CEMCAP — a Horizon 2020 project on retrofittable CO2 capture from cement plants

Matthias Hornberger, Reinhold Spörl
Institute of Combustion and Power Plant Technology
University of Stuttgart
Introduction and Framework
CO₂ emissions in the cement industry

- Cement production constitutes ~ 5 % of global anthropogenic CO₂ emissions
- In 2013 ~ 20 % of global CO₂ emissions from cement production originated from Europe
The need for CCS in Cement production

Without reduction measures: 2.4 Gt/a in 2050
BLUE MAP scenario (with CCS): max 1.6 Gt/a in 2050

Reduction by:
- Increase of energy efficiency
- Alternative fuels use
- Reduction of clinker share

IEA target for 2050: 50% of all cement plants in Europe, Northern America, Australia and East Asia apply CCS

Cement plants typically have a long lifetime (30-50 years or more) and very few (if any) are likely to be built in Europe → Retrofit
CEMCAP Consortium

Cement Producers
CTG (Group Technical Centre of Italcementi), IT
Norcem, NO
HeidelbergCement, DE

Technology Providers
GE Carbon Capture (GE-DE), DE
GE Power Sweden (GE-SE), SE
IKN, DE
ThyssenKrupp Industrial Solutions, DE

Research Partners
SINTEF Energy Research, NO
ECRA (European Cement Research Academy), DE
TNO, NL
ETHZ, CH
University of Stuttgart, DE
Politecnico di Milano, IT
CSIC, ES
VDZ, DE
CEMCAP – positioned to complement and strengthen the Norcem and ECRA CCS projects

CEMCAP will
• Utilize competence and knowledge from ongoing and concluded CCS projects for power industry
• Complement the Norcem CCS project by testing and evaluating additional post-combustion capture technologies
• Strengthen and advance the ongoing ECRA CCS project for cement industry (component testing for oxyfuel)
Project structure

Framework, evaluation, management and dissemination (M1-42)

- Project management, dissemination and exploitation SP1
 - Project management and coordination WP1
 - Dissemination and exploitation WP2

- Framework and comparative analysis SP2
 - CEMCAP framework WP3
 - Comparative capture process analysis WP4
 - Post-capture CO₂ management WP5

Technology development and demonstration → TRL6 (M1-36)

- Oxyfuel capture retrofit SP3
 - Oxyfuel modelling and optimisation WP6
 - Oxyfuel burner technology WP7
 - Calciner technology for oxyfuel capture WP8
 - Oxyfuel clinker cooler prototype WP9

- Post combustion capture retrofit SP4
 - Chilled ammonia process (CAP) WP10
 - Membrane-assisted CO₂ liquefaction WP11
 - Calcium looping (CAL) capture WP12
Project schedule

Q3 2015

- CEMCAP framework (WP3)
 - Experimental plans (WP7, 8, 9, 10, 11 and 12)
- Reference cement plant (WP4)

Q3 2016

- Capture technology process designs (WP6, 10, 11 and 12)
 - Pilot testing (WP7, 8, 9, 10, 11 and 12)
- First cement plant designs with CO₂ capture (WP4)

Q3 2017

- Further Pilot testing Reaching TRL6 (WP7, 8, 9, 10, 11 and 12)
 - Refined capture technology process designs (WP6, 10, 11 and 12)
- Final cement plant designs with CO₂ capture (WP4)
 - Cost for CO₂ capture technologies (WP4)

Q3 2018

- Comparative techno-economic analysis
 - Retrofitability analysis
 - Techno-economic decision base
 - CEMCAP innovations
 - Pathways for low-emission cement plants
CEMCAP framework: Reference plant

- Cement plants differ in size, process technology, operational mode, fuel mix, raw material composition influencing energy efficiency, flue gas characteristics etc.
- A reference kiln system has been defined, based on Best Available Techniques level including
 - 5-stage cyclone preheater
 - Calciner with tertiary air duct
 - Modern grate clinker cooler
- Representative average values of European cement plants define the key data:
 - Plant Size: 3000 t/d (1 Mt clinker/y)
 - Annual cement production: 1.36 Mt/y
 - Clinker/cement ratio: 73.7 %
 - 320 days of non-stop operation (85 % capacity rate), typically 3-4 weeks of winter revision
- The reference plant without CO$_2$ capture will be the basis for performance evaluation of all CEMCAP technologies (cost, energy consumption, CO$_2$ quality...).
SP3 – Oxyfuel capture
Oxyfuel cement plant

