

Report of the Mission Innovation Carbon Capture, Utilization and Storage Experts' Workshop

Trondheim, Norway

June 19-20, 2019

Mission Innovation

October 2019

Appendix Section

Disclaimer: This report is the product of the carbon capture, utilization, and storage (CCUS) experts' workshop held in Trondheim, Norway June 19 and 20, 2019. The content of this report reflects the views and opinions of the workshop participants and report authors and does not necessarily reflect those of their respective governments, companies, or academic institutions.

MISSION INNOVATION

Accelerating the Clean Energy Revolution

Carbon Capture Innovation Challenge

Report of the Carbon Capture, Utilization and Storage Experts' Workshop

June 19–20, 2019 Trondheim, Norway

Carbon Capture Challenge co-leads:	Nelson Mojarro, Ministry of Energy, Mexico Tidjani Niass, Saudi Aramco, Saudi Arabia Brian Allison, Department for Business, Energy & Industrial Strategy (BEIS), UK
CCUS Experts Workshop:	
Co-chair Co-chair	Nils A. Røkke, SINTEF, Norway Brain Allison, BEIS, UK
Session chairs:	Decarbonizing industry sectors Mike Monea, CCS Knowledge Centre, Canada The role of CCS in enabling clean hydrogen Lars Ingolf Eide, Research Council of Norway Storage and CO ₂ networks Isabelle Czernichowski-Lauriol, BRGM, France Storage monitoring Katherine Romanak, University of Texas, USA Going climate positive Niall MacDowell, Imperial College London, UK CO ₂ utilization Paul Bonnetblanc, Ministry of Ecological Solidarity Transition France

Acknowledgements

We would like to acknowledge the direct financial support to the workshop from Research Council of Norway (RCN), Department for Business, Energy and Industrial Strategy (BEIS) UK, TOTAL, The CLIMIT Programme, Gassnova, and Equinor, The Norwegian CCS Research Centre (NCCS), and SINTEF Energy Research.

In planning and preparing the workshop programme we had several telephone conferences with the Steering Group of the Mission Innovation Challenge CCUS. Your guidance was instrumental and was highly appreciated!

A special thanks goes to the following:

- The <u>Workshop Co-Chairs</u>: Nils A. Røkke (SINTEF, Norway) and Brian Allison (Department for Business, Energy and Industrial Strategy, UK).
- The <u>Session Chairs</u>: Mike Monea (CCS Knowledge Centre, Canada), Lars Ingolf Eide (Research Council of Norway), Isabelle Czernichowski-Lauriol (BRGM France), Katherine Romanak (University of Texas, USA), Niall MacDowell (Imperial College London, UK), and Paul Bonnetblanc (Ministry of Ecological Solidarity Transition, France)
- The <u>Session Secretaries</u>: Stefania Osk Gardarsdottir (SINTEF, Norway), Gerdi Breembroek (Netherlands Enterprise Agency), Peter Zweigel (Equinor, Norway), Tim Dixon (IEAGHG), Nils A. Røkke (SINTEF, Norway) and Aicha El Khamlichi (ADEME, France)
- The <u>Introductory Speakers</u> at the workshop: Monica Garcia (IEAGHG), Sigmund Størset SINTEF, Norway), Phillip Ringrose (Equinor, Norway), Tip Meckel (Gulf Coast Carbon Center, USA), Niall MacDowell (Imperial College London, UK) and Jaap Vente (TNO, Netherlands)

Appendix Section

Appendix 1:

About the Workshop

The two-day workshop gathered 135 participants and had six different topics:

- 1. Decarbonizing industry sectors
- 2. The role of CCS in enabling clean hydrogen
- 3. Storage and CO₂ networks
- 4. Storage monitoring
- 5. Going climate positive
- 6. CO₂ utilization

After a welcome address by Nils A. Røkke (SINTEF) and a Mission Innovation status report by Brian Allison (BEIS), introductory presentations were given to all topics in a plenum session. The first three topics were discussed in parallel sessions in the evening of June 19 and the morning of June 20, while the last three topics were discussed in parallel sessions on June 20. Results from session discussions were presented in a plenum session as a conclusion of the workshop. The layout of the workshop program is shown below.

The groups were asked to answer the following questions:

- 1. Which opportunities are identified from an industrial point of view?
- 2. How do we most effectively get from research to commercial product?
 - a. What steps are needed?
- 3. What joint activities could be established to accelerate technology development and implementation?
 - a. How can joint action accelerate deployment?
 - b. Business models: What funding instruments are/could/would be effective?
 - c. Mobilizing national efforts towards international efforts
 - d. Public-private partnership, co-funding, etc.

Appendix 2:

Workshop program

JUNE 19

- **17:00** Welcome and introduction (program, expectations for the workshop) Nils A. Røkke, SINTEF and Brian Allison, BEIS UK
- **17:10** Status of Challenge #3 (recap of Houston workshop, Houston report, etc.) Brian Allison, BEIS UK
- **17:30** Introduction to topics (12 minutes each) Session Chair: Brian Allison, BEIS; UK
 - 1. Topic 1: Decarbonizing industry sectors (power, cement, refineries, steel, fertilizers...)
 - Introductory speaker: Monica Garcia, IEAGHG
 - 2. Topic 2: <u>The role of CCS in enabling clean hydrogen</u>
 - Introductory speaker: Sigmund Størset, SINTEF
 - 3. Topic 3: <u>Storage and CO₂-networks</u>
 - Introductory speaker: Phillip Ringrose, Equinor
 - 4. Topic 4: Storage monitoring
 - Introductory speaker: Tip Meckel, Gulf Coast Carbon Center
 - 5. Topic 5: Going climate positive (biomass, waste to-energy, resources and technology)
 - Introductory speaker: Niall MacDowell, Imperial College London
 - 6. Topic 6: <u>CO₂ Utilization</u>
 - Introductory speaker: Jaap Vente, TNO
 - "Success story" speaker: Mark Summers, Emissions Reduction Alberta (ERA)

19:00 Dinner (buffet-style)

Briefing session for Session Chairs and Secretaries (separate room)

20:00-22:00 Group work over topics 1-3

Session/Topic 1: Decarbonizing industry sectors (power, cement, refineries, steel, fertilizers...)

