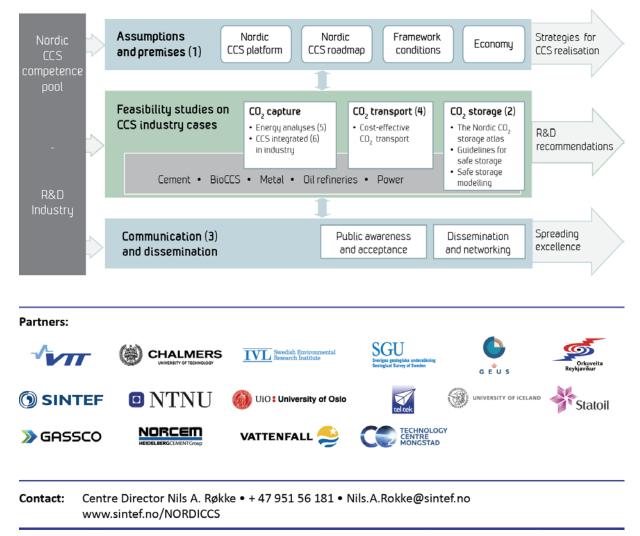


CO₂ from Natural Gas Sweetening to Kick-Start EOR in the North Sea

Marit Jagtøyen Mazzetti Nils Eldrup Ragnhild Skagestad Anette Mathiesen


NORDICCS Technical Report D1.1.1402

December 2014

NORDICCS concept:

Summary

This is an extra deliverable in the NORDICCS Project. It was not part of the 2014 Implementation plan. It was an oral presentation at GHGT12 in Austin, Texas, USA.

 Keywords Natural Gas Sweetening, CO₂ removal CCS, CO₂ EOR
Authors Marit J. Mazzetti, SINTEF Energy Research, Norway, <u>Marit.Mazzetti@sintef.no</u> Ragnhild Skagestad, Tel-Tek, Norway Anette Mathiesen, Tel-Tek, Norway Nils H. Eldrup, Tel-Tek, Norway

Date December 2014

About NORDICCS

Nordic CCS Competence Centre, NORDICCS, is a networking platform for increased CCS deployment in the Nordic countries. NORDICCS has 10 research partners and six industry partners, is led by SINTEF Energy Research, and is supported by Nordic Innovation through the Top-level Research Initiative.

The views presented in this report solely represent those of the authors and do not necessarily reflect those of other members in the NORDICCS consortia, NORDEN, The Top Level Research Initiative or Nordic Innovation. For more information regarding NORDICCS and available reports, please visit <u>http://www.sintef.no/NORDICCS</u>.

Available online at www.sciencedirect.com

ScienceDirect

Energy Procedia 00 (2013) 000-000

www.elsevier.com/locate/procedia

GHGT-12

CO2 from Natural Gas Sweetening to Kick-Start EOR

in the North Sea

Marit J. Mazzetti^a*, Ragnhild Skagestad^b, Anette Mathisen^b, Nils H. Eldrup^b,

^a SINTEF Energy Research, PO Box 4761 Sluppen, 7465, Trondheim, Norway ^bTel-Tek, Porsgrunn Norway

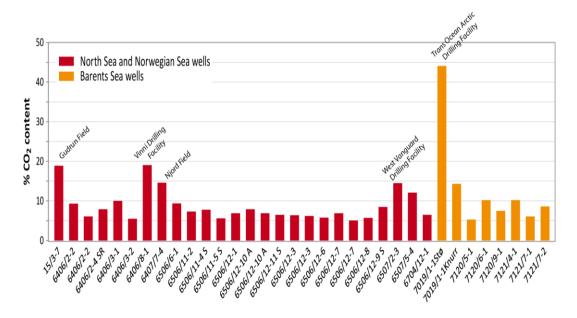
Abstract

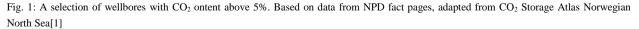
The cost of CO₂ removal from natural gas with subsequent storage is estimated and the results show that it can be very close to an economically viable process. The cost of removing CO₂ from a natural gas stream(sweetening) using the MDEA process is 30% lower than cost of conventional amine MEA technology for CO₂ capture from flue gas, putting this project at a much lower cost than capture from most other industrial CO₂ sources. The cost of CO₂ removal is as low as 35€/tonne. In addition natural gas sweetening projects will capture potentially larger volumes of CO₂ than many industrial projects if new large gas fields are developed. The large scale could provide the necessary amount and steady supply of CO₂ needed to kick-start the deployment of CCS. This could happen either by allowing a large-scale offshore central CO₂ storage or offshore EOR projects. Large scale storage would reduce the storage cost for CO₂ improving the cost benefit situation for a CCS project. A large scale EOR project could create a market for CO₂ in the Nordic region that also land-based industry can sell to thereby reducing their costs for CCS sufficiently to allow industrial CCS projects to start.

