Nordic CCS Roadmap Update 2015

Marit J. Mazzetti, Nils Røkke (SINTEF), Nils Eldrup (Tel-Tek)

NORDICCS Final Event: Oslo, 10th November 2015

CONTACT:Marit.Mazzetti@sintef.no

Top-level Research Initiative

Nordic CCS Roadmap: why an update?

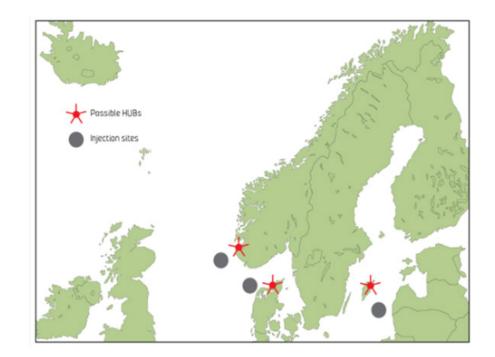
- Climate is worsening faster than expected
 - Heat waves already killing thousands in India and globally
 - Extreme rain, flooding, mud slides at home
- More agreement globally that CO₂ must be reduced to limit rise in average global temperature to 2°C
 - The Conference of Parties will meet in Paris in Nov 2015 to implement solutions
- CCS projects now advancing rapidly worldwide
 - Norway: 2 operational (Sleipner, Snøhvit), Yara (CO₂ production)
 - US: 7 operational, 6 in planning
 - Canada: 3 operational (Boundary Dam started 2014), 3 in planning
 - China: 9 projects starting 2017-2020

Extreme rain causing flooding in Alfta, Sweden, (Photo: Leif Larsson/TT/ NTB scanpix)

Recap: Nordic climate targets cannot be met *without* CCS

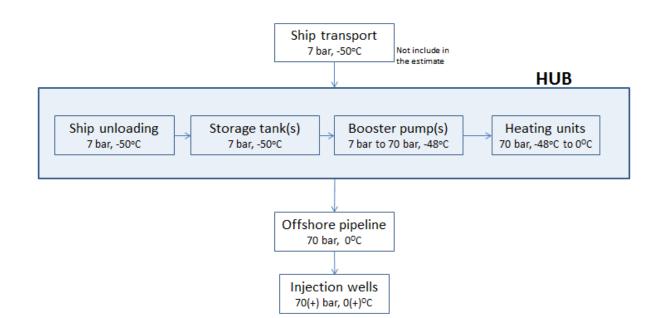
- EU goal: 40% reduction in CO₂ emissions by 2030
- Most economical solution: application of CCS to 14% of world's CO₂ emission sources (IEA)
- Nordic Energy Technology Perspectives (NETP) 2050 goals:
 - 85% CO₂ reduction vs. 1990 levels;
 carbon credits offset remaining 15%

Photo: Shutterstock


CCS is ready for deployment!

- Proven, cost-effective solution
- Will create green industry and jobs
- Nordic Countries must act urgently to meet climate targets

Joint CO₂ transport and storage infrastructure needed to kick-start CCS


- Comprises onshore hub and harbour with unloading equipment + pipeline to Utsira storage site
- Utsira has already been storing CO₂ from Sleipner for nearly 20 years
- Utsira is large enough to receive CO₂ from CCS projects throughout the entire Nordic region *and* Northern Europe – particularly the UK

How CO₂ transport and storage works

- Relatively inexpensive 22k tonne ships transport liquid CO₂ to hub where it is unloaded, heated and re-pressurised
- Each well can inject
 3 Mt CO₂/year
- Pipeline will be built to a capacity of 12 Mt (serving 4 wells)

