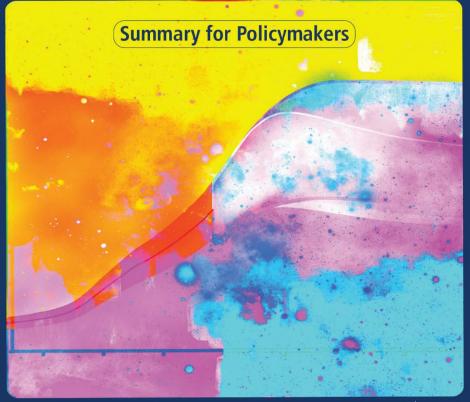


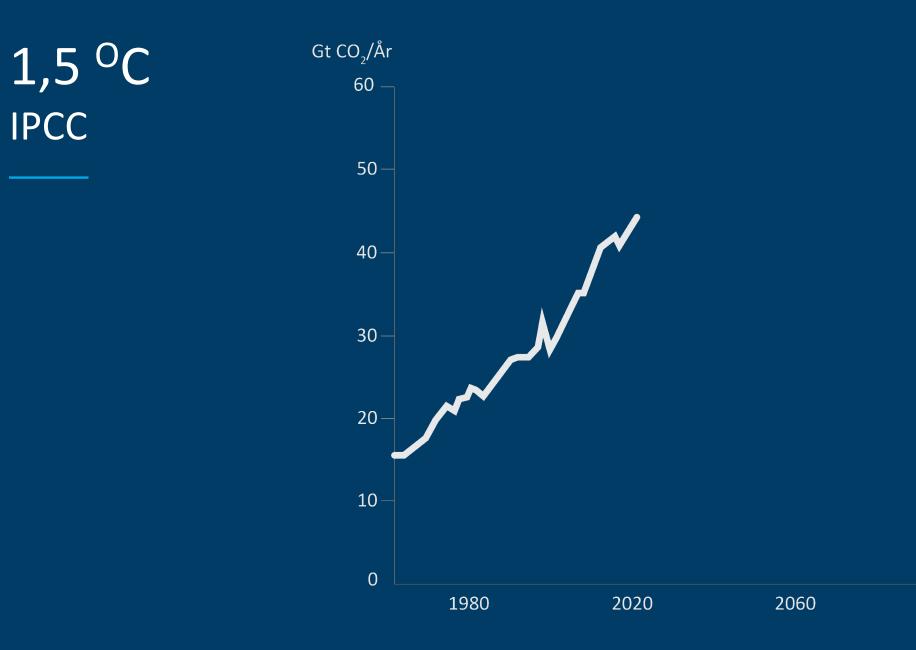
i.

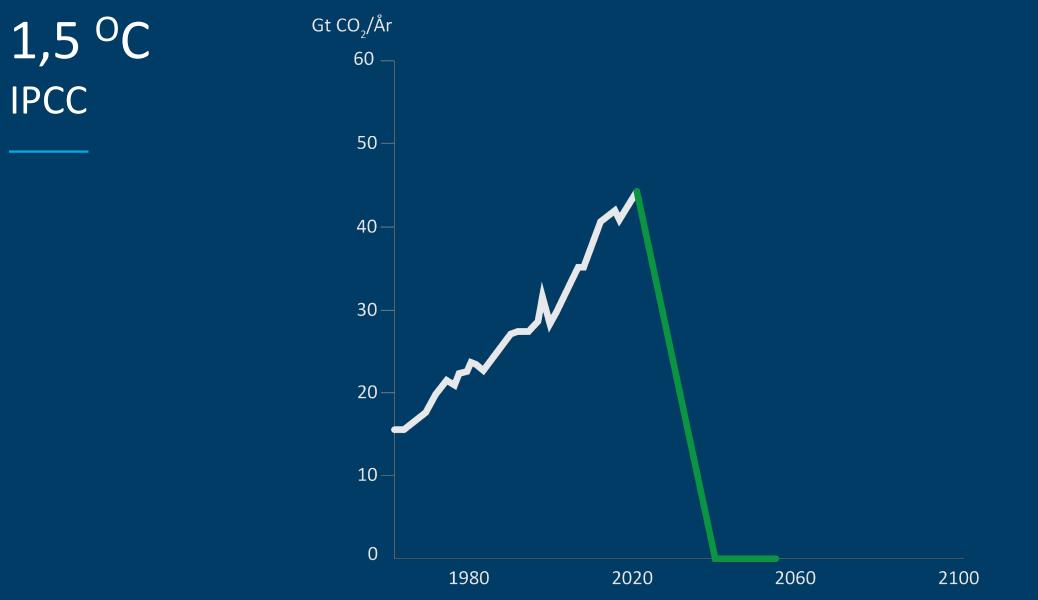
THE ROLE OF ENERGY EFFICIENCY – GLOBAL VIEW

