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         Industrial Energy Systems 
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Solar Payback (2017). Solar Heat for Industry, based on IEA statistics and calculations by IRENA. In: Ministry, G. F. E. (ed.). Germany. 

  

…and its share will rise 

One of the major final energy consuming sectors… 
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Kempener, R. & Saygin, D. (2014). Renewable Energy in Manufacturing – A technology roadmap for REmap 2030. International Renewable Energy Agency (IRENA). 

 

Challenge of Global Energy Sustainability 

Energy efficiency 

first principle 

In 2014, energy demand 

slowed down to 1/3 

to reduce the increasing demand of fossil fuels and their 

associated environmental impact. 

Alone, not 
enough… 

Remarkable, but … 

the consumption will increase 

by 30% before 2040 
OECD/IEA (2017). World Energy Outlook 2017. 

         Industrial Energy Systems 
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Renewable Energy Growth 

 

 

Current Situation 

• 19% of final energy supply 

• 24% of Power generation 

• Only 9% in Industrial sector 

By 2030 

• 27% of final energy 
supply 

• 27%- 34% in Industry 

 

By 2050 

• 60% of final energy supply 

• 78% of electricity supply 

• 39% in Industry 

Based on current plans 

and policies 

Increasing amount of 

energy from renewable 

sources 

         Industrial Energy Systems 
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EIA (2018), Annual Energy Outlook 2018 with projections to 2050, Retrieved from https://www.eia.gov/outlooks/aeo/pdf/AEO2018.pdf 

• Energy-intensive industries 

account for about 65% of total 

industrial energy consumption 

 

• Industrial CHP is commonly 

used in large, steam-intensive 

industries 
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Industrial combined 

heat and power use 

grows  

         Industrial Energy Systems 
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   Utility systems of the future 

We need to become more energy efficient, but also: 

• Phase out fossil fuels and phase in renewables (including waste 

to energy) 

• Move to a more sustainable basis for process industry energy 

systems 

• Design and optimization to be based on the full life cycle 

implications of integrated systems 
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Introduction of Renewables 
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Wind 

Solar 

Hydro 

Integration of 

Renewables 
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Introduction of Renewables 
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Wind 

Solar 

Hydro 

 Switch to electric boilers? 

 

 No need of steam turbines? 

 

 Distributed electric boilers – 

greater options? 
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Introduction of Biomass and Waste 
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Which is the appropriate mix of sources and 

technologies? 

Biomass 
Hydro 

Wind 
Waste 

Waste 

gases 

Completely different 

system configuration 

and operation 

Solar 
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 Features of Energy Demand and Supply 
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Both vary with time and location 
Variability of demands 

Energy demand can vary  

 hourly during each day (start-ups, shutdowns, process disturbances) 

Gadd H, Werner S. Heat load patterns in district heating substations. Appl Energy 2013;108:176–83. 

Gadd H, Werner S. Daily heat load variations in Swedish district heating systems. Appl Energy 2013;106:47–55. 

 system configuration 

 equipment selection (number, size and type)  

 equipment operation 

 operation scheduling 

Uncertainty 

 seasonal during the year (summer, winter, transition)  
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 Features of Energy Demand and Supply 
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Variability with time 

Dynamic approach  

 

Multi-period approach 

Operating 

scenarios or 

periods 

Conditions are functions of time various scenarios to represent different 

operating scenarios 
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 Features of Energy Demand and Supply 
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Variability of Renewable sources 

required overall availability and variability with time. 

Biomass - supply varies by year seasons and by bio-waste availability (plus logistics problems).  

Wind and Solar - varies more rapidly – in hours and even minutes. 

For efficient exploitation –  

Diverse time horizons of the changes  

Clear Day Cloudy Day 
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 Features of Energy Demand and Supply 
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Multiple time frames 

but  also… 

Diverse time horizons 
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Integration of energy storage 
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Integration of thermal and/or electricity 

storage? 

Steam 

Accumulator 

Hot Water 

Pumped 

Hydro 

Batteries 

Liquid Air 
 Type? 

 

 Size?  
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Integration of energy storage 
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Location? 

 Centralised? 

 

 Distributed? 