- Chair: Mike Monea, CCS Knowledge Centre
- Secretary: Stefania Osk Gardarsdottir, SINTEF

Session/Topic 2: The role of CCS in enabling clean hydrogenChair:Lars Ingolf Eide, Research Council of Norway

Secretary: Gerdi Breembroek, Netherlands Enterprise Agency

Session/Topic 3: Storage and CO₂-networks

Chair: Isabelle Czernichowski-Lauriol, BRGM

Secretary: Peter Zweigel, Equinor

JUNE 20

08:30-10:00 Group work over topics 1-3 (cont'd)

(Same Chairs, Secretaries and rooms)

10:00-12:00 Group work over topics 4-6

Session/Topic 4: Storage monitoringChair:Katherine Romanak, University of TexasSecretary:Tim Dixon, IEAGHG

Session/Topic 5: Going climate positiveChair:Niall MacDowell, Imperial College LondonSecretary:Nils A. Røkke, SINTEF

Session/Topic 6: Utilization

Chair:Paul Bonnetblanc, Ministry of Ecological Solidarity TransitionSecretary:Aicha El Khamlichi, ADEME

12:00-12:45 Lunch

12:45-14:15 Group work over topics 4-6 (cont'd)

(Same Chairs, Secretaries and rooms)

14:15-15:25 Reporting (10 minutes each)

(To be conducted by the Session Chair, Session Secretary and Introductory Speaker)

- Topic 1: Monica Garcia, Mike Monea, Stefania Osk Gardarsdottir
- Topic 2: Lars Ingolf Eide, Gerdi Breembroek
- Topic 3: Phillip <u>Ringrose</u>, Isabelle <u>Czernichowski-Lauriol</u>, Peter <u>Zweigel</u>
- Topic 4: Tip Meckel, Katherine Romanak, Tim Dixon
- Topic 5: Niall Mac Dowell, Nils A. Røkke
- Topic 6: Jaap Vente, Paul Bonnetblanc, Aicha El Khamlichi

15:25 Summary and conclusion

Nils A. Røkke and Brian Allison

Session Topics, Chairs, Secretaries, and Introductory Speakers

Topic 1: Decarbonizing industry sectors

- Chair: Mike Monea, CCS Knowledge Centre
- Secretary: Stefania Osk Gardarsdottir, SINTEF
- Intro speaker: Monica Garcia, IEAGHG

Topic 2: The role of CCS in enabling clean hydrogen

- Chair: Lars Ingolf Eide, Research Council of Norway
- Secretary: Gerdi Breembroek, Netherlands Enterprise Agency
- Intro speaker: Sigmund Størset, SINTEF

Topic 3: Storage and CO₂ networks

- Chair: Isabelle Czernichowski-Lauriol, BRGM
- Secretary: Peter Zweigel, Equinor
- Intro speaker: Phillip Ringrose, Equinor

Topic 4: Storage monitoring

- Chair: Katherine Romanak, University of Texas
- Secretary: Tim Dixon, IEAGHG
- Intro speaker: Tip Meckel, Gulf Coast Carbon Center

Topic 5: Going climate positive

- Chair: Niall MacDowell, Imperial College London
- Secretary: Nils A. Røkke, SINTEF
- Intro speaker: Niall MacDowell, Imperial College London

Topic 6: CO₂ utilization

- Chair: Paul Bonnetblanc, Ministry of Ecological Solidarity Transition
- Secretary: Aicha El Khamlichi, ADEME
- Intro speaker: Jaap Vente, TNO
 - Mark Summers, Emissions Reduction

Appendix 3:

Introductory presentations at the workshop (slides)

MISSION INNOVATION Accelerating the Clean Energy Revolution

Carbon Capture Innovation Challenge Workshop #2

Dr. Nils A. Røkke Executive Vice President Sustainability SINTEF

Department for Business, Energy & Industrial Strategy

وزارة الطاقة و الصناعة و الثروة المعدنية الملكة العربية السعودية Ministry of Energy, Industry, and Mineral Resources The Kingdom of Saudi Arabia

Mission Innovation – WS- Trondheim

A full CCS week in Trondheim

Accelerating the Clean Energy Revolution

Accelerating Breakthrough Innovation in Carbon Capture, Utilization, and Storage

Report of the Mission Innovation Carbon Capture, Utilization, and Storage Experts' Workshop

This workshop will focus on strengthening collaboration between industry sectors and research institutions, and public and private sector:

 by identifying RD&I gaps of common interest in technologies at higher TRL

The intention is to focus on potentials and possibilities, that could yield results and full-scale implementation in the short to medium-term perspective.

Why are we here?- Expectations

The objective of the workshop is to contribute in transferring early (low TRL) research activities to development and innovation activities (higher TRL) by developing guidance and development paths for emerging CCUS technologies, and suggestions for new and joint development activities, with the aim of accelerating the commercialization and implementation process.

