(2) chaptimatered building or structure</li> <li>Flammable gas storage or systems (other than hydrogen) above or below ground</li> <li>Between stationary liquefied hydrogen containers</li> <li>All classes of flammable and combustible liquids (above ground and vent or fill openings if below ground)<sup>c</sup></li> </ul> </li> </ul> | 5<br>50<br>50<br>50                        | 15<br>15<br>15<br>1.5       | 50<br>75<br>75<br>5       | 1<br>3<br>23<br>1.5     | 50<br>100<br>75<br>5        | 30.5<br>23<br>1.5         |  |  |  |
| <ul> <li>less than 3 hours <ul> <li>(ii) Adjacent wall (s) with fire resistance rating of 3 hours or greater<sup>b</sup></li> </ul> </li> <li>(b) Buildings of combastible construction <ul> <li>(1) Sprinklered building or structure</li> <li>(2) Comparised building or structure</li> </ul> </li> <li>Flammable gas storage or systems (other than hydrogen) above or below ground</li> <li>Between stationary liquefied hydrogen containers</li> <li>0. All classes of flammable and combustible liquids (above ground and vent or fill openings if below</li> </ul>                             | 5<br>50<br>50<br>5<br>5<br>50              | 15<br>15<br>15<br>1.5<br>15 | 50<br>75<br>75<br>5<br>75 | 1<br>3<br>23<br>1.5     | 50<br>100<br>75<br>5<br>100 | 30.5<br>23<br>1.5<br>30.5 |  |  |  |

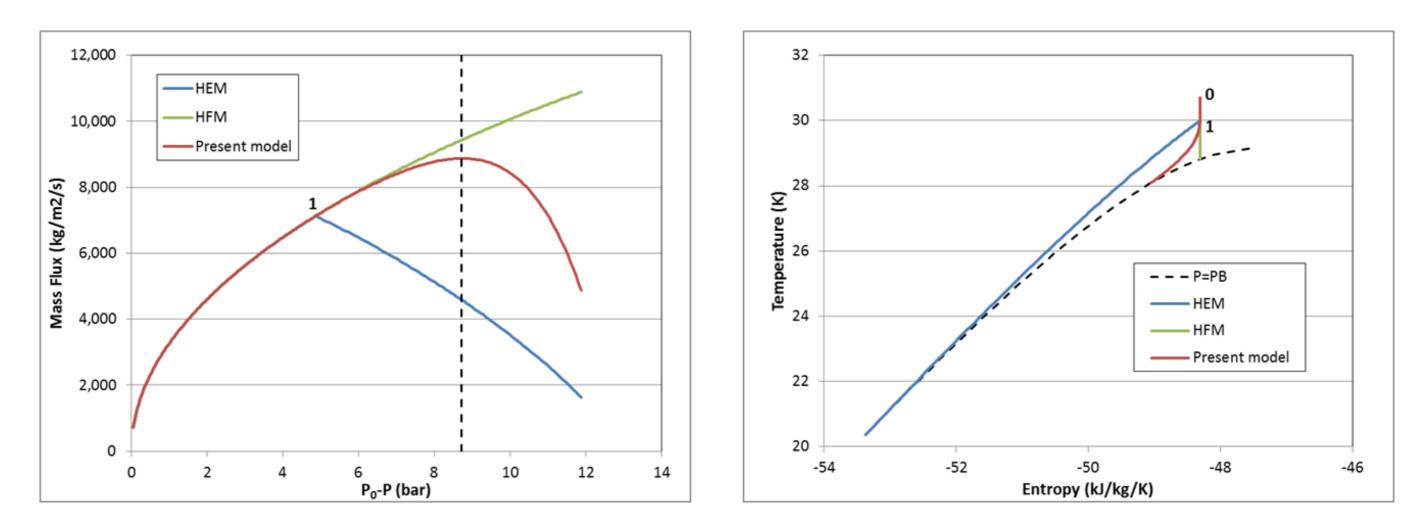
10 SH2IFT-PRESLHY Joint Workshop on LH2 Safety, 6 March 2019, Bergen, Norway

#### Motivation - WP2 Results - WP4 Ignition - WP5 Combustion – Exploitation - Closure RCS Status - EIGA Code of Practice for LH<sub>2</sub>



| i i i i i i i i i i i i i i i i i i i |                                          |              |
|---------------------------------------|------------------------------------------|--------------|
|                                       | ITEMS                                    | DISTANCE (M) |
| 1                                     | 90 min fire resistive walls              | 2.5          |
| 2                                     | Technical and unoccupied buildings       | 10           |
| 3                                     | Occupied buildings                       | 20           |
| 4                                     | Air compressor intakes, air conditioning | 20           |
| 5                                     | Any combustible liquids                  | 10           |
| 6                                     | Any combustible solids                   | 10           |
| 7                                     | Other LH2 fixed storage                  | 1.5          |
| 8                                     | Other LH2 tanker                         | 3            |
| 9                                     | Liquid oxygen storage                    | 6            |
| 10                                    | Flammable gas storage                    | 8            |
| 11                                    | Open flame, smoking, welding             | 10           |
| 12                                    | Place of public assembly                 | 20           |
| 13                                    | Public establishments                    | 60           |
| 14                                    | Railroads, roads, property boundaries    | 10           |
| 15                                    | Overhead power lines                     | 10           |




