Calcium Looping Post Combustion CO$_2$ Capture: A promising technology for emission free cement production

M. Hornberger, H. Dieter, G. Scheffknecht

The 6th High Temperature Solid Looping Cycles Network Meeting, September 1st, 2015, Milan
Expertise in Lime based Fluidized Bed Processes

Fluidized Bed Processes
- Calcium Looping (CaL)
- Chemical Looping (CLC)
- Oxy-fuel CFB
- Sorption enhanced reforming (SER)
- Oxy-fuel SER

Fuels
- Biomass
- Waste
- Lignite / Coal

Measurement techniques
- Sorbent Characterization (TGA)
- Online gas analysis:
 - CO₂, CO, O₂, H₂, CH₄, SOₓ, NOₓ
- Non-condensable HC: GC
- Tar: wet chemical & online (FID)
- H₂S, HCl, NH₃: wet chemical
Calcium Looping – Post Combustion CCS

- retrofitting to existing facilities
- low CO$_2$ separation cost
- low efficiency penalty
Calcium Looping – Post Combustion CCS

General conditions

- Looping Ratio: 2 - 10
- Make-up Ratio: < 0,1 - 0,4
- Temperature
 - T_{Calciner}: 850 - 1000 °C
 - $T_{\text{Carbonator}}$: 600 - 700 °C
- Flue gas
 - CO_2: ~ 15 %
Calcium Looping – Pilot Plant (200 kW$_{th}$)

Operation Conditions

- Flue Gas Load: 170 - 230 kW$_{th}$
- Sorbent Looping Ratio: 3 - 13 mol$_{CaO}$/mol$_{CO_2}$
- Total Solid Inventory: 70 - 120 kg CaO/CaCO$_3$
Operational Results – Carbonator

- **Over 90% capture efficiency** achieved over a wide range of operating conditions.
Operational Results – Oxy-fuel Calcination

- Recirculation rate: 28 %
- $\gamma_{O_2,in}$, $\gamma_{O_2, in}$
- $Y_{CO_2,out, dry}$
- $\gamma_{CO_2, out, dry}$
- $\gamma_{O_2, excess}$ in vol.-%

Graphs showing concentrations over time and temperature in °C.
Operational Results – Oxy-fuel Calcination

- High inlet oxygen concentrations (> 50 vol.-%, dry) possible
- Lower recirculation rates for oxy-CaL calcination (additional CO₂ from calcination)
- Lower humidity of CaL flue gas
- Uniform isothermal conditions
Calcium Looping – Pilot Plant (200 kWₜₜ)

Operation Conditions
- Flue Gas Load: 170 - 230 kWₜₜ
- Sorbent Looping Ratio: 3 - 13 mol_{CaO}/mol_{CO₂}
- Total Solid Inventory: 70 - 120 kg CaO/CaCO₃

Carbonator
- CO₂ capture efficiency above 90 %

Calciner
- CO₂ outlet concentrations above 90 vol.-%, dry
- Inlet O₂ concentrations above 50 vol.-%, dry
- Excess O₂ outlet concentration below 3 vol.-%, dry
Cement Plant – Clinker Production and Properties

- clinker composition
 - CaO: 60 - 70 %
 - SiO₂: 20 - 25 %
 - Al₂O₃: 2 - 6 %
 - Fe₂O₃: 0 - 6 %

- structural change at 1400 °C (rotary kiln)
 - CaO + SiO₂ → (CaO)₃ · SiO₂ & (CaO)₂ · SiO₂

- flue gas composition
 - high CO₂ concentration ~ 30 %
Cement Plant – CaL Integration

- synergy effect between cement plant and CaL-process

General conditions

- Looping Ratio: 2 - 4
- Make-up Ratio: > 1
- Flue gas
 - \(\text{CO}_2 \): 15 - 30 %
Summary

- Calcium looping for power plant application demonstrated at pilot plant scale
 - CO₂ capture efficiency over 90 %
 - CO₂ concentrations over 90 %

- Feasibility for cement plant application will be investigated at pilot plant scale
 - Effect of high CO₂ flue gas concentration
 - Influence of make-up ratio, sorbent looping ratio
 - Optimal operation conditions
Thank you for your attention!

Acknowledgement
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 641185

[Website]

Disclaimer: The European Commission support for the production of this publication does not constitute endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.
Thank you for your interest!

Any Questions?

Contact:
Hornberger Matthias
Institute of Combustion and Power Plant Technology,
University of Stuttgart
matthias.hornberger@ifk.uni-stuttgart.de
http://www.ifk.uni-stuttgart.de