CEMCAP is a Horizon 2020 project with the objective to prepare the grounds for cost- and resource-effective CCS in European cement industry. Key deliverable so far: Available at: https://www.sintef.no/ projectweb/cemcap/results/ Rahul Anantharaman¹, David Berstad¹, Giovanni Cinti², Edoardo De Lena³, Manuele Gatti³, Matteo Gazzani⁴, Helmut Hoppe⁵, Armin Jamali⁵, Isabel Martínez³, Juliana Garcia Moretz-Sohn Monteiro⁶, José-Francisco Pérez-Calvo⁴, Matteo Romano³, Simon Roussanaly¹, Olaf Stallmann⁷, Erin Schols⁶, Maurizio Spinelli³, Sigmund Størset¹, Daniel Sutter⁴, Peter van Os⁶, and Mari Voldsund¹ ¹SINTEF Energy Research, ²Italcementi, ³Politecnico di Milano, ⁴ETH, ⁵VDZ, ⁶TNO, ⁷GE #### **Contact:** Mari.Voldsund@sintef.no www.sintef.no/cemcap Twitter: @CEMCAP_CO2 This project is funded by the European Union's Horizon 2020 Framework Programme for research and innovation # **CEMCAP framework and** comparative capture process analysis ## Objectives - Provide a consistent framework for the pilot testing, process simulations and comparative analysis - Develop consistent process simulations for the three post combustion technologies investigated in CEMCAP - Determine sizes and costs for all four CEMCAP technologies - Perform a comparative techno-economic analysis of the CEMCAP technologies - Perform a comparative evaluation of retrofitability ## **CEMCAP framework (WP3)** The CEMCAP framework contains specifications about the following subjects: - Reference cement kiln - Utilities cost and climate impact - Steam - Electricity - Integrated power generation - Oxygen supply - Refrigeration - Process unit specifications - CO₂ specifications - **Economic parameters** - Key performance indicators #### Water Cond-Preitioning heater tower Stack Raw material Fuel Raw mill Calciner Tertiary air Cooler exhaust air Bypass Secondary air Cooler Rotary kiln filter Clinker Cooling air ## Comparative capture process analysis (WP4) Four capture technologies with the following characteristics are investigated: #### **Oxyfuel** - •Combustion in O₂ (not air) gives CO₂-rich flue gas - •Require: oxygen ### Chilled ammonia process (CAP) - •NH₃/water mixture as liquid solvent - Require: heat for solvent regeneration, electricity for refrigeration Primary air ## Membrane-assisted liquefaction (MAL) - •Polymeric membrane for flue gas CO₂ enrichment followed by CO₂ liquefaction - Require: electricity for refrigeration and ## **Calcium looping (CaL)** - •CaO reacts with CO₂ to form CaCO₃ - Require: heat for sorbent regeneration, oxygen - •Generate: power from waste heat