The outcome will be a brief report consisting of:

the guidance and development path documents produced during the workshop proposals for new and joint development and innovation activities

a summary of the workshop discussions

MI countries present

Network opportunities

70

Registrations by organization

Programme

June 19

1700	Welcome and introduction			
	Program, expectations, follow-up from			
	Houston workshop			
1730	Introductory presentations			
1900	Dinner (buffet-style)			
	(Briefing session for Session Chairs and Secretaries)			
2000				
2100	Session 1 Decarbonizing	Session 2 The role of CCS in enabling clean	Session 3 Storage and CO2	
2200	industry sectors	hydrogen	networks	

June 20

0830	Session 1 Decarbonizing industry sectors	Session 2 The role of CCS in enabling clean hydrogen	Session 3 Storage and CO2 networks
	Session 4 Storage monitoring	Session 5 Going climate positive	Session 6 CO2 utilization
1200		Lunch	
1245	Session 4 Storage monitoring	Session 5 Going climate positive	Session 6 CO2 utilization
1415	Reporting session		
1530	Busses leave for airport		

Sessions

Questions to be discussed under each topic:

- 1. Which opportunities are identified from an industrial point of view?
- 2. How do we most effectively get from research to commercial product?
 - a. What steps are needed?
- 3. What joint activities could be established to accelerate technology development and implementation?
 - a. How can joint action accelerate deployment?
 - b. Business models: What funding instruments are/could/would be effective?
 - c. Mobilizing national efforts towards international efforts
 - d. Public-private partnership, co-funding

Mission Innovation SPONSORS

MISSION INNOVATION Accelerating the Clean Energy Revolution

Carbon Capture Innovation Challenge

Brian Allison

UK Department for Business, Energy and Industrial Strategy

وزارة الطاقة و الصناعة و الثروة المعدنية الملكة العربية السعودية Ministry of Energy, Industry, and Mineral Resources The Kingdom of Saudi Arabia

Mission Innovation

- A Ministerial level initiative launched in November 2015
- Mission Innovation's goal is to accelerate the pace of clean energy innovation to achieve performance breakthroughs and cost reductions to provide widely affordable and reliable clean energy solutions that will revolutionise energy systems throughout the world over the next two decades and beyond

Mission Innovation

- A Ministerial level initiative launched in November 2015
- Mission Innovation's goal is to accelerate the pace of clean energy innovation to achieve performance breakthroughs and cost reductions to provide widely affordable and reliable clean energy solutions that will revolutionise energy systems throughout the world over the next two decades and beyond
- MI seeks to:
 - Double Governmental Investment in Clean Energy Innovation over 5 years (2016-2021), from \$15B to \$30B
 - Increase Private Sector Engagement in Clean Energy Innovation
 - Improve Information Sharing among MI countries

Innovation Challenges

- Global Calls for Actions in High Priority Areas of Mutual Interest
- Opportunities for Collaboration Between Mission Innovation Members
- Encourage Increased Engagement by Global Research Community, Industry, and Investors
- Support Mission Innovation goals of reducing GHG emissions, increasing energy security and creating new opportunities for clean economic growth
- Outcomes May Inform, Guide and Support MI Country Investments in R&D

Innovation Challenges

- Global Calls for Actions in High Priority Areas of Mutual Interest
- Opportunities for Collaboration Between Mission Innovation Members
- Encourage Increased Engagement by Global Research Community, Industry, and Investors
- Support Mission Innovation goals of reducing GHG emissions, increasing energy security and creating new opportunities for clean economic growth
- Outcomes May Inform, Guide and Support MI Country Investments in R&D

Carbon Capture Innovation Challenge

- Co-Leads: Saudi Arabia, Mexico, United Kingdom
- 20 Mission Innovation participating countries plus EU
- Objective
 - Enable near-zero CO2 emissions from power plants and carbon intensive industries
- Work-Plan
 - Organise a CCUS Experts Workshop and follow up (Trondheim June 2019)
 - Engage Stakeholders (WEF, IEA, Industry, ...)
 - Build Multilateral Collaboration Mechanisms

MIC#3 Mid Term Review

CCUS Experts' Workshop

- Houston 2017
- **257 Participants from Academy and** Industry

22 Countries participated

Molecular catalysis of the electrochemica

and photochemical reduction of CO2

13 Parallel Panel Discussions

(50% global energy efficiency, rerai mA/cm² @ 2.3 V coll voltage]

CCUS Experts' Workshop Structure

Focus A	Areas
---------	-------

CO2 Capture - Panels	CO2 Utilisation - Panels	CO2 Storage - Panels	
Solvents	Thermochemical Conversion and Hydrogenation of CO2	Injectivity & Capacity	
Sorbents and Looping Systems	Electrochemical and Photochemical Conversion of CO2	Monitoring, Verification and Performance Metrics	
Membranes	CO2 Conversion to Solid Carbonates	Forecasting and Managing Induced Seismicity	
Combustion and Other Technologies	Biological Conversion of CO2	Well Diagnostics	
Crosscuttings Topics (LCA,)			

Panel Outcomes Structure

Scientific challenges

• Brief overview of the underlying science challenge

Summary of priority research direction (PRD)

- What fundamental research is needed to address the challenge?
- Why can this research be done now? (e.g. are there recently developed capabilities?)

Potential scientific impact

- What impact will this research have on the CCUS scientific field?
- What impact will it have on the general scientific community?

Potential impact on CCUS technology

• How will this impact CCUS-relevant technologies?