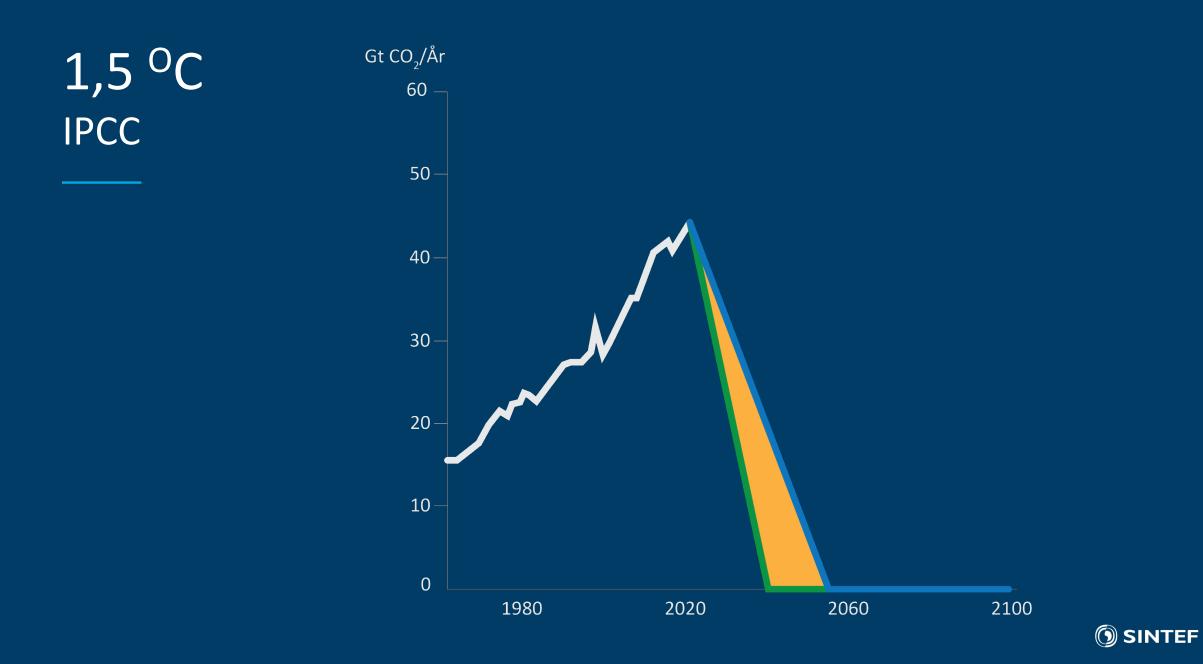
1

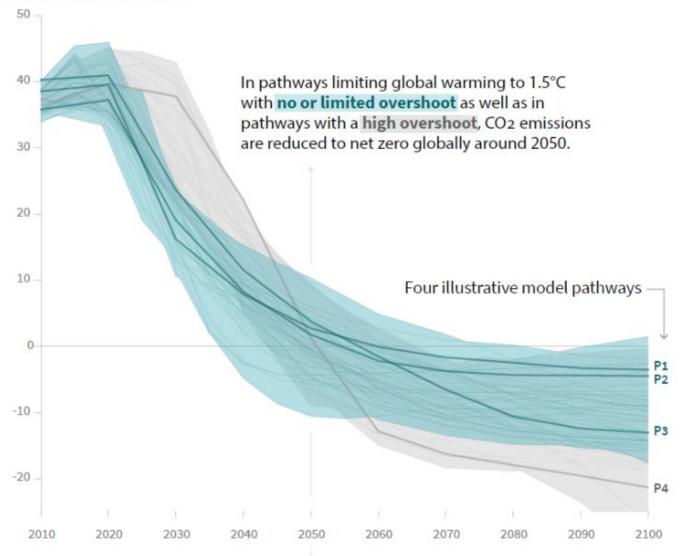
Dr. Nils A. Røkke, EVP Sustainability SINTEF


