Capacity for mineral storage of CO$_2$ in basalt

S. Ó. Snæbjörnsdottir

NORDICCS Technical Report D. 6.3.1303

May 2014
NORDICCS concept:

Assumptions and premises (1) → Nordic CCS platform → Nordic CCS roadmap → Framework conditions → Economy → Strategies for CCS realisation

Feasibility studies on CCS industry cases
- CO₂ capture
  - Energy analyses
  - CCS integrated in industry
- CO₂ transport (4)
  - Cost-effective CO₂ transport
- CO₂ storage (2)
  - The Nordic CO₂ storage atlas
  - Guidelines for safe storage
  - Safe storage modelling

R&D recommendations → Communication (3) and dissemination
- Public awareness and acceptance
- Dissemination and networking → Spreading excellence

Partners:

Contact: Centre Director Nils A. Rokke • +47 951 56 181 • Nils.A.Rokke@sintef.no www.sintef.no/NORDICCS
Summary

Mineral storage of CO₂ in basaltic rocks offers the potential for long-term, safe CO₂ storage. Studies on mineral storage of CO₂ are still at an early stage. Therefore, natural analogues are important for gaining a better understanding of CO₂ fixation in basaltic rocks. Volcanic geothermal systems serve as an applicable analogue; the systems receive considerable amounts of CO₂ from magma chambers or intrusions in the roots of the systems and can therefore be considered as a natural experiment to determine the CO₂ storage capacity of the bedrock. There is a high potential for mineral storage of CO₂ in Icelandic basalts and large amounts of CO₂ are already naturally fixed within the geothermal systems. Wiese et al. (2008) estimates that the total CO₂ fixed within the active geothermal high-temperature systems in Iceland amounts to 30-40 GtCO₂. This is equal to the anthropogenic global annual emission of CO₂ to the atmosphere in 2012. The potential capacity for mineral storage of CO₂ in Icelandic basalts remains theoretical until more experience is gained by up-scaling of ongoing demonstration.

Keywords  Mineral storage, geothermal, basalts, storage capacity.

Authors  Sandra Ó. Snæbjörnsdóttir, University of Iceland, Iceland, sos22@hi.is

Date  May 2014

About NORDICCS

Nordic CCS Competence Centre, NORDICCS, is a networking platform for increased CCS deployment in the Nordic countries. NORDICCS has 10 research partners and six industry partners, is led by SINTEF Energy Research, and is supported by Nordic Innovation through the Top-level Research Initiative.

The views presented in this report solely represent those of the authors and do not necessarily reflect those of other members in the NORDICCS consortia, NORDEN, The Top Level Research Initiative or Nordic Innovation.

For more information regarding NORDICCS and available reports, please visit http://www.sintef.no/NORDICCS.
Activity 6.3.3: Capacity for mineral storage of CO$_2$ on land in Iceland

Mineral storage of carbon dioxide (CO$_2$) in basaltic rocks offers the potential for long-term, safe CO$_2$ storage. Basaltic rocks are rich in divalent cations, Ca$^{2+}$, Mg$^{2+}$ and Fe$^{2+}$, which react with CO$_2$ dissolved in water to form stable carbonate minerals such as Calcite (CaCO$_3$), Magnesite (MgCO$_3$) and Siderite (FeCO$_3$) (Oelkers et al., 2008; Gislason et al., 2010). About 90% of the bedrock in Iceland is basalt (Jóhannesson and Sæmundsson, 1998).

Studies on mineral storage of CO$_2$ are still at an early stage (e.g. Alfredsson et al. 2013; Aradóttir et al., 2012). Therefore, natural analogues are important for gaining a better understanding of CO$_2$ fixation in basaltic rocks. Volcanic geothermal systems serve as an applicable analogue; the systems receive considerable amounts of CO$_2$ from magma chambers or intrusions in the roots of the systems (Fig. 1) and can therefore be considered as a natural experiment to determine the CO$_2$ storage capacity of the bedrock (Wiese et al., 2008).

Fig 1. Geothermal field; conceptual model from Sæmundsson and Jónsdóttir (2010).
Fig. 2 Geothermal map of Iceland (ÍSOR, 2013). High-temperature geothermal areas of concern in Wiese’s study are marked with a red box as well as the present energy harnessed from the field in megawatts electricity production (MWe) and megawatts thermal water production (MWth).

Wiese et al. (2008) quantified the amount and spatial distribution of CO₂ stored in calcite (CaCO₃) within the bedrock of three active geothermal systems in Iceland: Krafla in the north-east of Iceland and Hellisheiði and Reykjanes in the south-west (Fig 2). The CO₂ content was measured in 642 drill cutting samples from a total of 40 wells, located in the three geothermal areas. The results are presented as kg of CO₂ per m³ rock (Table 1).

