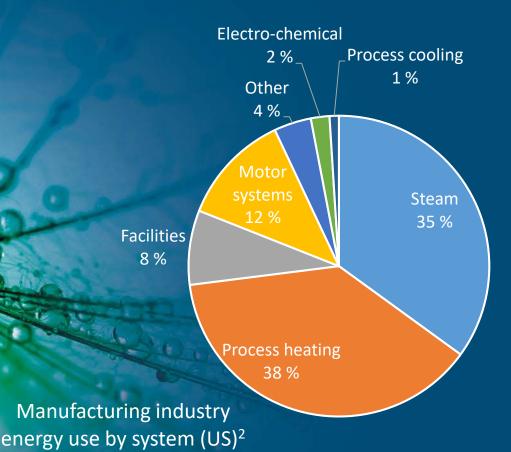


Thermal storage for improved utilization of renewable energy in steam production


Hanne Kauko and Gerwin Drexler-Schmid (AIT) HighEFF ACM 8.-9.5.2019

- Background
 - The problem steam demand and the way it's produced
 - Fossil-free production of steam & the role of thermal storage
- Relevant thermal storage technologies
- Alternatives for fossil-free steam production
 - Power-to-heat: Results from a case study
 - Concentrated solar power (CSP)
- Summary and on-going/future work in HighEFF

😃 High**EFF**

Background

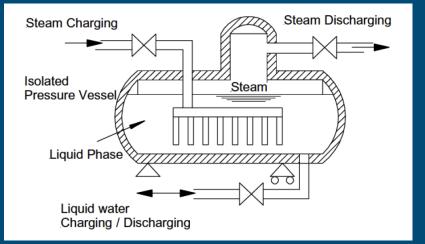
- Steam systems are a part of almost every major industrial process, in nearly all industrial sectors
 - Estimated to account for 38 % of global final manufacturing energy use¹ - 9 % of the global final energy consumption
- Steam production primarily based on the use of fossil fuels
 - 37 % of fossil fuel burden in US industry is burned to produce steam³
- Huge potential for large reductions in GHG emissions

FORSKNINGS-SENTER FOR MILJØVENNLIG ENERGI

¹Banerjee, R. et al. (2012). "Energy end-use: industry." Gobal Energy Assessment-Toward a Sustainable Future: 513 ²DOE 2004. Energy Loss Reduction and Recovery in Industrial Energy Systems. Prepared by Energetics, Inc., for the U.S. Department of Energy, Washington, DC. ³Einstein, D., et al. (2001). Steam Systems in Industry : Energy Use and Energy Efficiency Improvement Potentials, Lawrence Berkeley National Lab (LBNL), Berkeley, CA (United States): **535–547.**

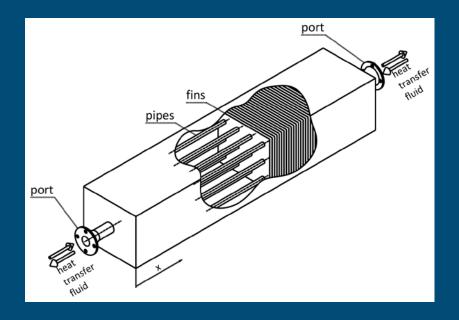
- Fossil-free alternatives for steam production?
 - Power-to-heat: Electricity from renewable sources + high-temperature heat pump (HTHP) or electric boiler
 - Concentrated solar power (CSP)

In either case – thermal storage is the key



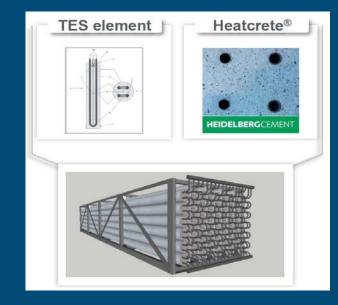
Relevant thermal storage technologies

Thermal storage technologies (1)


• Steam accumulator (Ruths steam storage)