CO2 Capture PRDs

CO2 Utilization PRDs

	Thermochemical Conversion	and Hydrogenation of CO2 CO, technology from Covestro Foam components with up to 20% CO,	
CO ₂ + H ₂ + N ₂ H(CH ₂) ₀ ,H + H ₂ O + N ₂	Valorizing CO2 by breakthrough catalytic transformations into fuels & chemicals	Creating new routes to carbon-based functional materials from CO2	
	Electrochemical and Photo	chemical Conversion of CO2	
Heo Theory CHO	Designing and controlling molecular-scale interactions for electrochemical and photochemical conversion of CO2	Harnessing multiscale phenomena for high-performance electrochemical and photochemical transformation of CO2	
	CO2 Conversion to	Solid Carbonates	
Solid Carbonate Brine 200 µm Feedstock Flue Gas	Accelerating carbon mineralization by harnessing the complexity of solid-liquid-gas interfaces	Tailoring material properties to enable carbon storage in products	
	Biological Conv	version of CO2	
Stein Sittisson	Tailoring microbial and bio- inspired approaches to CO2 conversion	Hybridising electrochemical and biological processes for CO2 conversion to fuels, chemicals, and nutrients	

Designing complex interfaces for enhancing hydrocarbon recovery with carbon storage

CO2 Storage PRDs

	Injectivity & Capacity		and Preserve (and Yaw 30 CO, Thickness (ad)
	Advancing multi-physics and	Understanding dynamic pressure	
The second second	multi-scale fluid flow to	limits for gigatonne-scale CO2	
	achieve gigatonne/year	injection	
	capacity	Injection	esting brist and a state of the
Salt crystal	Monitoring, Verification	and Performance Metrics	
	Optimizing injection of CO2 by	Developing smart convergence	
17 Brine	control of the near-well	monitoring to demonstrate containm	ent 🔚
	environment	and enable storage site closure	injecting panel
35 min			
rection 8 San Af a Sar Cu2inj Af a Sar Cu2inj Af	Forecasting and Manag	ing Induced Seismicity	Participation of Molasse Sedments SE 27
e energe state den uit Dese 13		borehole Crystalline	P3
www.keall	izing smart monitoring to assess		
and and	omalies and provide assurance	of fault and fracture systems	
400		48 10 04 14	
nuo	Well Diagnostics		
Purceite, Purcei	Achieving next-generation	Locating, evaluating, and remediating	7
Pedgenderit reactions Proc- elabioty Boo- elabioty Boo- Heat transperi	soismic risk forecasting	evicting and abandoned wells	
Pressure solution Pressure heat	Seisinichisk ibredstillg	existing and abandoned wells	

Establishing, demonstrating and forecasting well integrity

CCUS Crosscutting PRDs

Integrating experiments, simulation, and machine learning across multiple length scales to guide materials discovery and process development in CCUS

Coupling basic science and engineering for intensified carbon capture, purification, transport, utilisation and storage processes

Developing tools to integrate life-cycle technoeconomic, environmental and social considerations to guide technology portfolio optimisation

Incorporating social aspects into decision-making

The Lacq Pilot Project

he Lacq Pilot project is a fully integrated carbon capture and storage project operated by Total in the Lacq region of southeastern rance. From 2009 to 2013, the project captured more than \$1,000 formes of COs through oxytuel combustion at a gas-fired power lation, transported it by pipeline, and injected it lately into the nearby Rouss geological reservot.

CCUS Experts' Workshop Outcomes

- Established current state of technology in CO2 Capture, CO2 Utilisation, and CO2 Storage
- Created an international consensus on the most critical scientific challenges on CO2 Capture, CO2 Utilisation, CO2 Storage, and Crosscutting CCUS topics
- Established internationally agreed Priority Research Directions (PRDs)
- Completed a report on CCUS Basic Research Needs
 - Intended to serve as a key resource for the international CCUS research community, governments, and the private sector, helping to inform national R&D policies and programs
 - The PRDs are not meant to be prescriptive and allinclusive. Rather, they are designed to inspire CCUS research community to elucidate the foundational scientific phenomena that underpin CCUS

"ACT" – An Approach to Collaboration

- ACT (Accelerating CCUS Technologies) grant programme has 6 MI countries (France, Germany, Norway, The Netherlands, USA and UK) who have worked together to address the Workshop PRDs. Also includes <u>non</u> MI countries Spain, Turkey, Greece, Switzerland and Romania which gain exposure to MI
- Added PRDs to the call text of an existing programme
- Early indication that we will have some projects that will be addressing our Workshop PRDs
- Potential for more MI countries to join for the ACT3 call in 2020
- Find out at <u>www.act-ccs.eu</u>

MISSION INNOVATION Accelerating the Clean Energy Revolution

Thank You

from the MIC#3 Co-Leads

Tidjani Niass: Kingdom of Saudi Arabia Nelson Nelson Mojarro Gonzalez: Mexico Brian Allison: United Kingdom

Introduction to Topics

Topic 1: Decarbonizing industry sectors (power, cement, refineries, steel, fertilizers...) • Introductory speaker: Monica Garcia, IEAGHG

Topic 2: The role of CCS in enabling clean hydrogen • Introductory speaker: Sigmund Størset, SINTEF

<u>Topic 3:</u> Storage and CO2-networks • Introductory speaker: Phillip Ringrose, Equinor

<u>Topic 4:</u> Storage monitoring • Introductory speaker: Tip Meckel, Gulf Coast Carbon Center

<u>Topic 5:</u> Going climate positive (biomass, waste to-energy, resources and technology) • Introductory speaker: Niall MacDowell, Imperial College London

<u>Topic 6:</u> CO2 Utilization • Introductory speaker: Jaap Vente, TNO • "Success story" speaker: Mark Summers, Emissions Reduction Alberta (ERA)

Decarbonizing industry sectors (Power, cement, refineries, steel, fertilizers,...)