 

 Combination? 
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Site Utility Systems 
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Integration Challenge 

- Extent the current Total Site       

     methodology 

 Multiple time frames 

 

 Integration of renewables 

 

 Integration of energy storage 

 

 

No ‘one size fits all’ solution 

New Paradigm for Industrial Utility Systems 

 Maximize energy efficiency 

and… 

-    Redesign the utility systems 

Necessity of… 

 Based on full life cycle 
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Design and 

Optimization 

Framework 

Site heat & source 

sink profiles 

Site power 

requirements 

Design of (distributed) 

utility system 

Utility system 

operating strategy 

• Fossil and renewable energy sources 

• A full range of energy conversion technologies 

• Steam and hot water storage 

• Power storage 

• Constraints on utility options 

• Time dependency for utility options 

• Life cycle costs 

• Sustainability constraints 

 
Use framework to develop road maps to 

evolve existing systems to future 

demands in a sustainable basis 

Design and Optimisation Framework 
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Summary 
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• Paradigm change required for the design and 

operation of  industrial utility systems  

 Integration of renewable energy sources and 

technologies (including waste to energy) 

 Use of energy storage where appropriate 

 Distribution of utility systems where appropriate 

 

• Tool requirement for the design and optimization of 

future industrial utility systems taking a wide range of 

options: 

 Accounting for time variability 

 Constrained by sustainability criteria 

 Based on life cycle costs 
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Objectives 
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To develop an integrated 

decision-support 

methodology and tool 

capable of designing and 

optimising sustainable 

networks 

1. Site utility targeting 

- More realistic and accurate utility targets 

- Optimum steam level placement 

2. Site utility system synthesis (with redundancy)  

- System configuration and operation scheduling 

- Equipment selection 

To deal with variable demand and uncertainties  

3. Integration of renewables, waste to energy 
systems and energy storage 

- Analysis of different energy sources and technologies 

- Development of simplified linear models 

4. Implementation of the life cycle assessment 
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         Process Integration in Utility Systems 
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Extensive literature for cogeneration targeting in utility systems 

But.. 

- present a number of limitations and drawbacks 

- restricted the scope of the options included 
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         Process Integration in Utility Systems 
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Extensive literature for cogeneration targeting in utility systems 

But.. 

- present a number of limitations and drawbacks 

- restricted the scope of the options included 

Unrealistic 

energy targets 

for the site 

Not straightforward to calculate 
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         Process Integration in Utility Systems 
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Steam mains conditions 

 

Do we have the correct number of 

steam mains? 

Do we have our steam mains at the 

correct pressure? 

Trade-off   

fuel use and cogeneration 
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Process Integration in Utility Systems 
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Reliability at design stage  

 
Conventional optimization 

Objective: 
 

 Determine type, number and size of new units  

 and 

 their operational conditions 

 to reduce the overall cost of maintenance and losses due to failure 

  

 to overcome utility demand and operational uncertainties 

BUT...  

Additional operating situations  

(normal, maintenance and failure) 

For synthesis of utility systems it is also required to consider... 

For  variable demand 

Operational 

flexibility 
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Process Integration in Utility Systems 
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Reliability and redundancy at the design stage  

 
Number and size of units 

Large units at part-load operation during most of the time 

Several small units at full-load, one switched off 

 Bigger size → more efficient   but… partial-load → less efficient  

 
 Lower number of units → less expensive   but…   less number of units → less reliable 

or… ? 
(Active redundancy) 

(Passive redundancy)  

  



  Centre for Process Integration © 2019 

Process Integration in Utility Systems 
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Reliability and redundancy at design stage  

 

Type of units 

More units of the same type 

More units of the different types, but performing the same function 

? or… 

Complex 

optimization 
  

- Multiple design and operational degrees of freedom 

 

- Variables highly interrelated   
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 Account for:   

 Full and partial load performance of equipment 

 Different type of equipment: Gas turbines/HRSG, Steam turbines 

 More realistic conditions (steam superheating and de-superheating) 

 Process steam generation at different conditions from the steam 

mains. 

Methodology Aim 

L01  -  35 

 

To provide a more realistic and accurate heat recovery and power 

targeting for synthesis of utility systems operating at optimum 

conditions for future utility systems. 
 

 Able to determine:  

 Optimal steam main operating conditions 

 Utility system configuration 

 

Minimum Total Annualized Cost (TAC) 

Minimum Total Utility Cost (TUC) 
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MILP Optimisation 
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Model Formulation 

Objective Function: Minimise annualised cost   
min TAC= CO+CC 

Operating costs:  Fuel, electricity, cooling water and treated water   

Capital costs:       Boiler, HRSG, steam and gas turbines, deaerator,  

                               hot oil furnace 

Continuous Variables: Steam mass flow-rate 

Heat Loads 

Integer Variables: - Potential steam levels for each steam main 

- Equipment selection  

- Equipment operation 

Constraints: - Energy and Mass Balances in the steam mains 

- Energy and Mass Balances in the deaerator 

- Minimum equipment load 

- Only one steam level can be selected for each steam 

main 

Solver: CPLEX in GAMS 
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User 

specifications 

Methodology Approach 
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How approach the problem? 