- CO₂ capture by N₂ free combustion
- Oxyfuel combustion influences:
 - Heat transfer in rotary kiln (gas atmosphere)
 - Calcination kinetics in pre-calciner (CO₂ partial pressure)
- New clinker cooler design required (operation with recycle gas)
Technologies to be tested - oxyfuel

Oxyfuel burner
Existing 500 kW\textsubscript{th} oxyfuel rig at USTUTT was modified for CEMCAP experiments

Calciner test rig
Existing <50 kW\textsubscript{th} entrained flow calciner (USTUTT) will be used for oxyfuel calcination tests

Clinker cooler
Drawings completed, is being built for on-site testing at HeidelbergCement in Hannover (summer 2016)

Partners: USTUTT, TKIS, SINTEF-ER

Partners: USTUTT, VDZ, IKN, CTG

Partners: IKN, HeidelC, VDZ
SP4 – Post Combustion Capture
Technologies to be tested – post-combustion capture

Chilled Ammonia Process (CAP)
Absorber tests at GE Power Sweden (never tested for such high CO₂ concentrations before, up to 35 %)

Membrane assisted CO₂ liquefaction
Novel concept, suitable for high CO₂ concentrations
Membrane tests: TNO
Liquef. tests: SINTEF-ER

Ca-looping (USTUTT, CSIC rigs)
End of pipe CaL as well as integrated CaL tests

Partners:
- ETHZ, GE-SE, GE-DE
- TNO, SINTEF-ER
- USTUTT, CTG, PoliMi, CSIC, IKN
Chilled Ammonia Process (CAP)

- CO₂ separation by cyclic absorption/desorption in NH₃
- Lower regeneration effort
- High sorbent stability

- Experimental work on:
 - CO₂ capture performance
 - Flue gas pretreatment
 - Cooling
 - Removal of impurities
 - NH₃ slip reduction

- Simulation work on:
 - Model enhancement and validation
 - Overall CAP simulation and optimization
Preliminary Results - Chilled Ammonia Process (CAP):

- Large scale testing at Växjö (500 m³/h)
- 50 pilot plant tests of the CO₂ absorber at different experimental conditions
Membrane assisted CO₂ liquefaction

- Membrane screening
- Experimental work on
 - Membrane performance
 - Liquefaction and purification process
- Simulation work on combined membrane- and liquefaction capture system
Calcium Looping (CaL)

- CO₂ separation by cyclic calcination/carbonation of CaCO₃
- Low efficiency penalty / separation cost due to efficient heat recovery / heat integration
- Synergies between cement plant and CaL

- Experimental work on
 - Sorbent screening
 - CO₂ capture performance
 - Entrained flow CaL system

- Simulation work on
 - Entrained flow carbonator
 - CaL integration into the cement plant
Preliminary Results - Calcium Looping (CaL):

Calcium Looping (CaL)

- Demonstration at 200 kW\(_{th}\) pilot plant at IFK, University of Stuttgart
- CO\(_2\) capture up to 95 % (near equilibrium capture rate)
Outlook

- CEMCAP results will be presented during GHGT-13 in Lausanne (9 contributions)
- Next CEMCAP/ECRA workshop in spring 2017
- Experimental work finished by Q4 2017
- Comparative techno-economic analysis by Q3 2018
- Newsletter subscription on website (www.sintef.no/cemcap)

Contact:
Matthias Hornberger: Matthias.hornberger@ifk.uni-stuttgart.de, +49 711 / 685 67801
Reinhold Spörl: reinhold.spoerl@ifk.uni-stuttgart.de, +49 711 / 685 63748
Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 641185

This work was supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 15.0160

www.sintef.no/cemcap
Twitter: @CEMCAP_CO2