HighEFF Annual Consortium Meeting 8 May 2019, Trondheim


Global Warming of 1.5°C

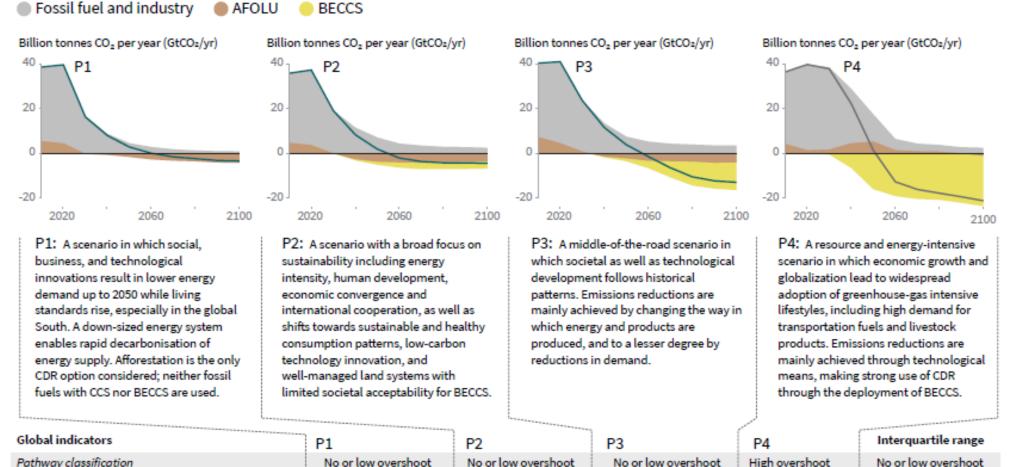

An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty





Global total net CO₂ emissions

6

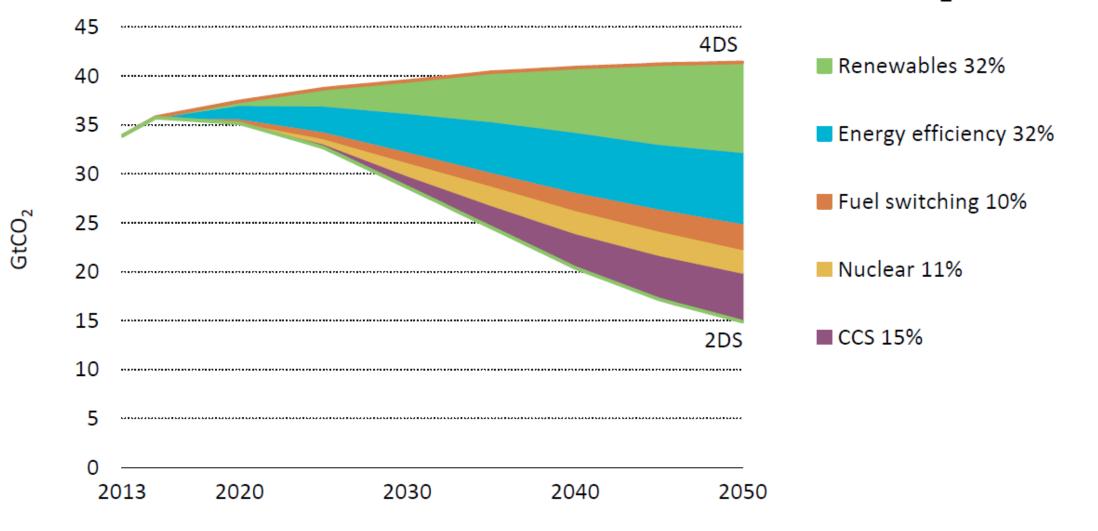


IPCC – Illustrative pathways

SINTEF

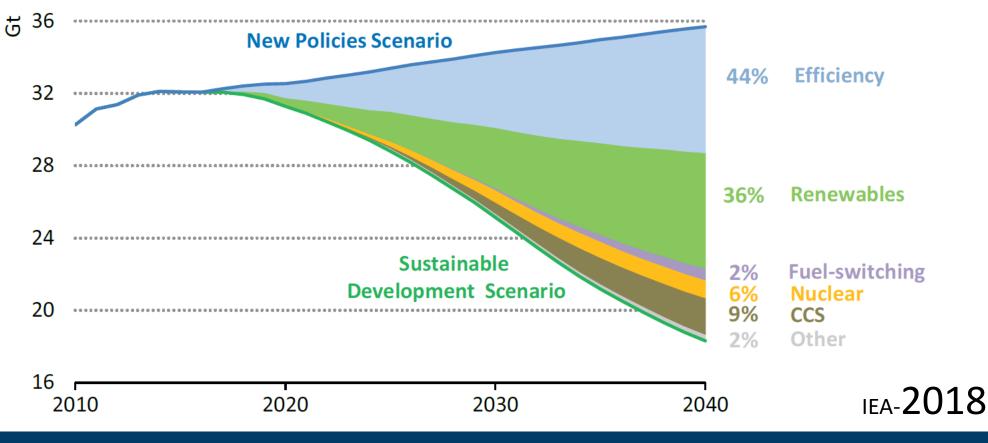
IPCC – Illustrative pathways

Breakdown of contributions to global net CO₂ emissions in four illustrative model pathways



 	 _	

Global indicators	P1	P2	P3	P4	Interquartile range
Pathway classification	No or low overshoot	No or low overshoot	No or low overshoot	High overshoot	No or low overshoot
CO2 emission change in 2030 (% rel to 2010)	-58	-47	-41	4	(-59,-40)
└- in 2050 (% rel to 2010)	-93	-95	-91	-97	(-104,-91)
Kyoto-GHG emissions* in 2030 (% rel to 2010)	-50	-49	-35	-2	(-55,-38)
└- in 2050 (% rel to 2010)	-82	-89	-78	-80	(-93,-81)
Final energy demand** in 2030 (% rel to 2010)	-15	-5	17	39	(-12, 7)
└- in 2050 (% rel to 2010)	-32	2	21	44	(-11, 22)
