CLUSTER Kick-Off Workshop, October 29th 2015

CEMCAP – a Horizon 2020 project on CO₂ capture from cement production

Kristina Fleiger VDZ gGmbH

CO₂ emissions in the cement industry

- Cement production constitute ~5% of global anthropogenic CO₂ emissions
- In 2013 ~ 20% of global CO₂ emissions from cement production originated from Europe

the European Union

The need for CCS in Cement production

- IEA target for 2050: 50 % of all cement plants in Europe, Northern America, Australia and East Asia apply CCS
- Cement plants typically have a long lifetime (30-50 years or more) and very few (if any) are likely to be built in Europe \rightarrow Retrofit

The CEMCAP objectives

The primary objective of CEMCAP is

To prepare the ground for large-scale implementation of CO₂ capture in the European cement industry

To achieve this objective, **CEMCAP will**

- Leverage to TRL6 for cement plants the oxyfuel capture technology and three fundamentally different post combustion capture technologies, all of them with a targeted capture rate of 90%.
- Identify the CO₂ capture technologies with the greatest potential to be retrofitted to existing cement plants in a cost- and resource-effective manner, maintaining product quality and environmental compatibility.
- Formulate a techno-economic decision-basis for CO₂ capture implementation in the cement industry, where the current uncertainty regarding CO₂ capture cost is reduced by at least 50%.

CEMCAP metrics

- Horizon2020 project coordinated by SINTEF Energy Research
- Duration: May 1st 2015 October 31st 2018 (42 months)
- Budget: € 10 million
- EC contribution € 8.8 million
- Swiss government contribution: CHF 0.7 million
- Number of partners: 15

CEMCAP Consortium

<u>Cement Producers</u> CTG (Group Technical Centre of Italcementi), IT Norcem, NO HeidelbergCement, DE

<u>Technology Providers</u> Alstom Carbon Capture (AL-DE), DE Alstom Power Sweden (AL-SE), SE IKN, DE

ThyssenKrupp Industrial Solutions, DE

Research Partners SINTEF Energy Research, NO ECRA (European Cement Research Academy), DE TNO, NL EHTZ, CH University of Stuttgart, DE Politecnico di Milano, IT CSIC, ES VDZ, DE

CEMCAP relation to Norcem and ECRA CCS projects

Norcem CCS project: Testing of amine, membrane, solid sorbent, Ca-looping (post-combustion)

- CEMCAP: testing of chilled ammonia, Calooping, membrane-assisted CO₂ – liquefaction
- ECRA CCS project: focusing on oxyfuel retrofit in its current phase IV
- CEMCAP: testing of three key components for the oxyfuel plant

CEMCAP base: competence and knowledge from ongoing and concluded CCS projects for power industry

Strategic techno-economic decision basis for CO₂ capture in the European cement industry

CEMCAP approach: iteration between analytical and experimental research

Analytical work

Capture process simulations

Simulations of full cement plants (kilns) with CO₂ capture

Cost estimations/benchmarking

Retrofitability analysis

Experimental work

Testing of three components for oxyfuel capture

Testing of three different postcombustion capture technologies

~10 different experimental rigs

Project structure

Characteristics of technologies included in CEMCAP

		Post combustion capture technologies		
	Oxyfuel capture		Membrane-	
		Chilled ammonia	assisted CO ₂	Calcium Looping
			liquefaction	
CO ₂ capture	Combustion in oxygen	NH ₃ /water mixture used	Polymeric membrane for	CaO reacts with CO_2 to
nrincinlo	(not air) gives a CO ₂ -rich	as liquid solvent,	exhaust CO ₂ enrichment	from CaCO ₃ , which is
principie	exhaust	regenerated through	followed by CO ₂	regenerated through
		heat addition	liquefaction	heat addition
Cement plant	Retrofit possible through	Retrofit appears simple,	No cement plant	Waste from capture
integration	modification of burner	minor modifications	modifications. Upstream	process (CaO) is cement
Integration	and clinker cooler	required for heat	SOx, NOx, H ₂ O removal	plant raw material
		integration	required	
Clinker quality	Maintained quality must	Unchanged	Unchanged	Clinker quality is very
	be confirmed			likely to be maintained
CO_2 purity and	CO ₂ purification unit	Very high CO ₂ purity, can	High CO ₂ purity (minor	Rather high CO ₂ purity
conturo roto	(CPU) needed. High	also capture NOx, SOx.	CO ₂ impurities present).	(minor/moderate CO ₂
capture rate	capture rate and CO ₂	High capture rate	Trade-off between	impurities present).
	purity possible (trade-off	possible.	power consumption and	High capture rate.
	against power		CO ₂ purity and capture	
	consumption).		rate.	
Energy integration	Fuel demand unchanged.	Auxiliary boiler required	Increase in electric	Additional fuel required,
	Waste heat recovery +	+ waste heat recovery.	power consumption, no	enables low-emission
	electric power increase.	Electricity for chilling.	heat integration.	electricity generation.

