

CCS for industry emissions – the CEMCAP project

Kristin Jordal

SINTEF Energy Research

Outline

 \rightarrow Industrial CO₂ emissions in the IEA 2DS

 \rightarrow CO₂ emissions in cement industry

- The CEMCAP project
- Typical cement plant flue gas and CO₂ compositions

Outlook on refineries and hydrogen production

Where are emission reductions projected to come in 2050 IEA 2DS?

Energy use in industry

<u>2050</u>

- Iron and steel: 27 EJ
- Chemicals and petrochemicals: 80 EJ
- Cement: 11 EJ

Change in fuel mix projected for cement industry towards 2050

Mainly a shift from coal to biomass, waste and other renewables

This shift is already ongoing in Europe.

- Fuel consumption does not give the full CO₂ emissions picture for cement plants
 - Cement production currently accounts for ~5% of global anthropogenic CO₂ emissions

The need for CCS in cement production

- IEA target for 2050: 50 % of all cement plants in Europe, Northern America, Australia and East Asia apply CCS
- Cement plants typically have a long lifetime (30-50 years or more) and very few (if any) are likely to be built in Europe → Retrofit

The CEMCAP project – CO₂ capture from cement production

The primary objective of CEMCAP is to prepare the ground for large-scale implementation of CO₂ capture in the European cement industry

- Project coordinator: SINTEF Energy Research
- Duration: May 1st 2015 October 31st 2018 (42 months)
- Budget: € 10 million
- EC contribution € 8.8 million
- Swiss government contribution: CHF 0.7 million
- Industrial financing ~€ 0.5 million
- Number of partners: 15

CEMCAP Consortium

<u>Cement Producers</u> CTG (Group Technical Centre of Italcementi), IT Norcem, NO HeidelbergCement, DE

<u>Technology Providers</u> Alstom Carbon Capture* (AL-DE), DE GE Power Sweden (AL-SE), SE IKN, DE ThyssenKrupp Industrial Solutions, DE

Research Partners SINTEF Energy Research, NO ECRA (European Cement Research Academy), DE TNO, NL EHTZ, CH University of Stuttgart, DE Politecnico di Milano, IT CSIC, ES VDZ, DE

*Aquired by GE Power, names will change

GeoNet

 11^{th} CO₂GeoNet Open Forum, *May 9-10 2016 – Venice, San Servolo Islan*a

Strategic techno-economic decision basis for CO, capture in the European cement industry

CEMCAP approach: iteration between analytical and experimental research

Analytical research

Capture process simulations Simulations of cement plants with CO₂ capture Cost estimations/benchmarking Retrofitability analysis CCU for cement

Experimental research

- Testing of three components for oxyfuel capture
- Testing of three different postcombustion capture technologies
- ~10 different experimental rigs

GeoNet

Technologies to be tested in CEMCAP

Technologies to be tested - oxyfuel

Oxyfuel burner Existing 500 kWth oxyfuel rig at USTUTT is being modified for CEMCAP

Partners: USTUTT, TKIS, SINTEF-ER <u>Calciner test rig</u> Existing <50 kWth entrained flow calciner (USTUTT) will be used for oxyfuel calcination

tests

Partners: USTUTT, VDZ, IKN, CTG Clinker cooler

Construction finished, will be installed for onsite testing at HeidelbergCement in Hannover (summer 2016)

Partners: IKN, HeidelC, VDZ

GeoNet

Technologies to be tested – post-combustion capture

Chilled Ammonia Process (CAP) Pilot tests at GE Power Sweden (never tested for such high CO₂ concentrations before, up till 35%)

GE-SE, GE-DE

Membrane assisted CO₂ liquefaction Novel concept, suitable for high CO₂ concentrations Membrane tests: TNO Liquef. tests: SINTEF-ER