Renewable share in electricity in 2030 (%)	60	58	48	25	(47, 65)
└- in 2050 (%)	77	81	63	70	(69, 87)
Primary energy from coal in 2030 (% rel to 2010)	-78	-61	-75	-59	(-78, -59)
⊢ in 2050 (% rel to 2010)	-97	-77	-73	-97	(-95, -74)
from oil in 2030 (% rel to 2010)	-37	-13	-3	86	(-34,3)
└- in 2050 (% rel to 2010)	-87	-50	-81	-32	(-78,-31)
from gas in 2030 (% rel to 2010)	-25	-20	33	37	(-26,21)
└- in 2050 (% rel to 2010)	-74	-53	21	-48	(-56,6)
from nuclear in 2030 (% rel to 2010)	59	83	98	106	(44,102)
└- in 2050 (% rel to 2010)	150	98	501	468	(91,190)
from biomass in 2030 (% rel to 2010)	-11	0	36	-1	(29,80)
└- in 2050 (% rel to 2010)	-16	49	121	418	(123,261)
from non-biomass renewables in 2030 (% rel to 2010)	430	470	315	110	(243,438)
└→ in 2050 (% rel to 2010)	832	1327	878	1137	(575,1300)
Cumulative CCS until 2100 (GtCO2)	0	348	687	1218	(550, 1017)
- of which BECCS (GtCO2)	0	151	414	1191	(364, 662)
Land area of bioenergy crops in 2050 (million hectare)	22	93	283	724	(151, 320)
Agricultural CH+ emissions in 2030 (% rel to 2010)	-24	-48	1	14	(-30,-11)