Ship transport most cost-effective option in 85% of Nordic CCS cases

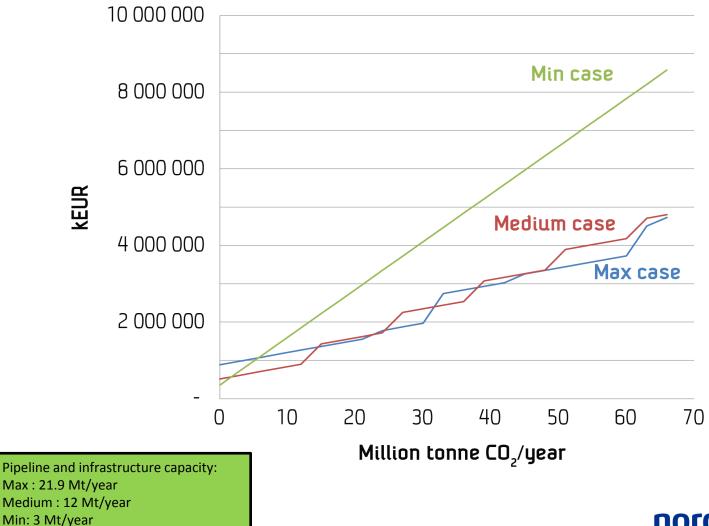
- Transporting CO₂ by ship is most costeffective option in 85% of 50+ Nordic CCS cases analysed
- Norway already has extensive experience: Yara ships 200,000 tCO₂/year for sale to European food and beverage industry
- Cost increases only moderately with increasing distance

Jetty with (un)loading arms (Photo: Shutterstock)

Site	Ship transport cost (€/tonne)	Breaking point with pipeline (Mtpa)
Brevik	13	4.0
Lysekil	12	5.0
Hvidovre	13	9.0

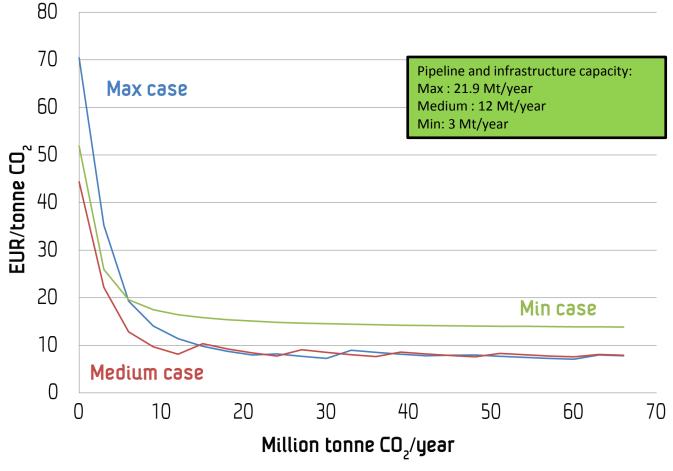
Key benefits of an onshore hub

- Fewer weather problems for ships unloading at the dock
- As jetty has unloading arms, ships are much cheaper than those designed for offshore unloading
- A long pipeline will be built out to storage site when profitable
- A steady, secure supply of CO₂ from multiple sources can also be delivered from the hub to nearby oil fields for EOR



 CO_2 hub for shipment of liquid CO_2 at Yara's harbour, Porsgrunn, Norway – visit by NORDICCS CCS Summer School students (Photo: SINTEF)

CCS can start as soon as infrastructure is ready to receive the CO₂!



Hub, pipeline & storage: investment costs

Hub, pipeline and storage: unit costs

Offshore CO₂ storage costs

- Infrastructure costs for a CO₂ hub with offshore storage in the North Sea (12 Mt/year capacity)
 - CAPEX: 517 M€
 - OPEX: 7.75 to 4.50 M€ /year
- Deposit cost is reasonable: 15 €/tonne CO₂ (includes costs for hub, pipeline and storage)
- Upfront public investment required to kick-start CCS
 - Shared by all the Nordic Governments and where all Nordic countries have rights

The first offshore storage site in the North Sea could become the CO₂ Bank of Europe!

EOR: unique opportunity to kick-start CCS and create a European CO₂ market

Opportunities

- EOR can create a market for CO₂ that will kick-start CCS in land-based industry
- New oil & gas infrastructure being built NOW window of opportunity to incorporate EOR is closing

Challenges

 Previous attempts in Denmark and Norway failed partly due to insufficiently large volumes of CO₂ (2-5 Mt/yr required)

Solution

- Large-scale CO₂ storage will facilitate EOR by providing a large, steady supply of CO₂
- CO₂ will have a value (market value in the US is approx. 35-40/tonne)

Norway: only country in Europe operating CO₂ capture, transport & storage projects

Sleipner: 1 Mt CO₂/year (Photo: Dag Myrestrand, Statoil)