# Gaps / Weak points wrt cryogenic H<sub>2</sub> release PRESLHY Gaps

- No experiments for under-expanded release & dispersion from LH<sub>2</sub> storage (saturated or sub-cooled conditions)
- No Blowdown
- No droplet size measurements
- No velocities or fluctuations
- Very limited structure of two-phase jets close to the release
- Weak points in many past experiments
  - Release momentum not measured
  - Uncertainty on the discharge rates
  - Large variability or limited info about meteorological conditions
  - Only few concentrations and temperatures

LHY

PR

#### **HEM / HNEM Two-Phase Choked Flow Modeling** e.g. NASA test 1197 ( $P_0$ =12.9 bar, $T_0$ =30.7 K)



# **WP3 Experimental Activities**

#### KIT / PS

- Design and set-up of tests E3.1, E3.4
- HSL
  - Design of tests E3.5
- INERIS
  - Sharing of existing LHe experiments data
  - Excluded tests
    - test 0 for no humidity info
    - tests 1,2 for too large wind variation
    - tests 7-9 for no H1, H2, L info
  - Tests 3 and 6 selected for validation

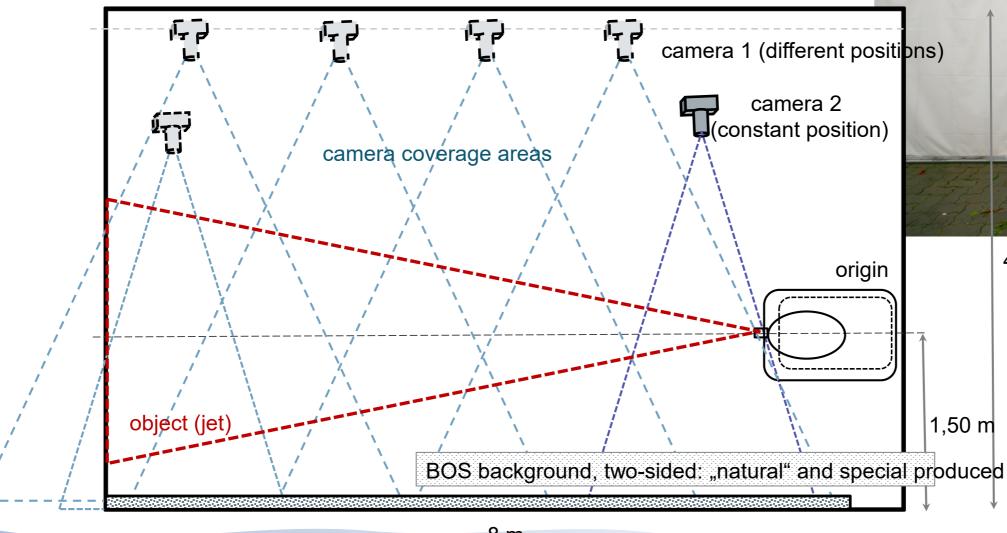


| Issue<br>n° | duration<br>(s) | Mass<br>flow<br>rate<br>(kg/s) | Wind<br>speed<br>(m/s) at<br>3 m<br>height | Humidity<br>(%) | Temp<br>(°C) | H1<br>(m) | H2<br>(m) | L<br>(m) |
|-------------|-----------------|--------------------------------|--------------------------------------------|-----------------|--------------|-----------|-----------|----------|
| 0           | 60              | 1,5                            | 6                                          | 7               | 16           | 3         | 5         | 20       |
| 1           | 50              | 1,4                            | $4,0\pm1,0$                                | 86              | 17           | 5         | 17        | 50       |
| 2           | 52              | 1,4                            | $5,2\pm1,0$                                | 90              | 17           | 5         | 17        | 50       |
| 3           | 52              | 2,1                            | 3,0±0,5                                    | 84              | 12           | 12        | 32        | 80       |
| 4           | 43              | 2,1                            | 4,0±0,5                                    | 84              | 12           | 7         | 35        | 75       |
| 5           | 34              | 2,1                            | 5,5±0,5                                    | 88              | 12           | 7         | 30        | 70       |
| 6           | 43              | 2,1                            | 4,5±0,5                                    | 88              | 11           | 7         | 30        | 70       |
| 7           | 63              | 1,2                            | $2,0\pm0,5$                                | 85              | 12           |           |           |          |
| 8           | 65              | 1,2                            | 2,0±0,5                                    | 85              | 12           |           |           |          |
| 9           | 71              | 2,2                            | $2,0\pm0,5$                                | 85              | 12           |           |           |          |

L the length of the cloud on the ground  $H_1$  the height of the base of the cloud  $H_2$  the height at the top of the cloud.