Monica Garcia Ortega Technology Analyst, IEAGHG Mission Innovation Challenge #3-CCUS June 19-20th 2019, Trondheim (Norway)

Views, findings and publications of the IEAGHG do not necessarily represent the views or policies of the IEA Secretariat or its individual member countries.

Who are we?

Our internationally recognised name is the IEA Greenhouse Gas R&D Programme (IEAGHG). We are a Technology Collaboration Programme (TCP) and are a part of the International Energy Agency's (IEA's) Energy Technology Network.

<u>Disclaimer</u>

The IEA Greenhouse Gas R&D Programme (IEAGHG) is organised under the auspices of the International Energy Agency (IEA) but is functionally and legally autonomous. Views, findings and publications of the IEA Greenhouse Gas R&D Programme do not necessarily represent the views or policies of the IEA Secretariat or its individual member countries.

Potential Role of Industrial CCUS-power

- CCUS can bring flexibility to the electricity grid (Flexeval). Important to see the System Value (SV)
- Incorporating CCS to the power sector is a cheaper solution in the long run

Potential Role of Industrial CCUS-production industries

- Industries are essential on the economy. Expected to grow mainly in countries on development. Perhaps global market
- Industrial CO₂ emissions must be reduced by 50% in 2050 in the 2DS and more than 70% in the B2DS.
- Non-CCS options are important, perhaps will not supply the reduction fast and large enough to solve the climate change matters. Some industries CANNOT be decarbonised without CCUS (process emissions)

Potential Role of Industrial CCUS

Emissions in the RTS and B2DS. Source: IEA ETP website (visited in May 2019)

Potential Role of Industrial CCUS- Power

- Large projects: Boundary Dam (Cansolv), Petranova (KM-CDR), Shand (planned, KM-CDR). It works!
- IEAGHG update on emerging technologies TRL: chemical absorption is still leading (with updated benchmark solution), 2nd generation will not wait for others. Potential for fuel cells, membranes. More research in others

Potential Role of Industrial CCUS- Production industries

CCUS projects in industry

© OECD/IEA © Natural Earth

Industrial CCUS projects in construction (red) and running (yellow). Source: IEA website (last update on 2018)

Potential Role of Industrial CCUS

- Industries: steel, cement, chemicals, refining, hydrogen, natural gas, heavy oil, fertilizers, waste to energy. Interaction
- Aiming to transfer the experience from the power sector (to note TRL is not the same!). Traditional chemical absorption is the "less risky", perhaps specific industries can have advantages for others and/or traces
- IEA perspective: out of track to reach decarbonisation objectives

- Industries have a good potential for partial CO₂ capture. Opportunity for integration and cost reduction
- Cement
 - Several CO₂ capture technologies tested
 - Norcem, LEILAC (TRL 7ish), ECRA?
 - Others (TRL 7ish): CLEANKER, CEMCAP (TRL4)

Norcem facilities (Norway)

- Steel
 - Heterogeneity in production process. Several CO₂ stacks, several technologies
 - Abu Dhabi (DRI, TRL 9ish). H₂ potential
 - STEPWISE (BF+BOF, TRL 7ish), COURSE50

Al Reyadah facilities (Abu Dhabi)

- Waste-to-energy
 - Japan, Norway and Netherlands projects, all based in chemical absorption
 - Seasonal integration with district heating, heat integration with the facility
- Refining (familiar)
 - Interaction with H₂
 - Chemical absorption on stacks (Finland), oxy-firing in burners, pre-combustion on the gasifiers.
 - RECAP, suggesting non-steam technologies

- Hydrogen
 - Low carbon electricity+CCS
 - Air Products' Port Arthur, Tomakomai, Air liquid (SMR)
 - Chemical/physical absorption, sorbents, PSA, membranes
- Fertilizers
 - 2 plants in USA, Yara (cancelled): opportunity of using ammonia
 - Linked to chemicals, H₂ (SMR, POX)

Yara facilities (Norway)

- Chemicals
 - Heterogeneous sector
- Natural Gas
 - Sleipner and Snohvit, Terrl , Shute Creek, Century Plant, Salah, Gorgon.
 - Commonly sorbents, CCUS
- Heavy oil
 - Linked to H₂
 - Diluted CO₂

Key research and innovation challenges

- Identified areas of research in the previous report :
 - C1-solvents
 - C2-sorbents
 - C3-membranes
 - Targeted application: industrial sector
 - Hydrogen

Key research and innovation challenges

- Hydrogen: PRD C-8, linked to CO₂ capture technologies challenges
 - Gasification challenges (high TRL)
 - Reforming with O₂ via high-temperature membranes and integrated with H₂ production
 - Combustion and reforming: microchannel reactors
 - Challenges related to operation , turbines, flames

Key research and innovation challenges

- Development of CO₂ capture technologies as for the power sector. Some are still at low TRL. Explore opportunities (higher CO₂ concentration, partial capture, energy/heat integration)
- To make the difference between power and industrial sectors
- Increase CCUS deployment

Steps towards, closing gaps for deployment and industrial opportunities

 Thera are many **SUCCESS** challenges for the deployment of industrial CCUS, but those can be successfully addressed to enable What people think it a decarbonised looks like industry (BEIS, 2018)

Image from: https://leanb2bbook.com/blog/the-real-odds-of-success-for-b2b-entrepreneurs/

Relevant documents

- CSLF Task Force for Large Emitting Industries (Technical Group)
- IEAGHG studies
- Industrial carbon capture business models, BEIS (October, 2018)

Questions? monica.garcia@ieaghg.org

THE ROLE OF CCS IN ENABLING CLEAN HYDROGEN

Sigmund Ø. Størset, SINTEF Mission Innovation Workshop, June 19th 2019

() SINTER

1. Security of supply

ENERGY

SINTEF

2. Cost

3. Environmental footprint

Where can we use hydrogen?