- High charging/discharging rates
- Storage medium = heat transfer fluid no extra heat exchangers
- Challenge: low energy density not suitable for large-scale applications, or longer time scales

• Latent heat storage (LHS)


- High energy densities
- Temperature can be tailored to the application by the choice of material (PCM)
- Challenges: Low TRL, low thermal conductivity


Thermal storage technologies (2)

- Sensible heat storage in concrete (e.g. EnergyNest)
 - Cost-efficient, safe and easy-to-use
 - Challenge: Low heat transfer rate long response time

• Molten salt storage

- High thermal conductivities
- May be used as the heat transfer fluid as well
- Challenges: keeping the salt in liquid state, corrosivity

Fossil-free steam production

Alt. 1: Power-to-heat

Results from a case study Gerwin Drexler-Schmid and Anton Beck (AIT)

Case study definition

Energy source:

• Electricity market with diurnal price variation, modelled in 2 cases

Heat demand:

- Saturated steam at 15 bar (200 °C)
- Steady volume flow rate: 1200 t/h

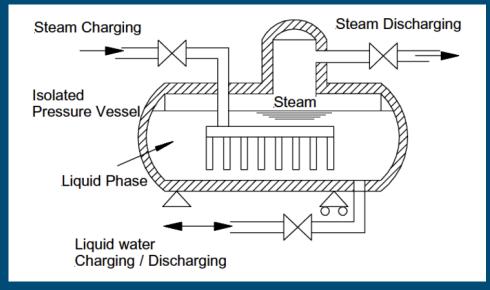
Two storage technologies compared:

- Ruths steam storage
- Latent heat storage (LHS)

[USD/MWh]	Case 1	Case 2			
High	17	34			
Low	11	11			

Existing technology: Ruths steam accumulator

Characteristics


- Storage medium: Water, steel
- Direct storage
- Variable power to energy ratio
- Storage density:
 - ~ 40 kWh/m³ at 30 bars
 - ~ 31 kWh/m³ at 100 bars
- Costs: 4 €/ton of water, 6000 €/t steel
- Wall thicknesses 3-10 cm

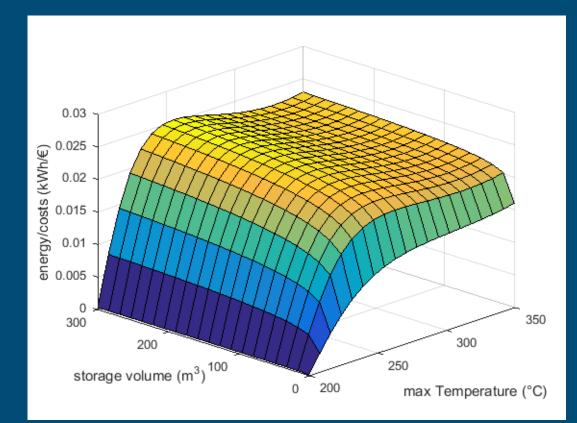
- Simple
- Commercially available
- Short storage time with high output power

<u>Cons</u>

- Low storage density at high pressures
- High amount of of steel

Norges forskningsråd

Cost estimates: Ruths steam storage


Ruths steam storage

- Steel: P460NH
- Safety: the required amount of steel depends on the pressure and temperature
- Storage capacity per € increases with storage size – but size limited by manufacturing and transport

Optimal storage unit:

- Chosen max volume: 300 m³
- T_{max} ~255 °C

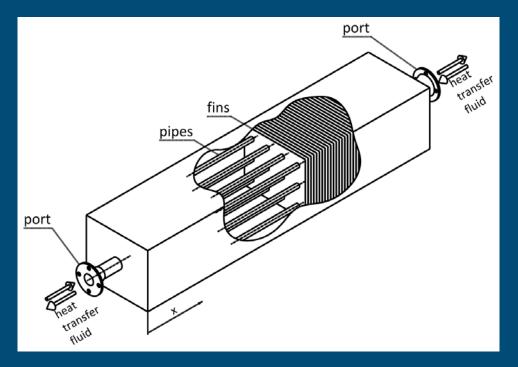
Cost for kWh of stored energy: 40 €/kWh

Upcoming technology: Latent Heat Storage

Characteristics

- Storage medium: phase change material (PCM)
- Indirect storage
- Variable power to energy ratio
- Storage density:
 - ~ 100 kWh/m³ at atmospheric pressure
- Unpressurized storage vessel
- Costs: 300-600 €/ton PCM, 6000 €/t steel