© 2013 The Authors. Published by Elsevier Ltd. Selection and peer-review under responsibility of GHGT.

Keywords: Natural Gas Sweetening;CO2 removal; CCS; CO2 EOR

* Corresponding author. Tel.: +47 978 77 96; fax: +47 735 92 889 *E-mail address:* marit.mazzetti@sintef.no


1876-6102 © 2013 The Authors. Published by Elsevier Ltd. Selection and peer-review under responsibility of GHGT.


1. Introduction

In the US, commercial-scale CCS projects have been profitable for nearly 30 years due to the use of CO_2 for enhanced oil recovery (CO₂-EOR). Indeed, the combination of CO₂-EOR with permanent CO₂ storage in oil reservoirs is a critical, near-term solution for creating economically viable CCS projects, facilitating early CCS infrastructure – and kick-starting deployment of CCS. It represents a win-win situation as it combines CO₂ capture from industries that need CCS with the use of CO₂ injection to increase oil production, thus financing a significant element of the project.

The reason earlier EOR projects in Denmark and Norway did not materialize when investigated about 10 years ago was mainly due to insufficient amounts of CO_2 available(at least 2-5 M tonnes per year is necessary to start an EOR project). One possible solution to this is to remove more CO_2 from natural gas that is exported from Norway to Europe. As natural gas sweetening projects will capture potentially larger volumes of CO_2 than many industrial projects – storing up to 3 Mt/year may be feasible, and they could hence kick-start an EOR project. They will also provide a continuous source of CO_2 which is necessary to start an EOR project.

Some natural gas fields on the Norwegian Continental Shelf (NCS) have CO_2 levels above the acceptable limit for export into the pipeline and sale. For commercial natural gas, the maximum allowable CO_2 level is 2.5%. The CO_2 must therefore either be removed from the gas before export or the level must be close enough to 2.5% that the gas can be mixed with gas from other fields with lower CO_2 levels and therefore reducing the average concentration in a blending process. There are at least 25 fields discovered off the coast of Norway which contain CO_2 levels above 5%, Fig. 1 [1]. Eight of these fields have CO_2 levels above 10%, one has a CO_2 level as high as 44 %. By going from left to right on this bar chart the location of the field is moving further to the north. Many of the newly discovered undeveloped fields with high CO2 concentrations shown towards the right of this figure are in the northernmost parts of Norway and the Barents Sea and Arctic (to the far right in yellow).

(Vinni and Njord in Norskehavet outside Trondheim, West Vanguard off coast of Lofoten in Northern Norway)

During the NORDICCS project, the costs of several of the most economically viable Nordic CCS projects were analyzed. The results showed that for the Nordic region, natural gas sweetening (i.e. removing more CO_2 from natural gas before it is exported) is the most economically viable case for CCS [2], Fig. 2. The purpose of this study was to perform a detailed analysis of the natural gas sweetening case shown in Fig. 2 to confirm the earlier cost analysis data.

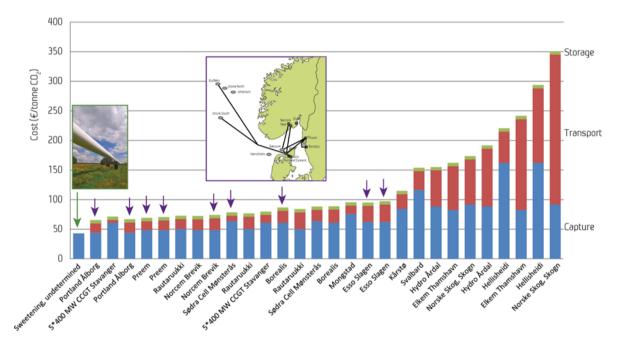


Fig.2: Cost for different Nordic CCS projects estimated by the NORDICCS Project [2]

