

PCM-Store Project – Workshop

A new validated model of PCM-pillow-plate heat exchanger to show the benefits of TES in any thermal system

Sven Försterling 12. November 2021

TLK-Thermo GmbH

since 2003, 50 employees in 2021, 2 branches + 2 subsidiaries

- Simulation
- Test Benches
- Customized Software
- Training in Aachen
 Modelica 18-19 January
 TIL 20 Jan 2021

TLK-Thermo GmbH | www.tlk-thermo.com | PCM-Store | 12. November 21

TIL Suite

Model library for components of thermal systems

TILMedia Suite

Model library providing thermophysical properties

DaVE

Visualization of simulation results, energy flows and thermodynamic states

Simulator Suite

Simulators for various environments and programs

Interfacing and simulation via FMI

TLK-Thermo GmbH

Motivation

Dynamic simulation models can be used as tool for

- Design of new PCM Store HX concepts e.g. pillow-plate
- Optimization of PCM Store HXs and systems
 - Geometry, System Layout, further components,
 - PCM Material, Cooling fluid, Refrigerant, Costs, payback, ...
- Use for freezing and dairy processes, supermarkets, …

Motivation

Discharging case with cooling

Contents

Models for pillow-plate and plate storage developed & tested & validated

- Simulation Model
- Measurement data for validation: test rig PhD thesis, Håkon Selvnes
- Validation for Charging & Discharge cases
- Extrapolation of Charging and Discharge

Measurement data

NTNU PhD thesis, Håkon Selvnes

Applied Thermal Engineering Volume 199, 25 November 2021, 117507

Experimental characterisation of a cold thermal energy storage unit with a pillow-plate heat exchanger design

Håkon Selvnes 🙁 🖾 , Yosr Allouche, Armin Hafner

Norwegian University of Science and Technology, Department of Energy and Process Engineering, Kolbjørn Hejes vei 1B, NO-7491 Trondheim, Norway

Received 7 May 2021, Revised 22 July 2021, Accepted 26 August 2021, Available online 3 September 2021.

Using CO₂ as refrigerant, water as PCM storage material!

discretization

n-vle = 9

n-sle=5

Measurement data

Test rig

Charging case

Discharge case

Using CO₂ as refrigerant, water as PCM storage material!

Measurement

Charging

Extrapolating using last measurement point until complete charging

Simulation data – Extrapolating

Validation – charging – water – C3-30mm

Summary and Outlook

- Models for pillow-plate and plate storage developed & tested
- Geometry record for pillow-plate
- Heat transfer & pressure drop
- Validation for Charging & Discharge cases
- Extrapolation of Charging and Discharge
- Model ready for complete system simulation
- Model Export via FMU to Matlab, Excel, ... available
- Next step: validation for low-temperature storage with water as working fluid e.g. for heat storage in buildings

Thank you

If you have any questions, please don't hesitate to contact us at <u>www.tlk-thermo.com</u>

Or your contact person **Sven Försterling**

s.foersterling@tlk-thermo.com

TLK-Thermo GmbH

TLK-Thermo GmbH Hans-Sommer-Str. 5 38106 Braunschweig www.tlk-thermo.com

Tel.: +49/531/390 76 - **274** Fax: +49/531/390 76 - 29

Appendix

Further diagrams and result plots

Simulation data

Validation – discharging – water – D6-30mm