### **E3.1 DISCHA-Facility Setup**






- Vessel and valve will be cooled from outside by LN2 pool ( $T_{min} = 77K$ )
- Release of cold CGH2 and LN2 from up to 20 MPa

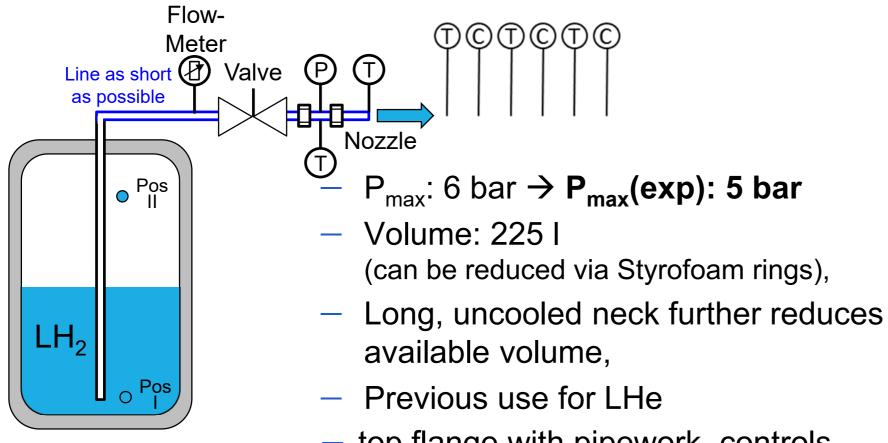
16 SH2IFT-PRESLHY Joint Workshop on LH2 Safety, 6 March 2019, Bergen, Norway

## **E3.1 DISCHA-Facility**

Release experiments combined with near- and far-field optical measurements (BOS, laser, shadow,...) of mixing



bns)


PRESLHY

4 m

# E3.1 CRYO-Vessel

LN<sub>2</sub>-shielded Cryo-vessel:

18

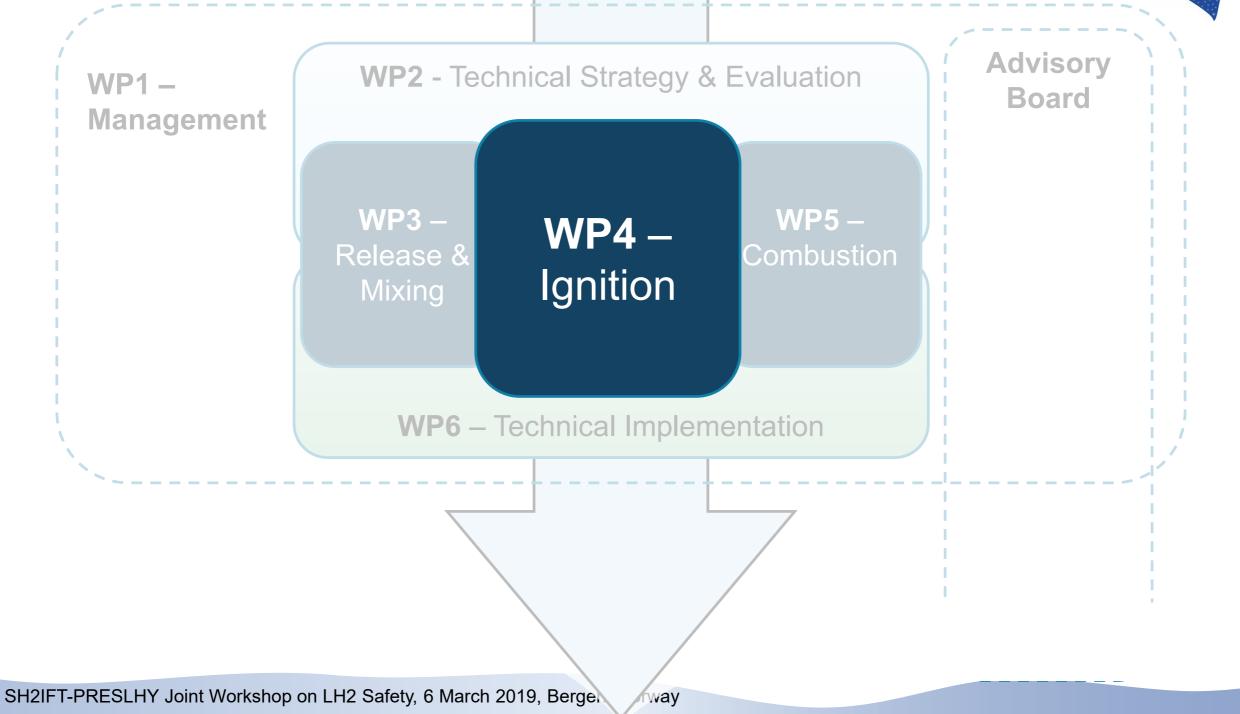


- top flange with pipework, controls under construction,
- safety valves replaced,
- safety check by TÜV Süd scheduled.



PRESLHY

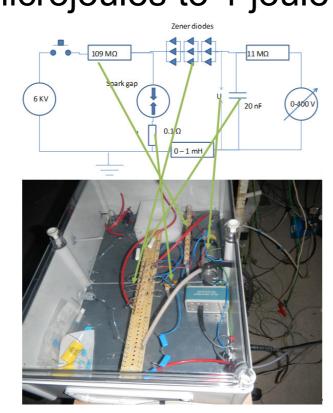
# E3.4 Pool-Facility / Planned ExperimentsPRESLHY


Ground

(Concrete, Earth, Sand)