This paper therefore describes a detailed cost analysis for a natural gas sweetening project with subsequent storage. For the purpose of these calculations a generic natural gas source is assumed with a high CO_2 content of 10%. The CO_2 level must be reduced according to the "natural gas sales specification". In this work a sweetening plant using MDEA is employed to reduce the CO_2 content of the natural gas to 2.5% and also compress the CO_2 removed back up to 70 bar. This process has the potential of becoming the least expensive way to obtain CO_2 for Enhanced Oil Recovery (EOR) and therefore perform CCS projects in Norway. The MDEA capture process is used to reduce the CO_2 levels. This process operates at significantly lower pressures than in the MEA process which results in reduced absorber size and higher input pressure to the CO_2 compressor, significantly reducing both energy consumption and investment costs. The availability of large volumes of natural gas also suggests that economy of scale can help reduce capture costs further[2]

The modeling of costs performed in this paper all assumes nth of a kind plant (NOAK). In order to assess the future cost effectiveness potential of a technology it is best to compare technologies on an nth of a kind cost basis. This is to allow a fair comparison between technologies and avoid taking into account the increased cost of prototyping which will be reduced as soon as more units are produced.

It will be difficult to modify the existing infrastructure of natural gas pipelines to accommodate CO_2 removal from the gas due to the high cost of construction in explosive areas and the safety of supply. The cases described here were therefore calculated based upon a yet to be determined source of CO_2 from any new oil and gas field – either at

Utsira, or at the new frontiers in Northern Norway and the Arctic which as shown in Fig.1 in many cases have higher CO_2 contents than fields already developed. Natural gas sweetening is a particularly interesting option in areas where the CO_2 concentration of the natural gas is high. Finally, an interesting aspect is that CO_2 -EOR can be a reason to open up gas fields that were previously considered uneconomical due to the high CO_2 content. The use of the CO_2 for EOR could potentially make these projects profitable.

The costs of transport and storage have not been calculated for the sweetening plant as this is a new project, but it is reasonable to assume that it will be close to an offshore storage site, resulting in minimal transportation costs.

Another potential benefit from natural gas purification is that more CO_2 could be removed to go below the limit of 2.5% CO. This will result in a corresponding increase in the sales volume of the gas based on heating value and will therefore be more valuable per ton. Gas exports to Europe in 2012 were worth 242 billion NOK (€30 billion), which translates into an additional ~1.7 billion NOK (€210 million) per year if the CO_2 is removed totally and replaced with pure methane.

The start of an EOR project could create a market for CO_2 in the Nordic region that the land-based industry can sell into thereby reducing their costs for CCS. Hence it could help start CCS projects in a range of industries that have no other means of reducing their CO_2 emissions, as the CO_2 is produced as part of the manufacturing process such as in the Cement and Steel industries.

Nomenclature

MDEA	Methyl diethanolamine (N-methyl-diethanolamine), CH ₃ N (C ₂ H ₄ OH) ₂		
MEA	Monoethanolamine or 2-aminoethanol (C2H7NO)		
EOR	Enhanced Oil Recovery – process to inject CO2 to enhance oil extraction from fields		
NOK	Norwegian krones, the currency of Norway		
€	Euro		
NCS	Norwegian Continental Shelf		
CH_4	Methane		
CO_2	Carbon Dioxide		
H_2O	Water		
Bar	Pressure = 0.98692 standard atmosphere (atm)		
Pa	SI unit for Pressure = one newton per square metre,= 9.8692×10^{-6} atmosphere (atm)		
kgmole/hrMolar flow rate			
CAPEX	Capital Expenditure		
OPEX	Operational Expenditure		
NOAK	N th of a Kind		
Tonne	Metric tonne = 1000kg		

2. Methodology of Cost Estimations

2.1. Generic Natural Gas Field Parameters

Some natural gas fields on the Norwegian Continental Shelf (NCS) have CO_2 levels above the acceptable limit for export into the pipeline and sale. For commercial natural gas, the maximum allowable CO_2 level is 2.5%. For the purpose of these calculations a generic natural gas source is assumed with a high CO_2 content of 10%. The CO_2 level must be reduced according to the "natural gas sales specification". A sweetening plant using MDEA is employed to reduce the CO_2 content of the natural gas to 2.5% and also compress the CO_2 removed back up to 70 bar. The purification plant may also be placed on an optimal site onshore with shortest possible distance for CO_2 transport to CO_2 storage or EOR site. Fig. 3 shows an illustration of the streams entering and exiting the generic