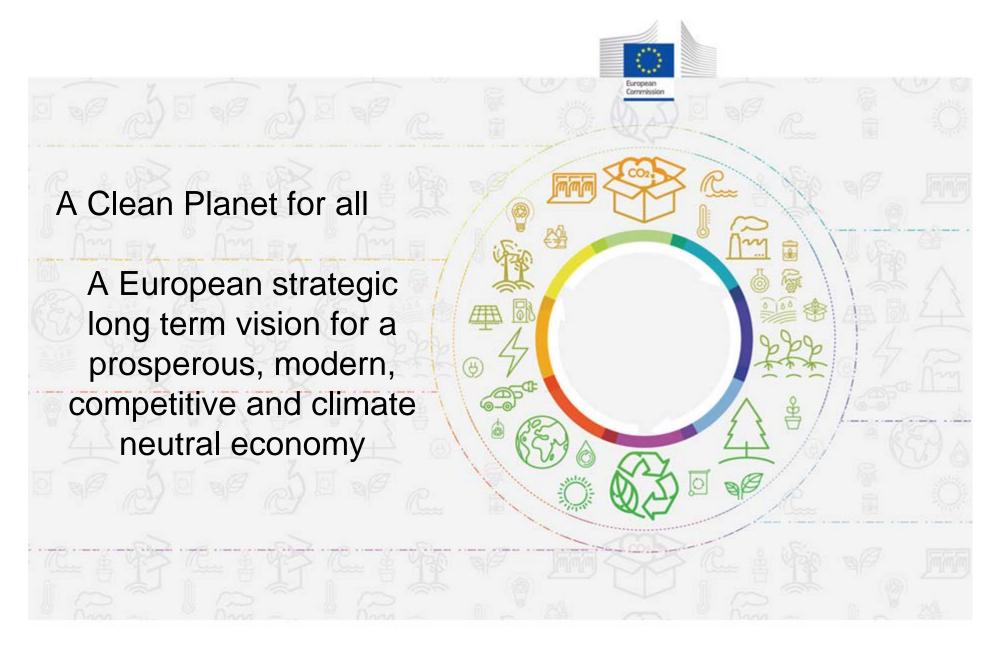


Contribution of technology area to global cumulative CO₂ reductions

Efficiency, key enabler for climate neutrality

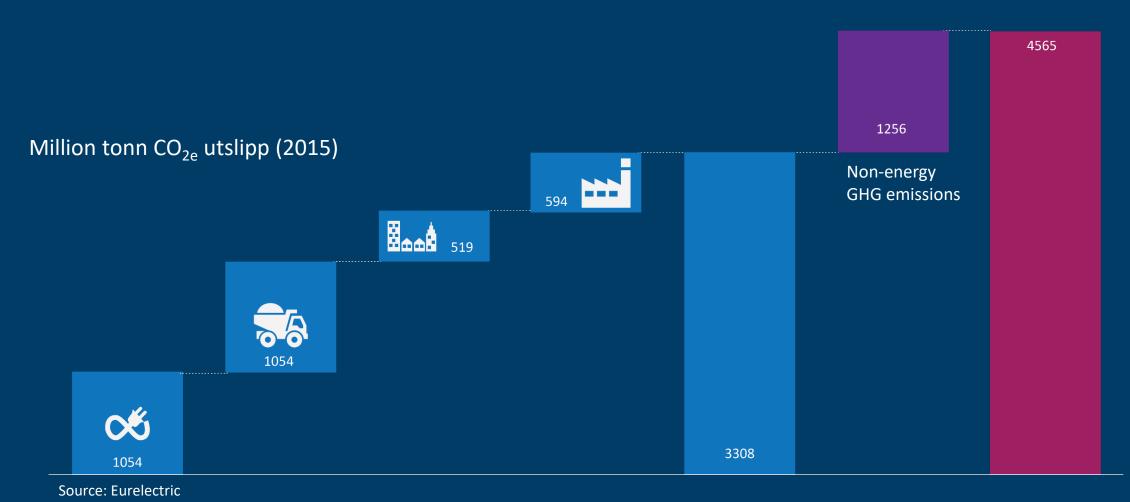
Figure 1.8 Global carbon dioxide (CO₂) emissions reductions in the WEO 2017 New Policies and Sustainable Development Scenarios