Successive MILP 

formulation 

General Framework 

System 

simulation 

System 

optimization 
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MILP Optimisation 
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Model Formulation 

   Based on a new transhipment method 

Cascading of Total Site Heat  

Steam mains (i) 

Potential steam 

levels (j,jm) 

VHP levels (v) 
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 Steam generated from BFW conditions to superheated conditions 
 

 

 
 

 

 Residual heat (𝑅𝐻)  is passed to the next lower temperature interval 

or the cooling utility 

MILP Optimisation 
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Model Formulation 

𝐻𝑖,𝑗
𝑖𝑛 + 𝑅𝑗−1

𝐻 = 𝐻𝑖,𝑗
𝑜𝑢𝑡 + 𝑅𝑗

𝐻 

𝐻𝑖,𝑗
𝑜𝑢𝑡 = 𝑚𝑖,𝑗

𝐻 ∙ 𝐻𝑠ℎ𝑗
𝐻 −  𝐻𝐵𝐹𝑊  

𝑚𝑖,𝑗
𝐶 ∙ 𝐻𝑠ℎ𝑗

𝑚𝑎𝑖𝑛 + 𝑚𝑖,𝑗
𝐵𝐹𝑊𝐶 ∙ 𝐻𝐵𝐹𝑊 = 𝑚𝑖,𝑗

𝐶𝑖𝑛 ∙ 𝐻𝑠ℎ 𝑗
𝐶 − 𝐻𝑙 𝑗

𝐶  

Parameters 

Continuous variables 

Integer variables 

Heat Sink Cascade 

Heat Source Cascade 

 Main Constraints 

 Steam used is desuperheated (Injection of BFW) (𝑄𝐵𝐹𝑊) 

 No residual heat flowing across steam mains 

𝑅𝑗−1
𝐶 − 𝑈𝐶 ∙ 1 − 𝑦𝑖,𝑗

𝐿 ≤ 0 
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Case Study 1 

HP 

MP 

LP 

Background 

• A five-plant site 

• Synthesis of a utility system to satisfy site 
thermal and electrical demand 

• 3 distribution steam mains  

  

Objective 

• Minimum annualized cost 

 

Constraints 

– Max and min allowed utility temperatures 

– Maximum electricity import 1 MW. 

– Maximum electricity export 5 MW. 

– Equipment load and size. 

– No available steam imported or exported 
to or from the system. 

– Steam generators spare capacity: 30% 
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Case Study 1 

258.89 

40 

243.95 

118.95 

233.38 

40.6 

225.55 

114.75 

0 50 100 150 200 250 300

Fuel consumption [MW]

Power Generation [MW]

Cooling utility [MW]

Treated water [t/h]

Utilities consumption 

Optimised Design

Conventional Design

Steam 

main 

‘Conventional’ design Optimised design 

Pressure 

[bar] 

Temperature 

[°C] 

Pressure 

[bar] 

Temperature 

[°C] 

VHP 100 501.4 100 530.1 

HP 40 311.8 37.8 377.6 

MP 20 282.8 13.1 253.8 

LP 5 171.8 3 154.0 

Optimal design 

 

≈ 9 % overall 

energy reduction 
 

Natural gas price:      20.6 £/MWh 

Electricity price:       

- Import    86.0 £/MWh 

- Export    78.8 £/MWh 

Costs [M£/y] Conventional Optimised 

Operating Costs 50.08 44.82 

Capital Costs 15.20 13.50 

TAC 65.28 58.32 
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Case Study 1 

Variation according to the location and type of industry 

Case Scenario 
Natural gas 

[€/MWh] 

Electricity 

[€/MWh] 

Ratio price           

Natural gas 

/Electricity 

1 Non-elegible UK 26 130 5.00 

2 Non-elegible Norway 36 41 1.14 

3 Elegible UK 60 160 2.67 

4 Elegible Norway 75 80 1.07 

Industries eligible for:  

Source : Ecofys 2016 by order of: European Commission 

        Final Report “PRICES AND COSTS OF EU ENERGY” 

• Compensation 

• Tariff reduction 

Utility Country Elegible No- elegible 

Natural gas 

[€/MWh] 

UK 26 60 

Norway* 36 75 

Electricity 

[€/MWh] 

UK 130 160 

Norway 41 80 

Scenarios to analyse: 

Similar ratio 

*The exact data for natural gas price is not available so an average of the Scandinavian countries values has been assumed for the analysis 
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Case Study 1 

Sensitivity Analysis 
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Case Study 1 

Conclusions 

 The proposed methodology for site utility targeting with steam level 

placement is efficient. 
 