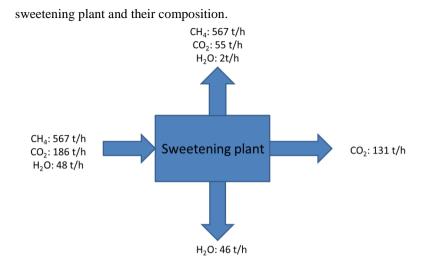


Fig. 3: Natural gas streams entering and exiting a generic sweetening plant

A representative natural gas composition from a generic field with gas containing 10% CO_2 is shown in Table 1. The natural gas contains CH_4 , H_2O and CO_2 among other compounds. The sweetening process reduces the CO_2 content significantly.

Natural Gas Composition	Inlet values	Mass flow in	Mass flow out
	(mol %)	(tonne/h)	(tonne/h)
CH ₄	83.6	567	567
CO ₂	9.9	186	55
H ₂ O	6.3	48	2
Pressure (bar)	70		
Temperature (C)	40		

Table 1.Natural gas composition: (assumed generic site)

2.2. Scope of Analysis

It is expected that the natural gas sweetening plant will be built on an existing site where it will be operated as an extension of the other plants (One person extra on shift (total 6 persons) and one engineer extra) Included in scope:

- All capture units
 - o Absorber
 - Circulation system
 - Desorber (stripper) system
 - o Compression and drying system

Not included in scope:

• Purchase of land

- Preparation of land (roads etc)
- Utilities systems (treated as OPEX)
- Offices, workshops, storage etc.

Building a plant within a high risk area (explosion) can increase the CAPEX with 50% but this has little influence on the final capture cost (\notin /tonne).

2.3. Process Model

The process simulation was performed using Aspen Hysys Simulation Software. The process flow diagram (PFD) is shown in Fig. 4. The "sour" natural gas (70 bar) enters an absorber, and a MDEA mixture is added. After exiting the absorber the rich MDEA is reduced from 70 bar to 1.8 bar: Here some natural gas will be released into the flash tank, and this natural gas has to be recompressed to the original pressure level. The liquid part will be treated in a desorber and split in a CO_2 stream (EOR quality) and a lean MDEA solution. The CO_2 will then be compressed (and dried) up to 70 bar (dense phase).

The lean MDEA solution is then compressed to reach the absorber pressure of (70 bar). An economizer is installed in order to recover the heat. The process data used in the estimation is shown in Table 2.

Input Parameters for Simulation	Input Value
Vapour Phase (Fraction)	0.938
Temperature (C)	40
Pressure (kPa)	7000
Molar Flow (kgmole/h)	42373
Mass Flow (kg/h)	803561
Std Ideal Liq Vol Flow (m ³ /h)	2174
Molar Enthalphy	10016
Molar Entrophy	183
Heat Flow	424414151
Act. Volume Flow(m ³ /h)	12924
CO ₂ Molar flow (kgmole/h)	4237
MDEA Amine Molar Flow(kgmole/h)	-
H ₂ O Molar Flow(kgmole/h)	2675
Methane Molar Flow(kgmole/h)	35461

Table 2. Process data used in the simulation

2.4 Cost Estimates of CAPEX

For the calculation of CAPEX the following assumptions were made and used in the ASPEN Calculations:

- Nth of a kind -the first plant will be more expensive
- New plant
- Generic cost level (Rotterdam)
- Brown site (existing industrial area)
- Extension of the existing plant
 - No new operating organisation

- Using the existing control system
- Using existing office and welfare buildings
- o Using existing infrastructure, power, steam, cooling water, process water, demineralised water etc.
- No extra pre-treatment of the flue gas
- CO₂ to be delivered at 70 bar, 20 °C
- Natural gas to be delivered at 70 bar, 20 degree °C
- Flue gases are brought to the capture plant
- All utilities are brought to the capture plant
- Owners cost is not included
- 2013 Cost level
- Detailed factor estimate as used in CO₂ Capture Project (CCP) (CCP1-2006 & CCP2-2009)[3,4]