Brussels, 28.11.2018 COM(2018) 773 final


COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE EUROPEAN COUNCIL, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE, THE COMMITTEE OF THE REGIONS AND THE EUROPEAN INVESTMENT BANK

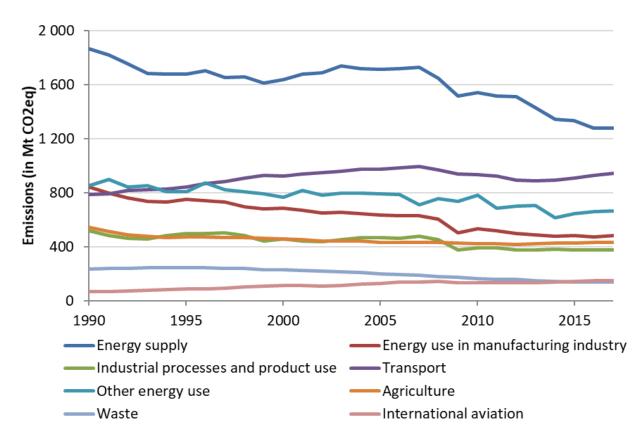
A Clean Planet for all A European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy

N


EN

Reaching climate neutrality by 2050

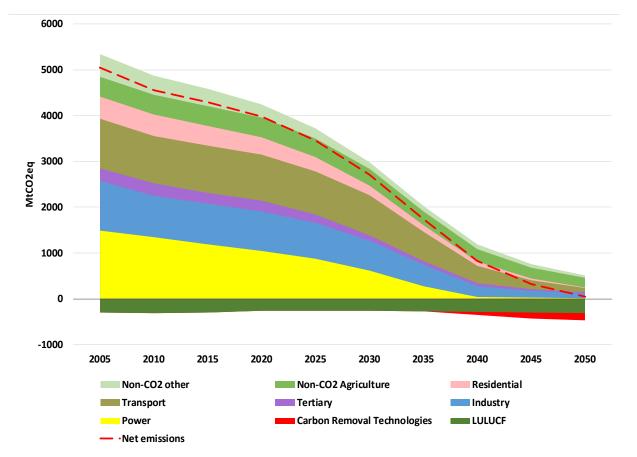
European emissions of GHG



🕥 SINTEF

Europe Today

- GHG emissions -22% vs 1990
- Targets for 2030 (GHG, RES, EE) are agreed in EU law
- Full implementation implies around -45% GHG emissions in 2030 (vs. 1990)
- Without increasing ambition: -60% emissions in 2050


