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A warming planet
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International report confirms 2016 was
warmest year on record for the globe

Last year marked the 3rd consecutive year of record warmth
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CO, and global warming
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S. Ar'r'henius, Nobel Prize winner in 1903, discovered the strong

greenhouse effect of CO, and water vapour on Earth’s climate
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cosaL|carson  Emissions from coal, oil, gas, cement

PROJECT

Share of global emissions in 2015:
coal (41%), oil (34%), gas (19%), cement (6%), flaring (1%, not shown)

Data: CDIAC/GCP
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croeaL carson Observed emissions and emissions scenarios

PROJECT

The emission pledges to the Paris Agreement avoid the worst effects of climate change (4-
5°C) Most studies suggest the pledges give a likely temperature increase of about 3°Cin 2100

Data: CDIAC/GCP/IPCC/Fuss et al 2014 . ‘
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The IPCC Fifth Assessment Report assessed about 1200 scenarios with detailed climate modelling on four Representative
Concentration Pathways (RCPs)
Source: Fuss et al 2014; CDIAC; IASA AR5 Scenario Database; Global Carbon Budget 2016
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THE CARBON CAPTURE AND STORAGE PROCESS

Provided by the Giobal CCS Institute
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I IEA Cement Technology Roadmap for CO, reduction

2010 2020 2030 2040 2050
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i emissions:
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CCS is most prominent in sectorial scenarios to
decarbonise the cement industry
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that will award US$20 million to the

research team that can come up with
the best way to turn carbon dioxide from a
liability into an asset.

With gigatonnes of the gas pouring into the
atmosphere each year, and with the conse-
quences for global climate becoming increas-
ingly obvious, the Carbon XPRIZE would
reward technologies that can convert CO, emis-
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Air as the renewable carbon source of the future: an overview of CQO, capture

from the atmosphere-
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Avoided emissions of future CCU processes

CARBON DIOXIDE

B WIURE “This can be evaluated correctly only by considering proper
o T CE system boundaries for the energy and material balances of
. the CO, utilization processes, and by carrying out a detailed
I life-cycle analysis of the proposed use of CO,. »’

= =

Fundamental guestions regarding Carbon
accounting in CCU still persist in 2017
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ABSTRACT: Within the context of carbon dioxide (CO,)

utilization there is an increasing interest in using CO, as a 7kg CO;-eq
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System boundaries for CCU ?
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“Each atom of C we can recycle is an atom of fossil carbon left in the
underground for next generations that will not reach the atmosphere today.”

Aresta, M., et al. (2016) Journal of Catalysis 343, 2-45, doi:10.1016/j.jcat.2016.04.003



System boundaries for CCU

It is compulsary to account for the FULL value chain

Sub-system for
conversion of
primary renewable
energy to electricity

’ Primary

1
1

process with
CO, capture

Industrial
: Energy storage subsytem or

e-network management

Natural resources,
Including fossil C



System boundaries for CCU

Who is allowed to claim for a CO, reduction credit?
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Carbon accounting for CCU
CARBON LEAKAGE unless CO, comes from Air Capture
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The avoided CO, by Substitution
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Concluding remarks

Climate change policies will eventually force a high cost per tonne of CO,
emissions.

CCS can be deployed today at competitive cost respect to other low C
technologies (at 50-100 €/tonne). Great prospects for cost reductions by
“learning by doing” and/or by new technologies. 2/3 of the total CCS cost
comes from CO, capture.

There is no economic incentive to deploy CCS at large scale in Europe at
present. Time to bet on R&D on emerging technologies ? .
The impact of CCUs other than “CO, to fuels” can only be very small.

Betting on CO, Utilisation for climate change mitigation may be risky: no
transparent method for carbon accounting is yet avaialble (source of carbon?,
life time of product ?, carbon footrpint of all inputs of energy and materials ?)

Estimation of CO, avoided cost by CCU is uncertain and highly sensitive to
“attribution issues” regarding the low carbon energy needed for CCU.
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System boundaries for LCA of CCU ?
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“Each atom of C we can recycle is an atom of fossil carbon left in the
underground for next generations that will not reach the atmosphere today.”

IF

The source of CO, is the atmosphere, AND
There are no penalties in energy conversion processes, AND
Air Capture+Renewables have a zero carbon footprint



crosaL|carson Carbon quota for a >66% chance to keep below 2°C
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For a >66% chance to keep global average temperature below 2°C above pre-industrial levels,
society can emit 2900 billion tonnes CO, from 1870 or about 800 billion tonnes CO, from 2017

<2.0°C, >66%

eJ0[0 Indicative range
ool “50-1050G1CO;

Historical emissions 1870-2016: 2100GtCO,. All values rounded to the nearest 50 GtCO,
The remaining quotas are indicative and vary depending on definition and methodology (Rogelj et al 2016).
Source: IPCC AR5 SYR (Table 2.2); Le Quéré et al 2016; Global Carbon Budget 2016
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