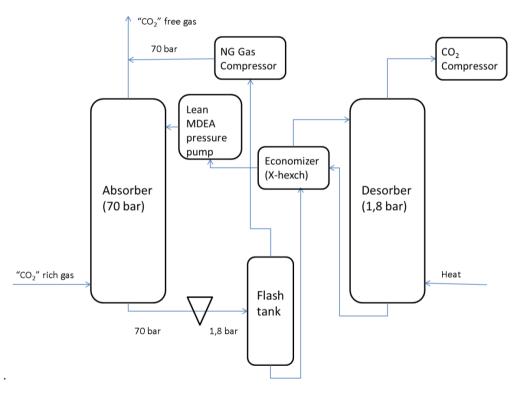


Fig.4. PFD for the MDEA sweetening process

2.5 Cost Estimates of OPEX

.

Table 1: Cost data used in economic calculations of OPEX (assumptions)

Price List	Unit Cost (€/unit)	Unit
Electric power	0.10	kW
Steam	12.50	tonne
Natural Gas	0.25	Sm ³

Town water	0.1	m ³
Cooling water	0.03	m ³
Amine replacement	1.80	kg
Na2CO3	0.58	kg
Active coal	5.50	kg
Corrosion inhibitor	1.88	kg
Destruction of amine waste	0.25	kg
Operator	55	hours
Engineer	70	hours
Maintenance in % of CAPEX/year	4	%

The economic parameters used in the simulations are shown in Table 4.

Table 4. Economic	Parameters used	l in the simulations
-------------------	-----------------	----------------------

Economic parameter	Value	Unit
Rate of return	7	%
No of operating years	23	years
Construction time	2	Year
Capture cost		Not avoided cost

3. Results

3.1. Cost Estimate for CO₂ Capture from Natural Gas

The results show that the cost of removing CO_2 from natural gas is 30% lower than the cost of the conventional amine MEA technology for CO_2 capture from flue gas. The capture cost for a generic location for a natural gas cleaning plant is 35€/tonne. In a remote location it can be up to 40 €/tonne. A similar cost estimate for post combustion capture of CO_2 from a Natural Gas Combined Cycle (NGCC) using MEA using the same amount captured and the same assumptions resulted in a cost of 50€/ton. The cost of natural gas purification is therefore significantly lower than for capture from power plant exhaust [5].

This puts this project at a much lower cost than capture from other industrial CO_2 sources. The significant reduction in cost is reasonable due to higher pressures in the MDEA process which results in reduced absorber size, therefore reduced energy consumption in the stripper, significantly reducing both energy consumption and investment costs. The amount of CO_2 captured is 131 ton/h which means the capture ratio of CO_2 is 70%.

Table 5. Results of the Cost Estimation.			
Location	CAPEX ($k \epsilon$)	OPEX (<i>k€/yr</i>)	Capture Cost (€/ton)
Generic location	60000	33272	34.2
Remote location	90000	34470	37.8

The total cost of CCS for a project utilizing CO_2 from natural gas is compared with CCS using post combustion capture in Fig. 5. The costs of transport and storage have not been calculated for the sweetening plant as the exact location has not been determined, but it is reasonable to assume that it will be close to a storage site, resulting in low

transportation costs. The only difference in cost is therefore the capture cost which is significantly lower from natural gas. A transport cost of 10 /tonne is assumed and the storage cost is assumed to 7 /tonne. The total cost for Capture, transport and storage for the natural gas project is therefore based on these assumptions of transport and storage costs only 50 /tonne.

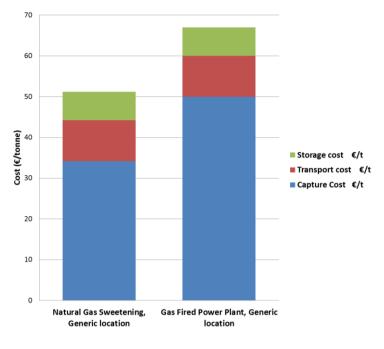


Fig. 5: CCS Project cost Costs are Nth of a kind (NOAK) capture technology

In Norway the total offshore CO_2 tax and ETC fee is 450 NOK per tonne i.e.55 \notin /tonne.[5], making these projects close to economically viable, particularly if the CO_2 can be used for EOR. It is also believed that the project will cost even less per tonne of CO_2 removed as the starting concentration of CO_2 is increased. This is an assumption and has not been cost estimated in this work.