A true cross sectorial enabler – in hard to decarbonise sectors

- Industry
- Heating/cooling/cooking
- Power- also zero emission backup for intermittent power
- Transportation- land, rail possibly aviation-hybrid, marine
- Energy storage- on longer timescales

Hydrogen by source and consumption

Global annual production: ~65M metric tons

~2200 TWh

() SINTEF

Norway: Renewable power and fossil energy

() SINTEF

A thought example from Norway

Almost 20% of current European CO₂ emissions can be abated by clean hydrogen in 2050

Key research challanges - for closing the gap

- Reforming and capture with (near) zero emissions
- Gigawatt scale transport and storage of hydrogen:
 - Compressed and liquefied
- Industrial use of hydrogen:
 - As reducing agent
 - For heating
- Whole system perspective:
 - Energy systems and value chains
 - $LH_2 CH_2 NH_3$

8

Hydrogen from natural gas with CCS is an Opportunity for Europe.

Mythbusting: "Blue hydrogen" vs. "Green hydrogen"

SINTEF

Post-commissioning CO₂-eqivalent emissions:

 CO_2 -intensity of hydrogen from electrolysis vs. from autothermal reforming with 93.4 % CO_2 capture intersect at approximately 16 g CO_2 /k Wh_{el}

CO2 grid intensity for different countries (Bellona)

12

Hydrogen produced from natural gas with CCS will have lower GHG emissions than hydrogen from electricity in the EU grid for decades

- Comparison of greenhouse gas emissions related to production of hydrogen from
 - European grid electricity via electrolysers
 - Natural gas with carbon capture
- Hydrogen production from natural gas using autothermal reformers with 93 % (2016) to 96 % (2030 - 2050) CO₂ capture ratio
- European grid electricity mix shown in the piechart – forecasts based upon the IRENA REmap case for 2030 and the decarbonised scenarios from "A Clean Planet for All" for 2050
- Without deep decarbonization of the European power generation, emissions from production of hydrogen from dedicated renewably based electricity must account for potentially reduced emission reductions of the power sector

from natural gas with CCS could generate

annually in 2050

25,000 - 35,000

jobs

SINTEF, April 2018

strial opportunities and

() SINTER

From the SINTEF report: Industrielle muligheter og arbeidsplasser ved CO₂-håndtering i Norge

Teknologi for et bedre samfunn

Mission Innovation workshop Trondheim, June 19-20

Session 3 – Storage and CO₂ networks

Introduction – Philip Ringrose, Equinor & NTNU

What we focused on in the 2017 MI Workshop

- Sequestration has to get to gigatonne (Gt) per year scale to meet global CO₂ emissions reductions targets.
- We know how to do 1Mt per year projects (e.g. Sleipner)
- We have sufficient capacity for Gt storage (in theory)
- BUT ...
 - Many technical challenges need to be addressed
 - The world's nations must want to do CCS

Vison and road-map for scale-up from Mission Innovation CCUS

Pore scale: nano to dm scale

HPC: 10⁷⁻⁹ voxel models Highly parallelized **Basin scale:** 10s – 100s km

HPC: 10⁸⁻¹⁰ voxels Multimodels/datasets Parallelized

2

Field scale: dm to km scale HPC: 10⁷⁻⁸ cell models 100's-1000's CPUs Uncertainty handling via multiple realizations

Topics covered in the 2017 MI Workshop

Focus Area 3: CO₂ storage - Co-Chair Don DePaolo (USA)

- Panel S1: Injectivity and Capacity Panel Leads: Philip Ringrose (NOR) and Curt Oldenburg (USA)
- Panel S2: Monitoring, Verification and Performance Metrics Panel Leads: Ziqiui Xue (JPN) and Jonathan Pearce (UK)
- Panel S3: Forecasting and Managing Induced Seismicity Panel Leads: Hideo Aochi (FRA) and David Eaton (CAN)
- Panel S4: Well Diagnostics

Panel Leads: Franz May (GER) and Rick Chalaturnyk (CAN)

Accelerating Breakthrough Innovation in Carbon Capture, Utilization, and Storage

Report of the Mission Innovation Carbon Capture, Utilization, and Storage Experts' Workshop

> Mission Innovation September 2017

PRDs identified for CO₂ storage

Nine 'Principle Research Directions' (PRDs) were identified

- 1. Advancing multiphysics and **multiscale fluid flow** to achieve gigatonne/year capacity
- Understanding dynamic pressure limits for gigatonne-scale
 CO2 injection
- **3.** Optimizing injection of CO₂ by **control of the near-well environment**
- 4. Developing **smart convergence monitoring** to demonstrate containment and enable storage site closure
- 5. Realizing smart monitoring to assess anomalies and provide assurance
- 6. Improving characterization of **fault and fracture systems**
- 7. Achieving next-generation seismic risk forecasting
- 8. Locating, evaluating, and remediating existing and **abandoned wells**
- 9. Establishing, demonstrating and forecasting well integrity

Accelerating Breakthrough Innovation in Carbon Capture, Utilization, and Storage

Report of the Mission Innovation Carbon Capture, Utilization, and Storage Experts' Workshop

> Mission Innovation September 2017

Some reflections on technology for maturing Gt storage - 1

- Many ongoing R&D projects on CO2-brine flow properties, geomechanics and pressure modelling
- But how do we transfer these learnings to emerging storage project developments?