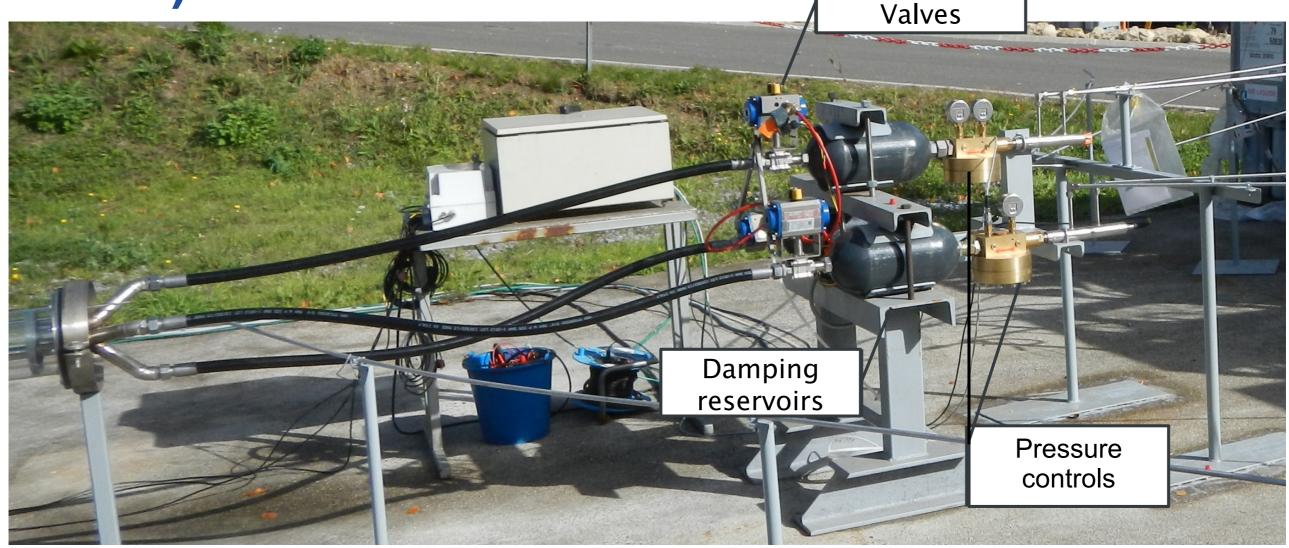
Insulation (PU-Foam)

- Basin with size 50 x 50 cm with variation of ground material (e.g. concrete, earth or sand, to be defined!)
- LH2 release on surface in basin,
- As long as no LH2-pool is formed no significant increase in weight,
- LH2-release until weight increases (or LH2-reservoir is empty),
- When pool has formed LH2 supply is stopped,
- All frozen gases evaporate → loss of weight,
- In correlation with ground surface temperature evaporation of different species (LH2, LN2, LO2) might be distinguished (distillation),
- Using loss of weight over time for surface temperatures below 80 K might give evaporation rate for LH2.