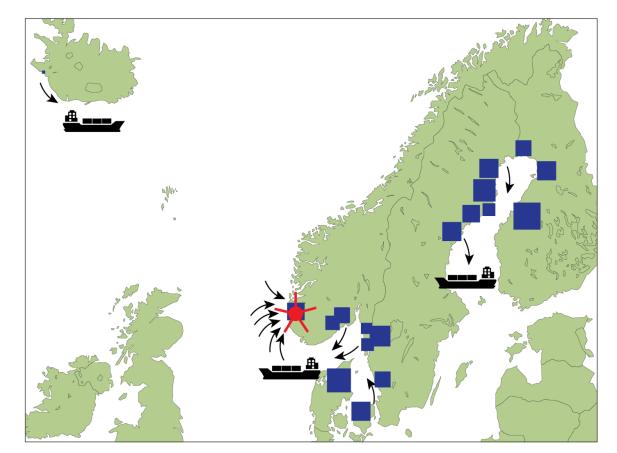
Yara, Porsgrunn: captures and sells 200,000 t CO_2 /year to European food & beverage industry (Photo: SINTEF)

Snøhvit: 0.9 Mt CO₂/year (Photo: Helge Hansen, Statoil)

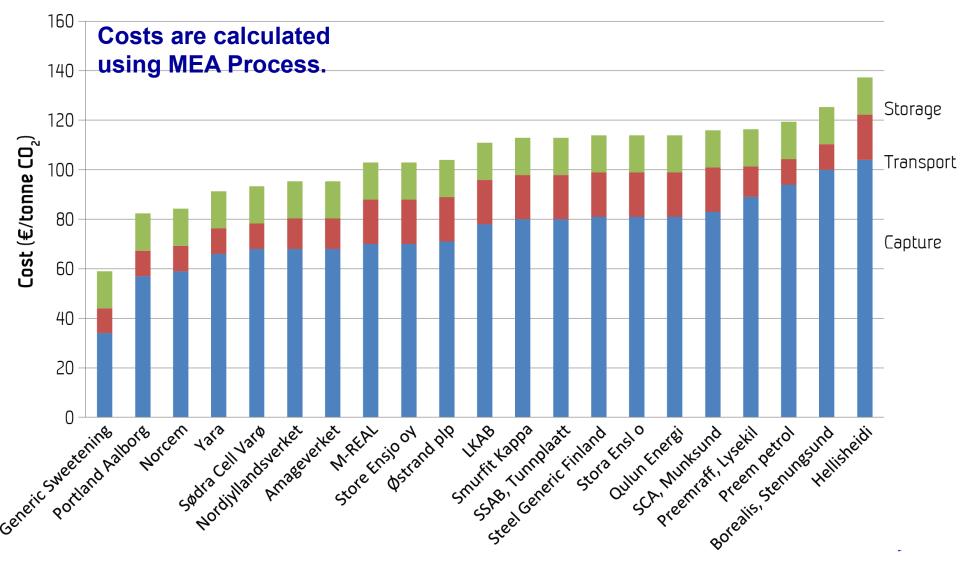
(NORCEM project in planning Photo: NORCEM)

... and more projects in the planning!

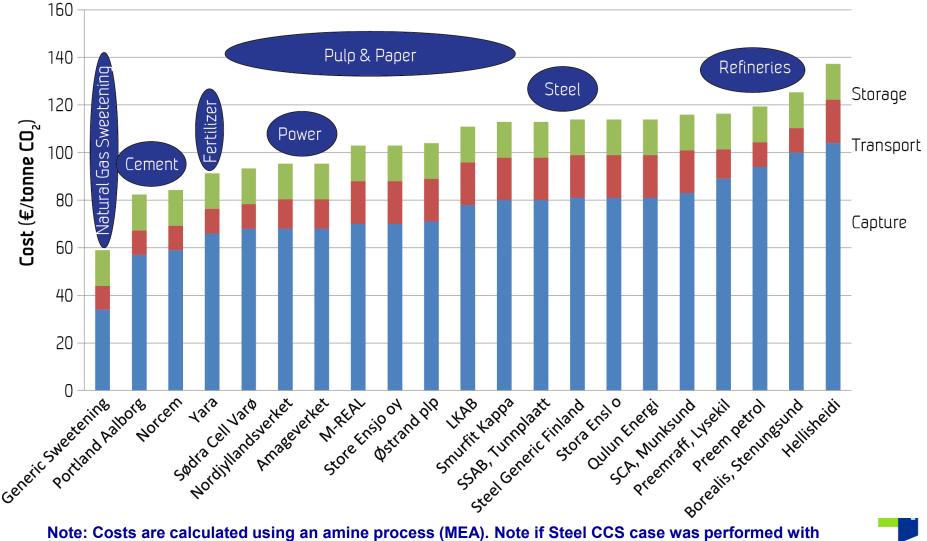
Capture costs for potential projects in the Skagerrak cluster