The values measured in the Reykjanes geothermal area were significantly lower than elsewhere in this study, on average 28.2 kg m⁻³ of CO₂ fixed in the uppermost 1500 m of the wells. The Reykjanes system is considered to be the youngest of the three geothermal areas, having been active for between 10,000 and 100,000 years (Wiese et al., 2008). The average CO₂ load in the uppermost 1500 m in Hellisheiði geothermal area was measured 65.7 kg m⁻³, with estimated age between 70,000 and 400,000 years (Franzson et al. 2005). The highest values are measured in the Krafla geothermal area, which is considered to have been active for the longest, between 110,000 and 290,000 years (Wiese et al., 2008), on average 73.1 kg m⁻³ in the uppermost 1500 m.

The values of CO₂ fixed in the bedrock of the three geothermal systems obtained from this study can be used as a guideline for the theoretical potential of CO₂ storage in onshore basaltic formations in Iceland.
Theoretically, since about 90% of Icelandic bedrock is basalt, much of Iceland could be used for mineral sequestration of CO₂ (e.g. Gislason et al. 2010). The most feasible storage sites are the youngest basaltic formations in the active rift zone, since their porosity has not been as affected by secondary mineralisation as in the older formations (e.g. Neuhoff et al., 1999). These formations consist of basaltic lavas, hyaloclastic formations and associated sediments younger than 0.8 M yr., from upper Pleistocene and Holocene, covering about 34,000 km² of Iceland (Fig 3).

Observations of hydrothermally altered basaltic rocks show that calcite is not expected to form at temperatures above 290°C (Franzson, 1998). Wiese et al. (2008) and Tómasson and Kristmannsdóttir (1972) report a very similar overall pattern of calcite distribution in geothermal systems in Iceland with increasing abundance of calcite with depth to a maximum at about 200-400 m depth. Below that a gradual decrease in calcite is noted and below about 800-1000 m depth very little calcite is present.

By using the average CO₂ load in the uppermost 1500 m of the Reykjanes system as a minimum and the average CO₂ load in the uppermost 1500 m of the Krafla system as a maximum and applying these to a 1000 m thick segment of the relatively fresh basaltic formations within the rift zone we get a gigantic value of 2,470 Gt of CO₂ as a maximum and 953 Gt as a minimum. This scenario is highly theoretical but underscores the enormous mineral storage potential within the rift zone of Iceland where the rocks are young and still porous and normal faults are common.

Other attempts have been made to estimate the capacity for mineral storage of CO₂. McGrail et al. (2006) estimated that the Colombia River basalts alone have the capacity to store over 100 Gt of CO₂, assuming an interflow thickness of 10 m, average porosity of 15% and 10 available interflow

### Table 1 CO₂ load (kg m⁻³) in the uppermost 1500 m of production wells in Reykjanes, Hellisheiði and Krafla geothermal fields (from Wiese et al., 2008).

<table>
<thead>
<tr>
<th>Reykjanes Well id</th>
<th>CO₂ load (t/m³)</th>
<th>Hellisheidi Well id</th>
<th>CO₂ load (t/m³)</th>
<th>Krafla Well id</th>
<th>CO₂ load (t/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RN - 10</td>
<td>42.5</td>
<td>HE - 03</td>
<td>70.1</td>
<td>KI - 16</td>
<td>72.9</td>
</tr>
<tr>
<td>RN - 11</td>
<td>36.0</td>
<td>HE - 04</td>
<td>48.9</td>
<td>KJ - 21</td>
<td>37.4</td>
</tr>
<tr>
<td>RN - 12</td>
<td>16.7</td>
<td>HE - 05</td>
<td>72.9</td>
<td>KJ - 23</td>
<td>60.5</td>
</tr>
<tr>
<td>RN - 13</td>
<td>44.4</td>
<td>HE - 08</td>
<td>73.5</td>
<td>KG - 25</td>
<td>92.3</td>
</tr>
<tr>
<td>RN - 14</td>
<td>5.4</td>
<td>HE - 09</td>
<td>53.2</td>
<td>KG - 26</td>
<td>73.3</td>
</tr>
<tr>
<td>RN - 15</td>
<td>20.1</td>
<td>HE - 10</td>
<td>51.5</td>
<td>KJ - 28</td>
<td>81.9</td>
</tr>
<tr>
<td>RN - 16</td>
<td>19.0</td>
<td>HE - 11</td>
<td>103.4</td>
<td>KJ - 29</td>
<td>82.3</td>
</tr>
<tr>
<td>RN - 17</td>
<td>41.7</td>
<td>HE - 13</td>
<td>60.0</td>
<td>KJ - 30</td>
<td>59.2</td>
</tr>
<tr>
<td>RN - 18</td>
<td>28.3</td>
<td>HE - 14</td>
<td>71.7</td>
<td>KJ - 32</td>
<td>89.0</td>
</tr>
<tr>
<td>RN - 19</td>
<td>32.6</td>
<td>HE - 15</td>
<td>61.4</td>
<td>KJ - 34</td>
<td>82.0</td>
</tr>
<tr>
<td>RN - 20</td>
<td>24.6</td>
<td>HE - 17</td>
<td>93.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RN - 21</td>
<td>15.3</td>
<td>HE - 18</td>
<td>53.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RN - 22</td>
<td>36.6</td>
<td>KHG - 01</td>
<td>100.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RN - 24</td>
<td>22.1</td>
<td>HE - 21</td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reykjanes average</td>
<td>28.2</td>
<td>Hellisheidi average</td>
<td>65.7</td>
<td>Krafla average</td>
<td>73.1</td>
</tr>
</tbody>
</table>


zones at an average hydrostatic pressure of 100 atm. Anthonsen et al. (2013) applied McGrail’s assumptions to the bedrock of Iceland, giving an estimated capacity of about 60 Gt CO₂. Using the same assumption to calculate the potential capacity of mineral storage of CO₂ within the active rift zone in Iceland the number goes down to about 21 Gt CO₂.

