

CEMCAP is a Horizon 2020 project with the objective to prepare the grounds for cost- and resource-effective CCS in European cement industry.

Principal layout of membrane-assisted CO₂

WP11 Membrane-assisted CO, liquefaction

Motivation for combining membrane and CO₂ liquefaction

- Prospect for lower investment cost for CO₂ capture
- No need for chemical solvents and steam generation and consumption, only grid power
- The indicated optimal CO₂ capture rate for two-stage membrane processes is limited
 - Approximately 40–60 % indicated
- The CO₂ concentration after the first membrane stage can be configured to be typically 60–70 vol%
 - These conditions are close to typical oxyfuel flue gas conditions (see illustration below), and can thus be otained without retrofitting a plant to oxy-combustion operation
 - CO₂ liquefaction is regarded as mandatory in oxy-fuel applications, membranes are not considered as preferred oxy-fuel separation technology
- CO₂ liquefaction expected to be a better 2nd-stage option

liquefaction process

CO₂ purity at vapour-liquid equilibrium (-50°C)

Fig. 7. Isothermal VLE data from literature [37, 28, 27, 52], EOS calculations at mean temperature T = 223.14K, and measurements with estimated uncertai nt work: \bar{x}_{CO_a} , \bar{y}_{CO_a} , \bar{p}_{f_b} , u_c (\bar{x}_{CO_a}), u_c (\bar{y}_{CO_a}) and u_c (\bar{p}_f) from Tables 4 and 5. Critical point estimation and its uncertainties are from Section 5.2

David Berstad,

The membrane CO₂ separation process

Partial pressure difference between feed and permeate is the principal driving force of permeation of the difference gas components.

The membrane's ability to favour CO₂ over the other gas components promotes CO₂ permeation and therefore an increased CO₂ concentration of the permeate side.

Max theoretical enrichment of CO₂ through membrane:

 $\frac{X_{CO_2, perm}}{} < \frac{p_{feed}}{}$ $X_{CO_2,feed}$ p_{perm}

Example: CO₂ enrichment from 15 vol% to 75 vol%:

 $\frac{p_{feed}}{2} \geq 5$

 p_{perm}

The actual p_{feed}/p_{perm} pressure ratio must be higher due to practical considerations.

Flue gas feed **Retentate gas** p_{feed}, T_{feed} $p \approx p_{feed}, T \approx T_{feed}$ $X_{CO2,feed}, p_{CO2,feed}$ $X_{CO2,ret}, p_{CO2,ret}$ CO₂ H₂O Permeate gas p_{perm}, T

X_{CO2,perm}, p_{CO2,perm}

The CO₂ liquefaction process

Rahul Anantharaman SINTEF Energy Research

Peter van Os, **Frank Vercauteren** TNO

Contact: david.berstad@sintef.no

www.sintef.no/cemcap Twitter: @CEMCAP_CO2

This project is funded by the European

WP11 research

- Process modelling and simulation of the capture process
 - Membrane unit
 - CO₂ liquefaction unit
 - Overall hybrid process configurations
- Testing of permeability and selectivity of membrane materials in benchscale test unit (TNO)
- Testing of CO₂ liquefaction process in a 10 ton-per-day laboratory pilot rig (under commissioning at SINTEF/NTNU thermal laboratories)

Preliminary conclusions and further tasks

- Commerical membrane material tested thus far has selectivity suitable for bulk separation of CO₂ from flue gas
- Optimal CO₂ capture rate for membrane-assisted CO₂ liquefaction can be increased relative to a 2-stage membrane process
- Competitive energy results
- Very high CO₂ purity can be expected, as will be verified in laboratory experiments

Union's Horizon 2020 Framework

Programme for research and innovation

Experimental and simulation work will be used to derive a layout for a

scaled up pilot process for the hybrid concept