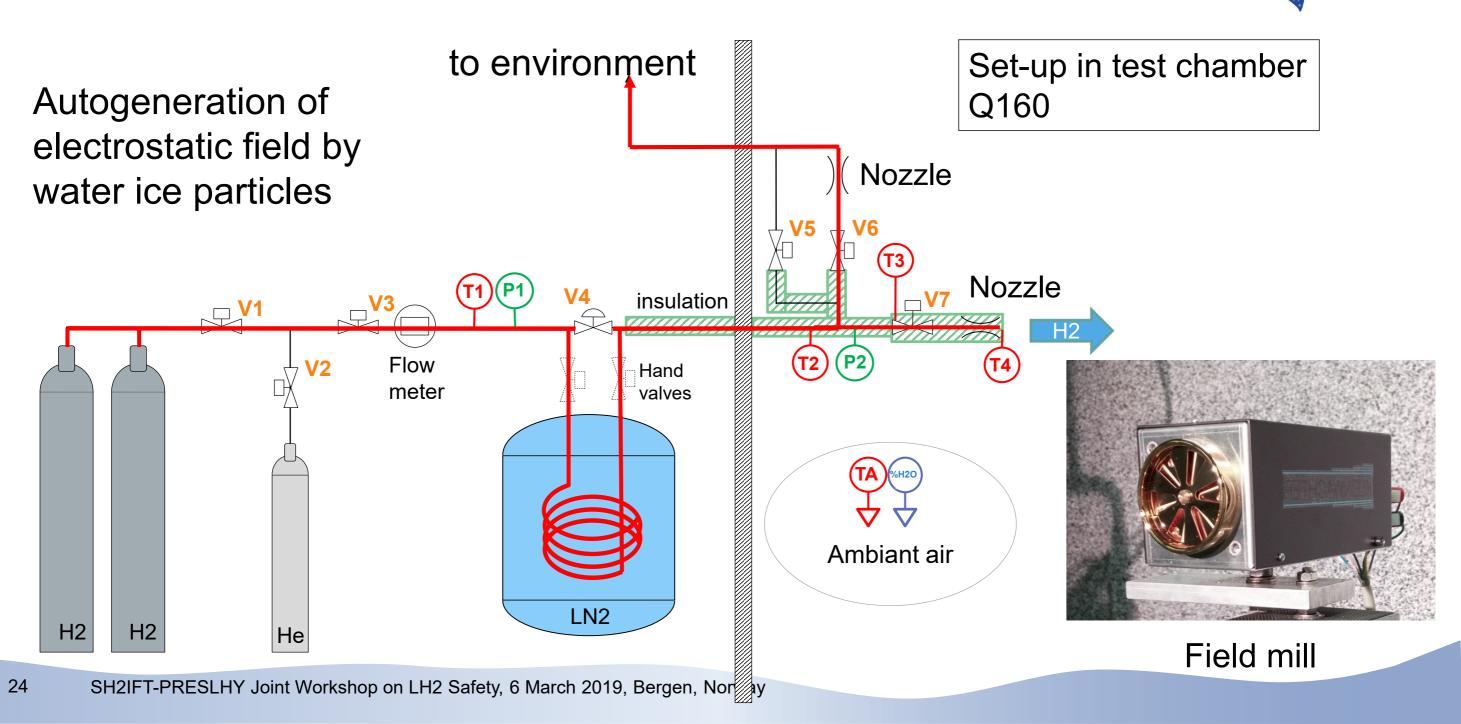



# E4.1 MIE Device (INERIS)


PRESLHY

- Triggered spark
- Current and voltage measured in the spark gap
- Inductance = 1 mH or zero
- Capacitance : variable
- From a few microjoules to 1 joule



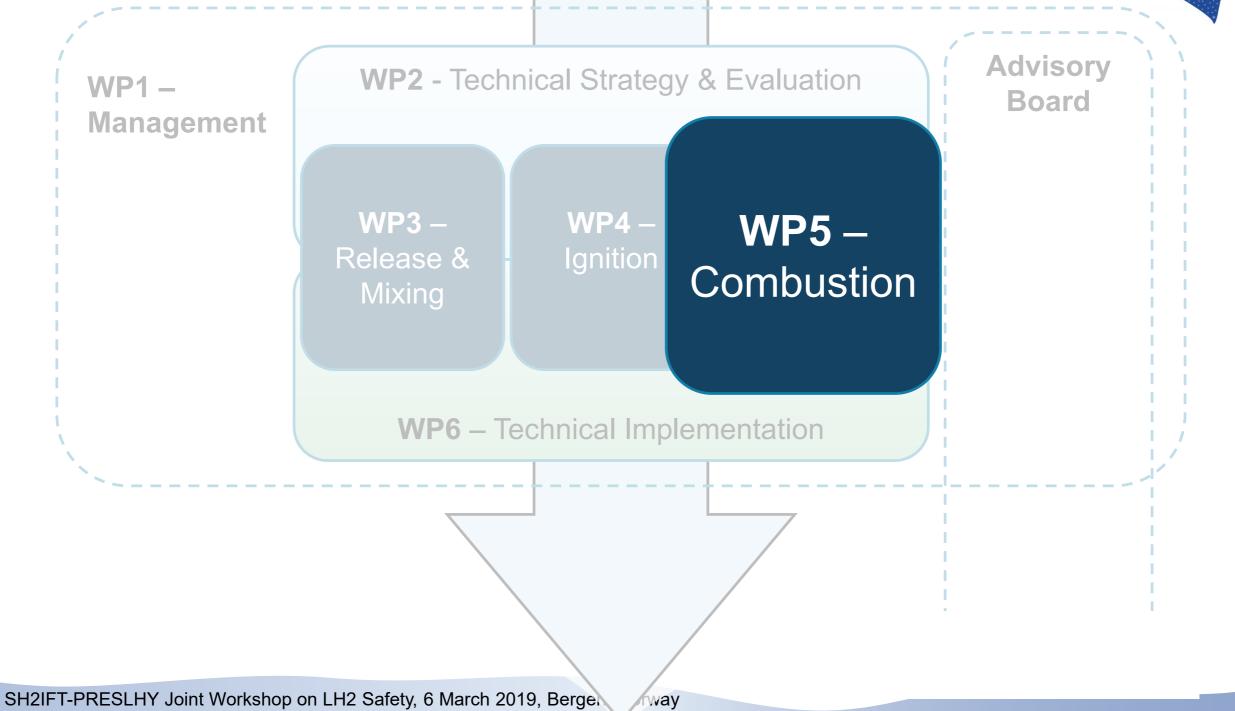



# E4.1 Ignition by hot surfaces/power (INERIS)



PRESLHY

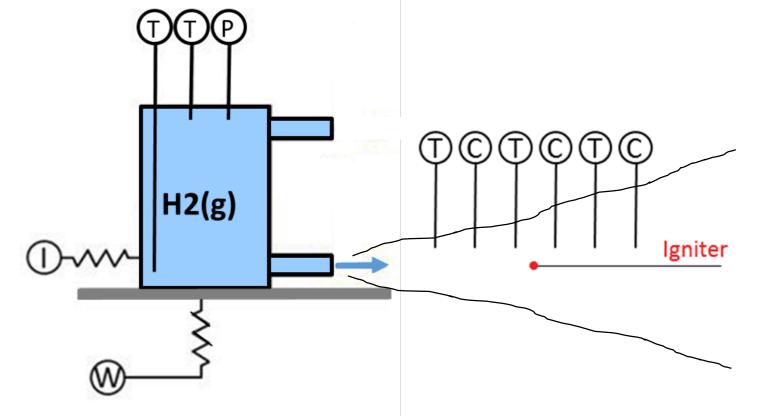
### E4.2 Electrostatic Ignition in jet (KIT)