Furthermore, Goldberg et al. (2008, 2010) revealed the large storage capacity of sub-oceanic basalt formations at the Juan De Fuca plate east of Oregon, USA. The geologically feasible area at suitable depth for mineral storage of CO₂ is calculated to be about 78,000 km². Assuming a channel system dominating permeability over one-sixth of the uppermost 600 m of the area, it is estimated to contain 7800 km² of highly permeable basalt. Given an average channel porosity of 10%, 780 km³ of potential pore volume will be available for CO₂ storage. Anthonsen et al. (2013) also applied Goldberg et al. (2008) calculations to the bedrock of Iceland, resulting in an enormous number of about 1,200 GtCO₂. If these calculations are limited to the bedrock of the active rift zone in Iceland over 400 Gt CO₂ could be stored.

Since studies on mineral storage of CO₂ are still at an early stage all values obtained by different approaches to the subject are theoretical.

To get a more realistic value of the capacity for mineral storage in Icelandic basalt formations, transportation of CO₂ via pipeline was taken into consideration. The 30 km long, hot water pipeline from Nesjavellir to Reykjavik was used as an approximation and the area within 30 km radius of eight of the largest harbours of the rift zone was selected.

Fig 3. Theoretical area feasible for CO2 mineral storage in Iceland; Basaltic formations from Holocene and upper Pleistocene, younger than 0.8 M yr.
The formations included were, as in the previous scenario, basaltic lavas, hyaloclastic formations and associated sediments from upper Pleistocene and postglacial lavas. Three harbours in the north-east were included (Húsavík, Kópasker, Raufarhöfn), one in the south-east (Höfn í Hornafirði) and four in the south-west (Reykjavík, Reykjaneshafnir, Grindavík, and Þorlákshöfn). In addition, an industrial harbour which is under construction in Helguvík, in SW-Iceland, was included. National parks, natural monuments, nature reserves and country parks were excluded from the area. The area that fits the criteria is about 3700 km², close to 3% of Iceland (Fig 4).

Using the results from Wiese et al. (2008) as done in the previous example and applying the average CO₂ load in the uppermost 1500 m of the Reykjanes system as a minimum and the average CO₂ load in the uppermost 1500 m of the Krafla system as a maximum and to a 1000 m thick segment of the defined area generates a maximum capacity of 272 Gt CO₂ and minimum of 105 Gt CO₂. For comparison, in 2012 the global CO₂ emissions to the atmosphere were 35.6 Gt from fossil fuel burning and cement production. (The Global Carbon Project, 2013).

Applying the study of McGrail et al. (2006) and assuming an interflow thickness of 10 m, average porosity of 15% and 10 available interflow zones at an average hydrostatic pressure of 100 atm, the estimated capacity of the defined area goes down to about 2 GtCO₂.
Using the study of Goldberg et al. (2008) and assuming a channel system dominating permeability over one-sixth of the uppermost 600 m of the area and average channel porosity of 10%, we get a number of 45 GtCO₂.
There is a high potential for mineral storage of CO₂ in Icelandic basalts and large amounts of CO₂ are already naturally fixed within the geothermal systems. Wiese et al. (2008) estimates that the total CO₂ fixed within the active geothermal high-temperature systems in Iceland amounts to 30-40 GtCO₂. This is equal to the anthropogenic global annual emission of CO₂ to the atmosphere in 2012 (The Global Carbon Project, 2013). The potential capacity for mineral storage of CO₂ in Icelandic basalts remains theoretical until more experience is gained by up-scaling of ongoing demonstration projects (Gislason et al. 2010).

**Table 2.** Summary of the potential for mineral storage of CO₂ using methods from Wiese et al. (2008), McGrail et al. (2006) and Goldberg et al. (2008) for estimation.

<table>
<thead>
<tr>
<th></th>
<th>Basaltic rocks within in the active rift zone, younger than 0.8 M yr. (34,000 km²)</th>
<th>Basaltic rocks in 30 km radius of seven of the largest harbors in Iceland (3.700 km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiese et al. (2008)</td>
<td>953-2470*</td>
<td>105-272*</td>
</tr>
<tr>
<td>McGrail et al. (2006)</td>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td>Goldberg et al. (2008)</td>
<td>400</td>
<td>45</td>
</tr>
</tbody>
</table>

*Using CO₂ load in the uppermost 1500 m of the Reykjanes system as a minimum and the average CO₂ load in the uppermost 1500 m of the Krafla system as a maximum
References


Sæmundsson, K., Jonsdottir, B., 2010. Geothermal field, conceptual model, figure published by ÍSOR.