Analysed scenarios in line with Paris Agreement

Long Term Strategy Options								
	Electrification (ELEC)	Hydrogen (H2)	Power-to-X (P2X)	Energy Efficiency (EE)	Circular Economy (CIRC)	Combination (COMBO)	1.5°C Technical (1.5TECH)	1.5°C Sustainable Lifestyles (1.5LIFE)
Main Drivers	Electrification in all sectors	Hydrogen in industry, transport and buildings	E-fuels in industry, transport and buildings	Pursuing deep energy efficiency in all sectors	Increased resource and material efficiency	Cost-efficient combination of options from 2°C scenarios	Based on COMBO with more BECCS, CCS	Based on COMBO and CIRC with lifestyle changes
GHG target in 2050								(incl. sinks) ambition]
Major Common Assumptions								
Power is nearly decarbonised by 2050. Strong penetration of RES facilitated by system optimization (demand-side response, storage, interconnections, role of prosumers). Nuclear still plays a role in the power sector and CCS deployment faces limitations.								
Industry	Electrification of processes	Use of H2 in targeted applications	Use of e-gas in targeted applications	Reducing energy demand via Energy Efficiency	Higher recycling rates, material substitution, circular measures	Combination of most Cost-		CIRC+COMBO but stronger
Buildings	Increased deployment of heat pumps	Deployment of H2 for heating	Deployment of e-gas for heating	Increased renovation rates and depth	Sustainable buildings	efficient options from "well below 2°C" scenarios with targeted	COMBO but stronger	CIRC+COMBO but stronger
Transport sector	Faster electrification for all transport modes	H2 deployment for HDVs and some for LDVs	E-fuels deployment for all modes	 Increased modal shift Electrification as in ELEC 	Mobility as a service	application (excluding CIRC)		 CIRC+COMBO but stronger Alternatives to air travel
Other Drivers		H2 in gas distribution grid	E-gas in gas distribution grid				Limited enhancement natural sink	 Dietary changes Enhancement natural sink

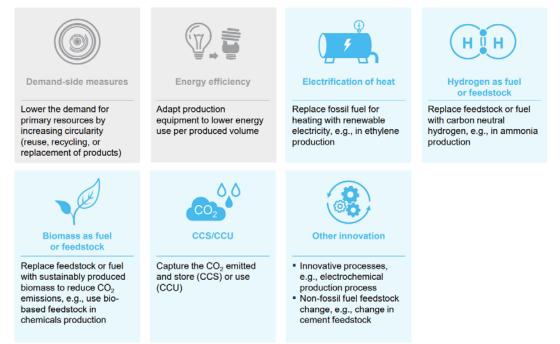
All sectors have to contribute

GHG emissions trajectory in a 1.5°C scenario



7 Building Blocks

- 1. Energy efficiency
- 2. Deployments of renewables
- 3. Clean, safe & connected mobility
- 4. Competitive industry and circular economy
- 5. Infrastructure and inter-connections
- 6. Bio-economy and natural carbon sinks
- 7. Tackle remaining emissions with carbon capture and storage


Changes in final energy consumption (2050 vs. 2005)

Achieving long term decarbonisation goals in industry

- The -80% ambition can be achieved even with currently existing technologies, which need to be further developed.
- Energy efficiency, electrification and use of sustainable biomass are technological ready options for this target.
- Other options include CCUS, hydrogen, clean fuels and circular economy. These require upscaling of technology readiness levels and changes in industrial value chains.

EU Implementation plan Energy Efficiency in Industry

Sector metrics – only for the purpose of prioritising (sources: ⁶⁷)	Final energy consumption	Economic ⁸ potential savings by 2030 (payback <=2 year)	Technical ⁹ potential savings by 2030	Energy ¹⁰ cost/ Value Added	No. of employed	Value added, gross
Sector	Mtoe/y	Mtoe/y	Mtoe/y		Million	€ billion
Pulp and paper	34.3	1.1	7.2	16%	1.43	79.0
Iron and steel	50.8	2.9	16.3	36%	0.63	39.7
Non-metallic mineral	34.2	1.2	7.1	23%	1.29	63.9
Chemical and pharma.	51.5	2.6	16.5	12%	1.72	229.8
Non-ferrous metal	9.4	0.5	1.9	23%	0.46	23.7
Petroleum refineries	44.7	1.7	10.6	44%	0.12	24.3
Food and beverage	28.4	1.4	6.8	10%	4.53	251.4
Machinery	19.3	1.0	5.3	3%	9.03	579.8
Total	272.5	12.4	71.7			

Summary

- Energy efficiency is key in all studies to eventually reach climate neutrality
- The importance has grown over time- as have ambitions
- It's about reducing demand, using it wisely and recycle the embedded energy value in products- circular economy
- EU targets and scenarios rely on delivering efficiency gains in all sectors
- No lack of expectations for HighEFF!

Technology for a better society