Natural gas sweetening projects can capture potentially larger volumes of CO_2 than many industrial projects if the fields are large. Therefore storing up to 3 M tonnes/year may be feasible and such a project could therefore kick-start either of two scenarios:

- A central large scale CO₂ storage site in the North sea for example at the Johansen formation which is close to other oil and gas fields and industry. This would have reasonably low transportation costs for the CO₂ as well as lower storage costs due to large scale. There would be a land based hub for shipping the CO₂ out to the central storage site.
- An offshore EOR project where the CO₂ produced from this process and stored at a central hub close to several new oil fields could be utilized for CO₂ enhanced oil recovery (CO₂-EOR) at whichever nearby oil field that may need it. In addition to large volume it is critical for an EOR project to provide a continuous source of CO₂ for the duration of the project that is usually 5 years. Natural gas sweetening projects would meet this critical factor of steady supply of CO₂.

It is not realistic to retrofit existing offshore oil production fields to accommodate EOR as the shut-down period likely would be too long for such a project to be economically viable. EOR projects should be considered for new developments which must be set up to accommodate EOR projects during the initial field development and construction phase by making the correct materials choices among other things. This would prevent a long production stop after the field is in operation in order to start an EOR project. An EOR project represents a win-win

situation as it combines CO_2 capture from industries that need CCS with the use of CO_2 injection to increase oil production, thus financing a significant element of the project.

The reason earlier EOR projects in Denmark and Norway did not materialise was mainly due to; insufficient amounts of CO_2 (at least 2-5 M tonnes per year); the high costs of retrofitting existing infrastructure with CCS, and most importantly the loss of creating revenues in the standstill period for retrofit. Urgent action is therefore needed to implement EOR while new oil and gas developments are still taking place.

4. Conclusions

The results show that the cost of removing CO_2 from natural gas is 30% lower than the cost of the conventional amine MEA technology for CO_2 capture from flue gas. At a cost of 35 \notin /tonne the total cost of a CCS project could be about 50 \notin /ton making it close to economically viable in Norway at least where the combined CO_2 taxes and certificate fees total 55 \notin /tonne.

Natural gas is produced in large volumes, therefore the sweetening projects can capture potentially large volumes of CO_2 . The large scale would provide the necessary amount and steady supply of CO_2 needed to kick-start deployment of CCS. This could happen either by allowing large-scale offshore CO_2 storage or offshore EOR projects. In addition to large volume it is critical to provide a continuous source of CO_2 for the duration of an EOR project that is usually 5 years. A large scale EOR project would create a market for CO_2 in the Nordic region that also the land-based industry can sell to and thereby reducing their costs for CCS allowing start of industrial CCS projects.

Indeed, the combination of CO_2 -EOR with permanent CO_2 storage in oil reservoirs may be a critical, near-term solution for creating economically viable CCS projects, facilitating early CCS infrastructure – and kick-starting deployment of CCS. Urgent action is needed to implement EOR while new oil and gas developments are still taking place otherwise the cost will likely be prohibitive.

Finally, an interesting aspect is that CO_2 -EOR can provide the necessary value creation to allow developing remote gas fields that were previously considered not viable due to the high CO_2 content.

5. Acknowledgements

This publication has been produced with support from the NORDICCS Centre, performed under the Top-level Research Initiative CO_2 Capture and Storage program, and Nordic Innovation. The authors acknowledge the following partners for their contributions: Statoil, Gassco, Norcem, Reykjavik Energy, CO_2 Technology Centre Mongstad, Vattenfall and the Top-level Research Initiative (Project number 11029).

6. References

- [1] Norwegian Petroleum Directorate, CO2 Storage Atlas Norwegian North Sea, 2011
- [2] Mazzetti, M., Røkke, N., et.al. 2013, NORDICCS CCS Roadmap, Submitted to Energy Procedia, 2014.

[3] Carbon Dioxide Capture for storage in Deep Geologic Formations – Results from CO₂ Capture Project, Volume 1, Elsevier: ISBN 0-08-044570-5 2005

[4] Carbon Dioxide Capture for storage in Deep Geologic Formations – Results from CO2 Capture Project, Volume 3, Elsevier: ISBN 978-1-872691-49-7 2009

[5] Norwegian Directorate of Oil and Energy, Facts 2013, p. 53