Overview of CO2 storage challenges (Core image courtesy of Sam Krevor, Imperial College London; Lai et al., 2015).

Some reflections on technology for maturing Gt storage - 2

- Much discussion and speculation on practical limits to capacity especially pressure limits
- But how do we turn concerns into carefully evaluated capacity estimates for projects?

(a) Open, closed, or semi-closed systems [Image from Zhou et al. 2008] (b) Typical 3D geometries of semi-open and semi-closed geologic storage systems.

Some reflections on technology for maturing Gt storage - 3

- Many ongoing R&D projects on monitoring systems, geomechanics/seismicity, well integrity
- But how do we turn concerns into acceptable risks for managed projects?

Sub-sea injection monitoring systems (Image from Equinor)

Core analysis

Finding a system for maturing storage resources

- SRMS (storage resource management system) is a framework for resource reporting derived from long established Petroleum Resources system (SPE)
- ALIGN CCUS project has proposed a practical approach to maturing CO₂ Storage Readiness Levels (SRLs)

Finding ways to manage storage project risks

- 1. Public perception risks
 - Needs effective communication strategy
- 2. Market failure risks
 - Significant and hard to handle
- 3. Site performance risks
 - Good track record, technically manageable

Bow-tie risk assessment methodology is applied to most projects now

Using digitization to build confidence?

- 1. Continuous monitoring of injection wells and injection sites using fiber-optic sensing
- 2. Monitoring the overburden and the reservoir using advanced seismic imaging (FWI, FO-VSP, passive sensing)
- 3. Cost effective environmental surveys
- 4. 'Can-do' attitudes
- 5. Using HPC power

CCS hubs – strength from collaboration

- Northern Lights 'open-source storage' has already been an effective catalyst for CCS in Europe
- But we need more efforts on working together on integrated common solutions for CCS

CO2 storage hubs:

Reduces risk and threshold for others
 Enables additional CO₂ storage

Allows stepwise development of CCS from more regional hubs

Norway CCS hub: Catalyst for roll-out of CCS in Europe?

Summary of challenges

- How do we transfer learnings from 'R&D in the lab' to emerging storage project developments?
- 2. How do we turn **concerns about capacity** into carefully evaluated estimates for projects?
- 3. How do we turn **concerns about storage risks** into acceptable project management plans?
- 4. How do we use the digital revolution to build confidence in CO₂ storage as a public good / climate mitigation action?

12

5. How do we use **CCS hubs** to accelerate storage?

Topic 4: Storage Monitoring

Introduction – Tip Meckel

Mission Innovation workshop Trondheim, Norway June 19-20, 2019

Outline

- Review of 2017 Report: Accelerating Breakthrough Innovation in CCUS
 - Priority Research Directions
 - Scientific Challenges Identified
- Example rubrics & framing considerations

Panel S2: Monitoring, Verification, and Performance Metrics

Panel Leads: Ziqiui Xue (JPN) and Jonathan Pearce (UK)

- Advances in monitoring are needed to enable storage performance verification at a <u>higher level of certainty</u>, <u>both during and following injection operations</u>.
- Areas where basic research could lead to critical improvements include:
 - sensor and tracer technology
 - remote monitoring
 - joint inversion methods for geophysical data
 - optimized design of monitoring and information systems

PRDs identified for Monitoring, Verification and Performance Metrics

- S-4: Developing Smart Convergence Monitoring to Demonstrate Containment and Enable Storage Site Closure
- S-5: Realizing Smart Monitoring to Assess Anomalies and Provide Assurance

Monitoring Panel Report - Scientific Challenges Identified

- Transforming far-field monitoring with new tools to directly measure state variables
- Smart monitoring in the far-field
- Improving methodologies for monitoring plans
- Improving interpretation and use of large, complex data sets
- Assessing anomalies and providing assurance location, attribution, quantification

				deep	shallow	Plume loca- tion / migration	Fine scale processes	Leakage	Quantifica-
			3D/4D surface seismic						
Seismic			Time lapse 2D surface seismic						
			Multi-component surface seis-						
			mic						
			Boomer/sparker profiling						
	Acoustic imaging		High resolution acoustic imag-						
			ing						
			Micro-seismic monitoring						
	Well based		4D cross-hole seismic						
			4D vertical seismic profiling						
Sonar bathymetry			Sidescan sonar						
			Multi beam echo sounding						
Gravimetry			Time lapse surface gravimetry						
			Time lapse well gravimetry						
		Surface EM							
			Seabottom EM						
Electric/electromagnetic			Crosshole EM						
			Permanent borehole EM						
			Crosshole ERT						
			Electric spontaneous potential						
Geochemical	Fluids	Down-	Downhole fluid chemistry						
		hole	pH measurements						
		/Springs	Tracers						
		Marine	Sea water chemistry						
	Gases		Bubble stream chemistry						
		tmosphere	Short closed path (NDIRs & IR)						
			Short open path (IR diode la- sers)						
			Long open path (IR diode lasers)						
]	A	Eddy covariance						
		Soil gas	Gas flux						
			Gas concentrations						
Ecosystems			Ecosystems studies						
Remote sensing			Airborne hyperspectral imaging						
			Satellite interferometry						
			Airborne EM						
Others			Geophysical logs						
			Downhole Pressure / tempera- ture						

IEAGHG CO2 Monitoring Tools (2010; Online tool also) IJGGC Special Issue (2015) Lots of BPM

Monitoring

- WHY/WHO: Operations, Regulatory, Public
- WHAT: Property/State, Tools, Technology
 - Quantification precision & limitations
- HOW: Strategy; FOAK or routine.
- WHERE: Near/far field; Shallow/deep;
- WHEN: Risk profile, Active/passive
- Transparency
- Cost effective (not same as inexpensive)
- Integration (consistency)
- Evolution of strategies, techniques and technologies.
- Verify conformance, predict future performance (model matching) & repeat = assurance!