the European Unior

Technologies to be tested - oxyfuel

Oxyfuel burner Existing 500 kWth oxyfuel burner at USTUTT to be modified for CEMCAP

Partners: USTUTT, TKIS, SINTEF-ER

Calciner test rig

Existing <50 kWth entrained flow calciner (USTUTT) to be used for oxyfuel calcination tests <u>Clinker cooler</u> To be designed and built for on-site testing at HeidelbergCement in Hannover

Partners: USTUTT, VDZ, IKN, CTG Partners: IKN, HeidelC, VDZ

Technologies to be tested – post-combustion capture

<u>Chilled Ammonia Process</u> (CAP) Tests at Alstom Power Sweden (never tested for such high CO₂ concentrations before)

Partners: ETHZ, AL-SE, AL-DE

<u>Membrane assisted CO₂</u> liquefaction Membrane tests: TNO Liquefaction tests: SINTEF-FR N₂ reheat N_2 make-up Main heat Phase Compressor exchanger Mixing sepachamber rator CO2 make-up CO₂ evaporator

Partners: TNO, SINTEF-ER

<u>Ca-looping</u> (USTUTT, CSIC rigs)

Partners: USTUTT, CTG, PoliMi, CSIC, IKN

CEMCAP final results

CEMCAP will deliver strategic conclusions for how to progress CO₂ capture from cement plants from pilot-scale testing to demonstration and implementation

Recommendations will be given for different scenarios (i.e. different types of cement plants at different locations in Europe)

CEMCAP progress towards final results will be possible to follow for the interested public through blogs, newsletters, website, Facebook, Twitter, conferences and pop-science articles

CEMCAP: Maturing CO, capture from cement to TRL6 Enhanced

and effective cooperation in CCS R&I Cement industry commitment

to climate protection:

ECRA and Norcem CCS projects

Providing a descision base for cost-and resource-effective CCS in industry

FP6 and FP7 CCS projects for the power sector:

- Available laboratory resources
- Extensive knowledge and competence

13

the European Unio

CEMCAP framework: Reference plant

- Cement plants differ in size, process technology, operational mode, fuel mix, raw material composition influencing energy efficiency, flue gas characteristics etc.
- Reference kiln system is based on Best Available Techniques level including
 - 5-stage cyclone preheater
 - Calciner with tertiary air duct
 - Modern grate cooler
- Representative average values of European cement plants define the key facts:
 - Plant Size: 3000 t/d (1 Mt clinker/y)
 - Annual cement production: 1.36 Mt clinker/y
 - Clinker/cement ratio: 73.7 %
 - 320 days of non-stop operation (85 % capacity rate), typcially 3-4 weeks of winter revison

Thermal energy demand of the cement industry

Flue gas characteristics – CO₂ emissions

Reference plant – CO ₂ emissions				
Spec. indirect CO ₂ from electricity	0.049 - 0.068 t CO ₂ /t cement			
Spec. direct CO_2 from clinker production (incl. biogenic CO_2)	0.828 t CO ₂ /t clinker EU-average: 0.862 t CO ₂ /t clinker			
Total spec. CO ₂ emissions incl. electricity	0.66 – 0.68 t CO ₂ /t cement			

- CO₂ content in flue gas mainly influenced by thermal energy efficiency, fuel and raw material composition.
- Reference case: 828,000 tCO₂/y per plant ~ 2550 tCO₂/d
- Total net CO₂ emissions in 2013: Germany: 15.7 Mt
 - EU: 110 Mt

Examples for flue gas compositions

Component	Exhaust gas				
	Conventional	From oxyfuel combustion		From Post-	
		Min	Max	combustion	
CO ₂	14 – 35 vol.%	95 vol.%	99.9 vol.%	> 99.0 vol.%	
0 ₂	3 – 14 vol.%	1.2 vol.%	0.001 vol.%		
N ₂	Rest	3.4 vol.%	-		
Ar		0.4 vol.%	-		
NO _x	0. 5 – 0.8 g/m ³	< 0.55 g/m ³	< 0.55 g/m ³		
SO ₂	50 – 400 mg/m ³	< 4 mg/m ³	< 4 mg/m ³		
СО	0.1 – 2 g/m ³	< 0.3 g/m ³	-		
H ₂ O	6 – 10 vol.%	-	-		
HCI	< 20 mg/m ³	-	-		

Thank you for your attention!

Acknowledgement

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 641185

www.sintef.no/cemcap

Twitter: @CEMCAP_CO2