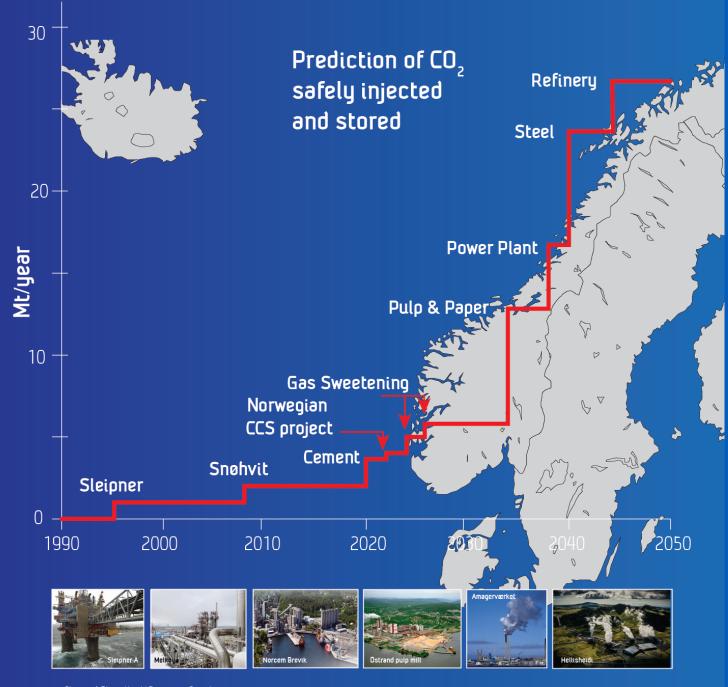

- Cement is most cost-effective
- Refineries & chemicals have higher construction costs

Source	CO ₂ emission, kt/y	CAPEX generic, MEUR	OPEX generic, MEUR	Capture cost generic, EUR/t	Location factor	Capture cost local, EUR/t
Norcem, Brevik Cement	927	143	49	54	1.10	59
Yara Porsgrunn Chemical	815	135	43	60	1.10	66
Preemraff, Lysekil Refinery	1 670	257	86	58	1.48	86
Borealis Krackeranl., Stenungsund Chemical	690	172	48	69	1.13	78
Aalborg Portland, Nordjylland Cement	1 150	204	73	53	1.08	57
Nordjyllandsverket Heat and power	2380	245	108	63	1.08	68


Case studies: determining the most effective solutions for CCS deployment

- Sources from all 5 Nordic countries
- Ship transport to Utsira hub for storage




CCS project costs for different industry cases - Nth of a kind Cost

Industrial CCS costs are sector dependent - Nth of a kind Costs

Note: Costs are calculated using an amine process (MEA). Note if Steel CCS case was performed with pressure swing adsorption it would be cheaper!

Sleipner A Photo: Harald Pettersen - Statoil Melkøya - Photo: HELGE HANSEN -Statoil

Urgent action is needed to kick-start CCS

- Create public investment in 1st transport and storage hub in the North Sea shared by all Nordic countries
- Give priority in Governmental project purchasing to products with low-carbon footprint, e.g. green cement, steel and aluminium
- Establish CCS support measures as early CCS projects require capital grants since a "first-of-a-kind" unit will always be more expensive than a nth-of-a –kind unit.
- Strengthen the ETS as the long-term driver for CCS and reward capture and storage of biogenic CO₂ to same extent as fossil CCS
- Establish Measurement Reporting Guideline which allows CO₂ transport by ship under the ETS

Acknowledgements

- This work is supported by the NORDICCS Centre, performed under the Top-level Research Initiative (TRI) CO₂ Capture and Storage program, and Nordic Innovation (Project number: 11029)
- The authors would like to thank the following partners for their support of the NORDICCS project:
 - Statoil
 - Gassco
 - Norcem
 - Reykjavik Energy
 - CO₂ Technology Centre Mongstad
 - Vattenfall
 - Top-level Research Initiative