#### **Further ignition experiments**



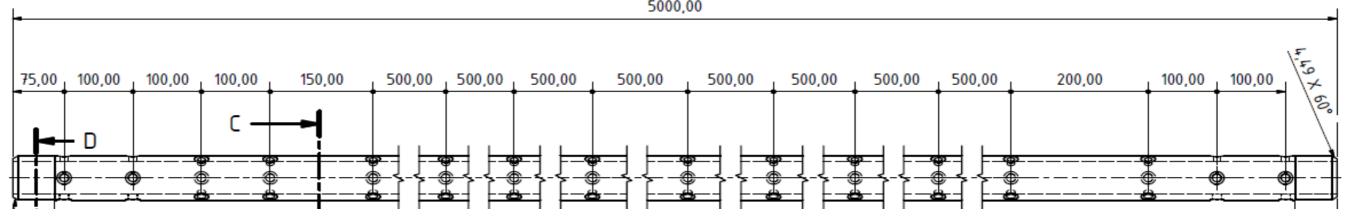
- E4.3 Electrostatic Ignition in plume (HSL)
- E4.4 Ignition above pool (KIT)
- E4.5 Condensed phase ignition (HSL)



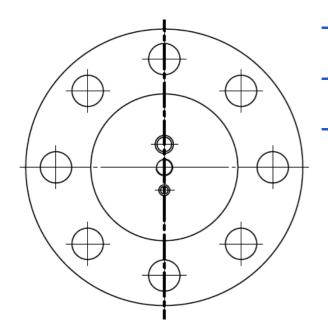



# E5.1: DISCHA Ignited Jet

Flammability, pressure and heat flux for ignited cold jet

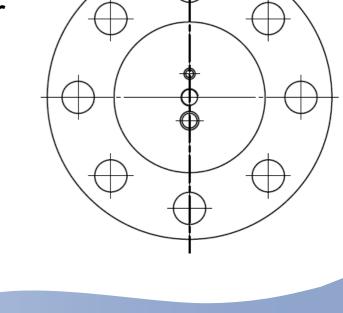

- For the ignited experiments an ignition device will be added to the existing facilities.
- Selected experiments of the unignited series will be repeated with ignition,
- Parameters to be varied include:
  - Ignition position,
  - Ignition time.



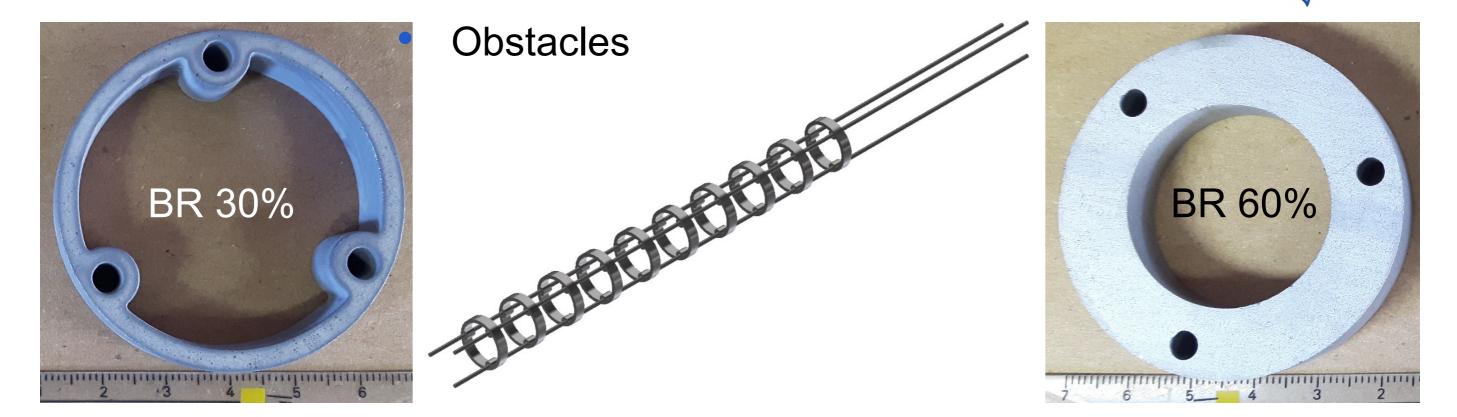



# **E5.2: Combustion-Tube-Facility**

Tube experiments for FA and DDT criteria for T down to 80K




• Front-Flange with ports for:



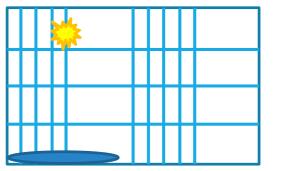

- Gas-Inlet
- Glow-Plug
- Thermocouple

- End-Flange with ports for:
  - Thermocouple
  - Pressure-Sensor
  - Gas-Outlet
- Along the tube 52 ports for:
  - Pressure Sensors (2 different types),
  - Phototransistors

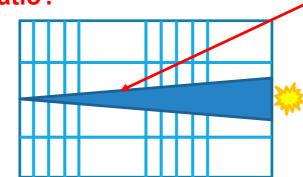


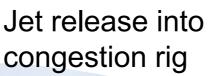
## **E5.2: Combustion-Tube-Facility**




- 2 different obstacles (BR 30% and BR 60%),
- obstacles will be positioned evenly along the complete tube length (spacing: 1 inner diameter of tube) via three thin threaded rods,
- obstacles were manufactured externally (already delivered).