 Incorporate many realistic features not previously included. 
 

 Important reduction of the total energy requirement at the 

site compared to a conventional design. 

 A sensitivity analysis has been performed to evaluate the utility 

system design towards the variation in key market parameters, 

such as the utility prices. 

        No ‘one size fits all’ solution 
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HP? 
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Case Study 2 

Background 

• Total site energy demand 

• Synthesis of a utility system that satisfy 
the thermal and electrical demand 

  

Objective 

• Minimum total annualized cost 

 

Constraints 
– Utility temperature constraints  

– Which is the appropriate hot utility 
combination? 

– How many steam mains? 

– Maximum electricity export 5 MW. 

– Equipment load and size. 

– THO supply : 300 °C 

– ∆THO in-out : 90 °C 

MP 

LP 

Maximum allowed temperature of steam 

Minimum allowed temperature of steam 

Fired heat required above 250 °C 
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Case Study 2 

Optimal design configuration 

Options 
MP 

pressure 

[bar] 

Steam 

generation  

[t/h] 

Power 

generation 

[MW] 

Power 

generation per 

unit of boiler  

[MW h/t] 

HO & 2 steam mains 18.8 75.90 7.38 0.097 

HO & 3 steam mains 15.2 87.22 9.35 0.107 
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Case Study 2 

3.01 

0.65 

2.86 

0.11 

0.02 

2.59 

1.22 

3.18 

0.11 

0.02 

0 1 2 3

Boiler fuel cost

Hot Oil fuel cost

Power cost

Cooling cost

Treated water cost

Operating costs [M$/y] 

HO & 2 steam mains HO & 3 steam mains

3.99 

0.33 

0.43 

0.06 

3.58 

0.56 

0.35 

0.06 

0 1 2 3 4

Boilers

Hot oil-fired heater

Steam turbines

Deaerator

Capital costs [M$/y] 

HO & 2 steam mains HO & 3 steam mains

Options 
Operating cost  

[M$/y] 

Capital Cost  

[M$/y] 

TAC  

[M$/y] 

HO & 2 steam mains 7.12 4.55 11.67 

HO & 3 steam mains 6.64 4.83 11.47 
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Case Study 2 

Conclusions 

 There is a trade-off between the costs savings due to reduction of 

the boiler demand, and the power generation potential by steam 

expansion. 

 High complexity of the superstructure gives rise different 

configurations  with very close costs.         

 Due to the close costs for the two configurations, further analysis of 

the implication costs of an additional steam main should be 

performed prior its implementation. 
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Case Study 3 

Background 

• The system’s energy requirement changes seasonal and daytime  

• In addition, the price of electricity change 

  

 

Increment  

in the surplus 

Reduction in the 

demand 

Winter period Summer period 

Parameters Winter Summer 

Heating demand [MW] 83.024 68.215 

Cooling demand [MW] 44.710 61.913 

Power demand [MW] 25.000 30.000 

Electricity Price [$/MWh] 30.00 20.00 
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Case Study 3 

Optimal design configuration  

steady state 

Optimal design configuration  

multiperiod 

S: 14.963 t/h 
W: 9.051 t/h 
 

S: 0.000 t/h 
W: 1.213 t/h 
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Conclusions so far 

 Energy requirement can be further reduced by holistically 

optimising the steam mains operating conditions and the site 

heat recovery and cogeneration. 

L01  -  53 

 This work lays the foundation for a systematic 

approach to explore the next generation of 

sustainable utility systems. 

 Current methodology shows the necessity of integrate: 

- Low heat temperature technologies, for a better utilization 

of the heat  

- Energy storage to smooth the demand variation, and 

decrease the equipment size  

 

 Utility systems synthesis is sensitive to the variation of the 

utility price, restrictions of power import and export, and 

seasonal variations. 
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Future work 

 Multi-period analysis, 

considering redundancy 

and taking into account 

uncertainties. 

 

 Integration of different 

energy sources and 

technologies, including 

energy storage. 
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 Implementation of life cycle 

assessment of each energy 

technology . 
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Thanks for  

your attention 
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Any question? 