Pros


•

Norges forskningsråd

- High energy density
- Low amont of steel
 - Unpressurized storage vessel

<u>Cons</u>

- TRL 5-7
- Low thermal conductivity

Design sketch of the shell and tube latent heat thermal energy storage (Ind. Eng. Chem. Res., 2016, 55 (29), pp 8154–8164)

Cost estimates: Latent heat storage (LHS)

Assumptions:

- 2 cm diameter piping
- T_{max} ~255 °C
- Effective enthalpy 140 kJ/kg within the applied temperature range
- No additional heat transfer measures
- EUR/USD = 1.14

Results:

- Costs more independent of storage size mostly affected by pipe diameter
- Cost for PCM/Steel ~50/50

Cost for kWh of stored energy: 24.4 €/ kWh

Cost estimates for thermal storage technologies: main results

Electricity prices:

					[USD/MWh]		Case 1		Case 2	
					High		17		34	
Cost estimates:					Low	ow 🛛			11	
Tech.	Steam	Thermal storage	Number of	<u> </u>	orage tech. costs		Payback (yr)		Payback (yr)	
type	(t/h)	capacity (MWh)	storage units	(mill. EUR)		Case 1 C		Cas	Case 2	
Ruths	1200	9493 MWh	461	375		20.1		5.2		
LHS	1200	9493 MWh	NA	230		12.3		3.2		

Payback times should be balanced with the **cost to** access additional power from the power network and cost of additional boilers to charge the TES units.