# E5.5: Integral test in congested space

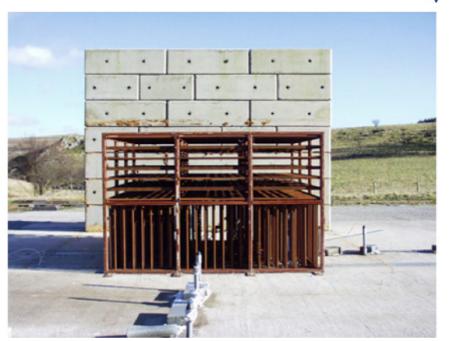

Variables:


- LH2 pool or jet
- Congestion level
- Confinement level
- LH2 jet flow rate

Ignition source located just downstream of rig to limit inventory of unburnt gas prior to entry into the congestion rig, this is to limit noise Blockage ratio?



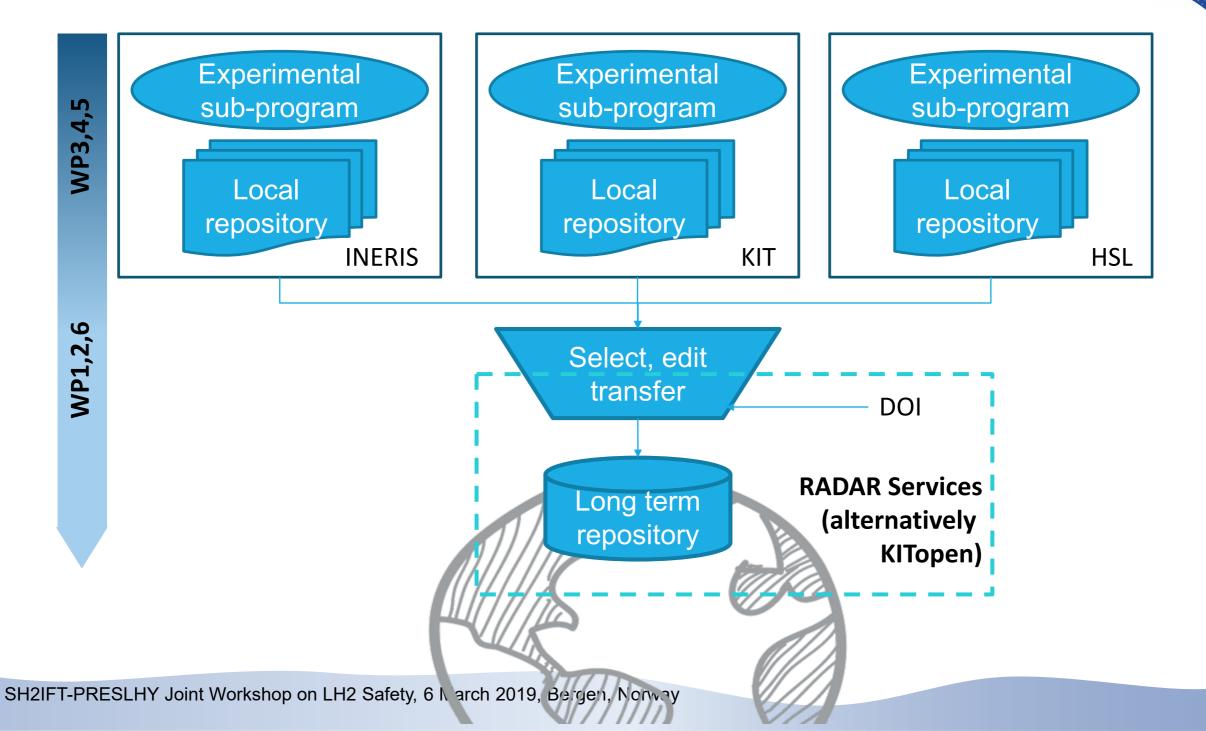
Pool in congestion rig






PRESLHY

Higher flow rate release into rig, larger orifice


30 SH2IFT-PRESLHY Joint Workshop on LH2 Safety, 6 March 2019, Bergen, Norway





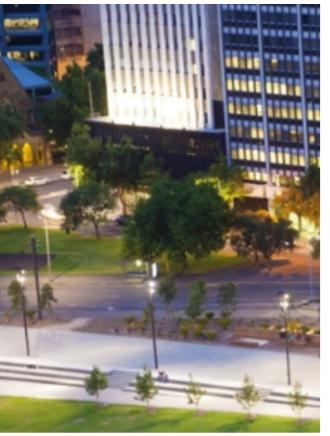

PRESLHY

#### **FAIR Data Management**



#### Outreach




PRESLHY

#### **Deliverables on www.preslhy.eu**

| lumber 🗘 | Delivera<br>ble ¢<br>(number) | Delivera<br>ble name                                                    | Work<br>package 🗘<br>number | Short<br>name of<br>lead<br>participa<br>nt | Туре    | Dissemin<br>ation<br>level | Delivery<br>date<br>(month) | Num | ber 🤅 | Delivera<br>ble \$<br>(number) | Delivera<br>ble name                                          | Work<br>package 🗘<br>number | Short<br>name of<br>lead<br>participa<br>nt | Туре   | Dissemin<br>ation<br>level | Delivery<br>date<br>(month) |  |      |                                                    |   |       |        |    |    |
|----------|-------------------------------|-------------------------------------------------------------------------|-----------------------------|---------------------------------------------|---------|----------------------------|-----------------------------|-----|-------|--------------------------------|---------------------------------------------------------------|-----------------------------|---------------------------------------------|--------|----------------------------|-----------------------------|--|------|----------------------------------------------------|---|-------|--------|----|----|
| D1       | D1.1                          | Kick-off<br>Meeting                                                     | 1                           | KIT                                         | OTHER   | со                         | 1                           | D4  |       | D1.4                           | 2nd Project<br>Meeting                                        | 1                           | KIT                                         | OTHER  | со                         | 9                           |  |      |                                                    |   |       |        |    |    |
| D2       | D1.2                          | Website<br>including<br>internal<br>communica<br>tion tools             | 1                           | KIT                                         | DEC     | PU                         | 3                           | D21 |       | D3.4                           | Summary<br>of<br>experiment<br>series E3.1<br>(Discharge)     | 3                           | PS                                          | REPORT | СО                         | 11                          |  |      |                                                    |   |       |        |    |    |
| D12      | D2.1                          | RCS<br>Analysis                                                         | 2                           | HySafe                                      | REPORT  | PU                         | 3                           | D27 |       | D4.4                           | results<br>Summary                                            | 4                           | INERIS                                      | REPORT | со                         | 11                          |  |      |                                                    |   |       |        |    |    |
| D13      | D2.2                          | State of the<br>Art Report                                              | 2                           | AL                                          | REPORT  | PU                         | 3                           |     |       |                                | of<br>experiment<br>series E4.1                               |                             |                                             |        |                            |                             |  |      |                                                    |   |       |        |    |    |
| D14      | D2.3                          | LH2<br>installation<br>description                                      | 2                           | AL                                          | REPORT  | PU                         | 4                           |     |       |                                | (General<br>ignition)<br>results                              |                             |                                             |        |                            |                             |  |      |                                                    |   |       |        |    |    |
| D15      | D2.4                          | LH2<br>Research<br>Priorities                                           | 2                           | HySafe                                      | OTHER   | PU                         | 4                           | D9  |       | D1.9                           | 1st Annual<br>Data<br>Reporting                               | 1                           | KIT                                         | REPORT | СО                         | 12                          |  |      |                                                    |   |       |        |    |    |