N₂ reheat

Compressor exchanger

CO₂ evaporator

Partners: TNO,

SINTEF-ER

Main heat

Phase

sepa-

rator

 N_2

 CO_2

Mixing

chamber

<u>Ca-looping</u>

End-of pipe CaL as well as integrated CaL is developed

GeoNet

CEMCAP techs differ in many ways

		Post combustion capture technologies		
	Oxyfuel capture	Chilled ammonia	Membrane- assisted CO ₂ liquefaction	Calcium Looping
CO ₂ capture principle	Combustion in oxygen (not air) gives a CO ₂ - rich exhaust	NH ₃ /water mixture used as liquid solvent, regenerated through heat addition	Polymeric membrane for exhaust CO_2 enrichment followed by CO_2 liquefaction	CaO reacts with CO ₂ to from CaCO ₃ , which is regenerated through heat addition
Cement plant integration	Retrofit possible through modification of burner and clinker cooler	Retrofit appears simple, minor modifications required for heat integration	No cement plant modifications. Upstream SOx, NOx, H ₂ O removal required	Waste from capture process (CaO) is cement plant raw material
Clinker quality	Maintained quality must be confirmed	Unchanged	Unchanged	Clinker quality is very likely to be maintained
CO ₂ purity and capture rate	CO ₂ purification unit (CPU) needed. High capture rate and CO ₂ purity possible (trade-off against power consumption).	Very high CO ₂ purity, can also capture NOx, SOx. High capture rate possible.	High CO_2 purity (minor CO_2 impurities present). Trade-off between power consumption and CO_2 purity and capture rate.	Rather high CO ₂ purity (minor/moderate CO ₂ impurities present). High capture rate.
Energy integration	Fuel demand unchanged. Waste heat recovery + electric power increase.	Auxiliary boiler required + waste heat recovery. Electricity for chilling.	Increase in electric power consumption, no heat integration.	Additional fuel required, enables low- emission electricity generation.

Flue gas characteristics – CO₂ emissions

	Compon ent	Exhaust gas					
		Conventional	From oxyfuel combustion		From Post-		
			Min	Мах	combustion*		
	CO ₂	14 – 35 vol.%	95 vol.%	99.9 vol.%	> 99.0 vol.%		
	0 ₂	3 – 14 vol.%	1.2 vol.%	0.001 vol.%			
	N ₂	Rest	3.4 vol.%	-			
	Ar		0.4 vol.%	-			
	NO _x	0. 5 – 0.8 g/m ³	< 0.55 g/m ³	< 0.55 g/m ³			
	SO ₂	50 – 400 mg/m ³	< 4 mg/m ³	< 4 mg/m ³			
	СО	0.1 – 2 g/m ³	< 0.3 g/m ³	-			
ar fat	H ₂ O	6 – 10 vol.%	-	-			
*** let	HCI	< 20 mg/m ³	-	-			
	*to be verified for Ca-looping capture						

Geo

CO₂ capture from refineries

- Emission sources: **10-25 stacks** depending on the complexity of the refinery
 - Fired heaters contribute from 40-60% of the emissions
 - Also hydrogen production, combined heat and power and the FCC unit.
- The overall capture rate for a refinery is considerably lower than 90% due to the distributed nature of emissions
 - End-of-pipe capture using amine technology is uneconomical for small emission sources
- CO₂ capture from syngas stream in the Steam Methane Reformer (SMR) process for hydrogen production is the most economical option for capture in a refinery
 - Solvent based capture at relatively high partial pressure
 - Around 50-60% of overall $\rm CO_2$ emissions from hydrogen production can be captured
 - **Oxy-fired FCC** process is considered for CO₂ removal from the FCC process
 - Has implications on product performance and hence downstream processes
 - To overcome the distributed nature for end-of-pipe capture:

GeoNet

Hydrogen combustion in fired heaters in place of refinery fuel gas \Rightarrow CO₂ capture from a single source of hydrogen production

H₂ production with CO₂ capture

- Current global H₂ production:
 - Mainly fossil-fuel based
 - ~7.7 EJ/year
 - Related emissions: ~500 Mt of CO₂/year
- IEA High H2 2DS envisages by 2050:
 - ~35 EJ H_2 /year
 - Use of H₂ for transport, industry, buildings, energy
- Assuming costs for CO₂ emissions, IEA envisage in US, EU4* and Japan by 2050:
 - 12-38% H₂ from renewable electricity and biomass
 - 58-81% H_2 from fossil fuels with CCS
- "Pre-combustion" separation technologies (absorption, adsorption, membranes, phase separation) can be combined to meet the purity requirements on H₂ and CO₂
 - Trade-offs between energy efficiency, purity requirements, product yield...

*Germany, Italy, France, UK

Concluding remarks

- Curbing of industrial CO₂ emissions from cement will require CCS in order to contribute to reaching the 2 or 1.5 degree target
- Existing capture technologies are being developed and tested in CEMCAP for cement plant retrofit
- The composition of the captured CO₂ will vary depending on capture technology and process design
- From IMPACTS: There is no easy, one-size-fits-all solution for how a CCS chain should be designed and how to set the limits for the concentrations of impurities.
- Good communication is required between the different actors along the CCS chain to identify the requirements on CO₂ composition.
 - Trade-offs between energy consumption, cost and purity.
- Showstopper components/mixtures identified for transport or storage? Alert the CO₂ capture part of the CCS chain!

Thank you for your attention!

Acknowledgement

The CEMCAP project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 641185

> <u>www.sintef.no/cemcap</u> Twitter: @CEMCAP_CO2

GeoNet