😃 High**EFF**

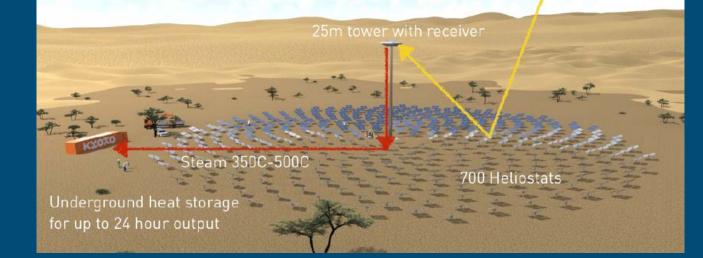
Conclusions from the case study

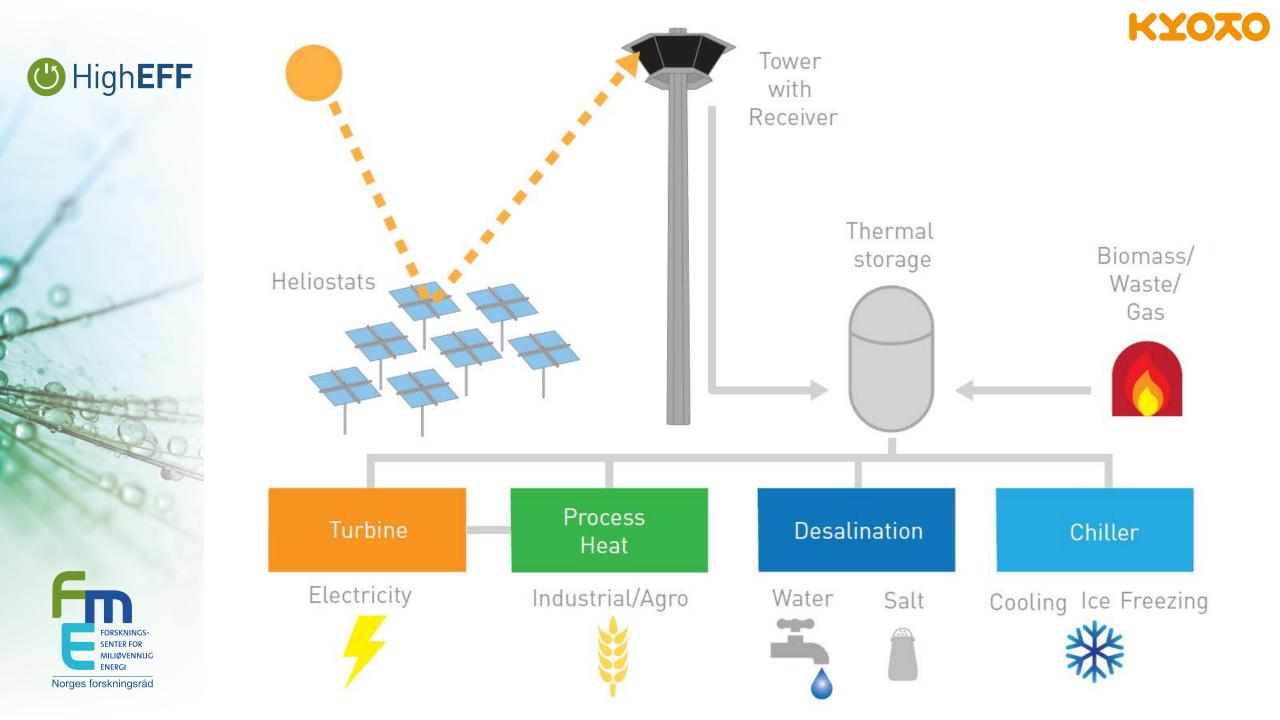
Identified limitations

- Additional costs should be taken into account in the case studies (e.g. additional boilers and access to additional power from network)
- Large steam accumulators or other TES tech. of such high scale might not be realisable for constant steam delivery over 12 hours

Further work

- Feasibility with regards to the large scale of TES
- Evaluation of potential alternative storage technologies
- Techno-economics to evaluate the correct storage and conversion technology for a given application
 - \rightarrow Nove Emerging Concept (NEC) application




Fossil-free steam production

Alt.2: Concentrated solar power (CSP)

- Concentrating the sunlight to heat up a heat transfer fluid to high temperatures to produce steam or electricity
 - Parabolic trough (150–350 °C)
 - Solar tower (500–1000 °C)
- Kyoto Group
 - Modular CSP systems for the demands of the industry
 - Cost-efficient
 - Fast to build
 - Thermal storage: Novel molten salt developed by Yara
 - Lower melting point
 - Cheaper
 - Less corrosive

Summary and on-going/future work in HighEFF

- Steam demand is huge + the production is still largerly based on the use of fossil fuels
 - Switching to renewable-based production can allow fast and large reduction in GHG emissions
- Fossil free alternatives for steam production
 - 1. Power-to-heat using high-temperature heat pumps or electric boilers
 - 2. Concentrated solar power
- In either case thermal storage is required
 - 1. To enable the use of renewable power when prices are low
 - 2. To enable continuous output from CSP plants

On-going and future work in HighEFF

- D3.3_2019.01: Thermal storage for improved utilization of renewable energy in steam production
 - Description and comparison of relevant storage technologies
 - Integration of HTHPs

- NEC application: Cost-efficient thermal energy storage for increased utilization of renewable energy in industrial steam production
 - Power-to-heat
 - Development of methodology to find the correct storage and conversion technology for a given application
 - Conversion technologies: HTHP, electric boiler

Reference group meeting: Energy Storage

- Wish to affect the research work within Energy Storage in HighEFF?
- Join the reference group meeting tomorrow at 13:30 (KJL21)!

Thank you for your attention.

Hanne.kauko@sintef.no