| B46      | 22.5                          | Workshop                                                                |                             |                                             | 050007  | 011                        |                             | D5  |       | D1.5                           | 3rd Project<br>Meeting                                        | 1                           | KIT                                         | OTHER  | CO                         | 14                          |  |      |                                                    |   |       |        |    |    |
| D16      | D2.5                          | Phenomen<br>a<br>Identificatio<br>n and<br>Ranking<br>Table<br>Analysis | 2                           | AL                                          | REPORT  | PU                         | 4                           | D36 |       | D5.5                           | Summary<br>of<br>experiment<br>series E5.2<br>results         | 5                           | PS                                          | REPORT | со                         | toc                         |  |      |                                                    |   |       |        |    |    |
| D17      | D2.6                          | Refined<br>Work<br>Program                                              | 2                           | AL                                          | REPORT  | PU                         | 5                           | D35 |       | D5.4                           | Summary<br>of<br>experiment<br>series E5.1                    | 5                           | PS                                          | REPORT | CO                         | 15                          |  |      |                                                    |   |       |        |    |    |
| D3       | D1.3                          | Data<br>Manageme                                                        | 1                           | KIT                                         | ORDP    | PU                         | б                           |     |       | L                              | results                                                       |                             |                                             |        |                            |                             |  |      |                                                    |   |       |        |    |    |
|          |                               | nt Plan<br>Version 1.0<br>- Draft                                       |                             |                                             |         |                            |                             |     |       |                                |                                                               |                             |                                             |        |                            | D18                         |  | D3.1 | Theory and<br>Analysis of<br>cryogenic<br>hydrogen | 3 | NCSRD | REPORT | PU | 18 |
| D44      | D6.6                          | Plan for<br>Disseminati                                                 | б                           | ULster                                      | REPORT  | PU                         | 6                           |     |       |                                | release and dispersion                                        |                             |                                             |        |                            |                             |  |      |                                                    |   |       |        |    |    |
|          |                               | on,<br>Communica<br>tion and<br>Exploitation                            |                             |                                             |         |                            |                             | D24 |       | D4.1                           | Theory and<br>Analysis of<br>Ignition<br>with                 | 4                           | HSE                                         | REPORT | PU                         | 18                          |  |      |                                                    |   |       |        |    |    |
| RESLH    | Y Joint V                     | Worksho                                                                 | op on LH                    | l2 Safety                                   | y, 6 Ma | rch 2019                   | , Bergen,                   | Νοι |       |                                | specific<br>conditions<br>related to<br>cryogenic<br>hydrogen |                             |                                             |        |                            |                             |  |      |                                                    |   |       |        |    |    |

33

www.ichs2019.com



Invitation to





**COLLABORATION** 

HOSTING





ITALY









## Acknowledgement



The PRESLHY project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under the European Union's Horizon 2020 research and innovation program under the grant agreement No 779613