Closing gaps for deployment and industrial opportunities: Where should we look for innovation in monitoring?

- Two camps:
 - 'We have what we need, it just needs to be better' (high TRL)
 - 'The better/best tool is still out there, just need to find it' (low TRL)
- The brain
- The computer
- The lab
- The field
- <u>Other fields</u>: oilfield, robotics (AUV), computing, medical, materials, data management, pattern recognition
 - CCS Technology Ambassadors?

THANK YOU

EPA's Suggested Outline for MRV Plans

- **1.** Facility Information
- 2. Project Description
- 3. Delineation of the monitoring areas
- 4. Evaluation of Leakage Pathways
- 5. Detection, Verification and Quantification of Leakage
- 6. Determination of Expected Baselines
- 7. Site Specific Modifications to the Mass Balance Equation
- 8. Estimated Schedule for implementation of MRV plan
- 9. Quality Assurance Program
- **10. Records Retention**
- **11.** Appendices

Source: U.S. EPA, Office of Air and Radiation, "General Technical Support Document for Injection and Geologic Sequestration of Carbon Dioxide: Subparts RR and UU – Greenhouse Gas Reporting Program," November 2010.

Multiple examples of active project compliance

Imperial College London

Mission Innovation: Greenhouse Gas Removal

Niall Mac Dowell

Imperial College London

niall@imperial.ac.uk

@niallmacdowell

Paris changed everything...

Many paths to 1.5°C...

A gap between aspiration and commitment

Anderson and Peters, Science, 2016

Where will we get our energy?

EIA projects 28% increase in world energy use by 2040

Perspective of increase or decrease of Capacity of Coal-Fired and Gas-Fired Power Generation in the World

Today-US ~260 GW

Source: US EIA, IEO, 2017, IEA, WEO, 2017, Lou Hrkman, US DOE, Update on US strategy for coal, 2019

Likely paths to 1.5°C...

Fossil fuel and industry AFOLU BECCS Billion tonnes CO₂ per year (GtCO₂/yr) 40 P2 20 0 -20 2020 2100 2060 Billion tonnes CO₂ per year (GtCO₂/yr) Billion tonnes CO₂ per year (GtCO₂/yr) 40 40 **P**3 P4 20 20 -20 -20 2060 2020 2020 2060 2100 2100

GGR as an alternative to mitigation?

- GGR is part of a portfolio of options, including mitigation and adaptation
- GGR is not an alternative to mitigation

A portfolio of GGR options

Source: RS & RAEng GGR Report, 2018

A portfolio of GGR options

A portfolio of GGR options

A. Afforestation & reforestation

Cost: \$0 – 240/t_{CO2}

B. Bioenergy carbon capture & storage

Tech readiness

Only 1 full scale demonstration

Permanence	
Stable	t

Cost: \$15 – 400/t_{CO2}

C. Biochar


```
Cost: $10 - 345/t<sub>CO2</sub>
```

Portfolio of NETs

E. Direct air capture

D. Enhanced weathering

F. Ocean fertilisation

Potential

()

Portfolio of NETs

Data from Minx et al, Environ. Res. Lett., 2018
Does BECCS work?

Sources: Fajardy M. and Mac Dowell N., Energy and Environmental Science (2017); Fajardy M. and Mac Dowell N., Energy and Environmental Science (2018)

Does BECCS generate power?

Low carbon vs. carbon negative energy systems

Trade-offs within the land-water-carbon-energy nexus

Technical performance

Source: Fajardy, Chiquier, and Mac Dowell, Energy and Environmental Science, 2018

Who has to do what..?

$$target(i) = Gtarget. \frac{x(i)}{\sum_{world} x(i)}$$

- **Equity**: x(i) = population in 2014
- Responsibility current CO₂ emissions: x(i)
 = CO₂ emissions in 2014
- Responsibility historical CO₂ emissions: x(i)= cumulative CO₂ emissions 1975-2014
- Responsibility current GHG emissions:
 x(i) = GHG emissions in 2014
- **Responsibility** historical GHG emissions: x(i) = cumulative GHG emissions 1850-2014

What might this look like at the national level?

Responsibility: per-capita historical (1960-2017) CO₂ emissions

 Capacity: percapita GDP
 Needs: country population

Limited potential for individual action

The value of cooperation

- Different players bring different values :
 - 'Independent providers' (e.g. China): regions with good storage availability, low cost and low carbon biomass close to storage sites >> much higher cost if excluded as they can no longer provide surplus for other regions
 - 'Independent beneficiaries' (e.g. EU and US):
 region with good storage and biomass
 availability but higher cost >> higher cost if
 excluded as they have to fulfil their own targets
 - **'Dependent beneficiaries**' (*e.g.* Brazil and India) : unable to meet their own targets due to lack of storage >> **unmet CO₂ removal target** if excluded

BECCS supply curve

Higher targets

A role for alternatives: Direct Air Capture (DAC)

Different options, different challenges

	BECCS	DACS	AR/RE	Biochar	EW
Regional constraint(s)	 CO₂ storage capacity Biomass feedstock Accessible and available land Water 	 CO₂ storage capacity Low carbon energy 	 Productive and available land Water Albedo effect 	 Biomass feedstock Accessible land (may be combined with other uses) 	 Accessible land (may be combined with other uses) Availability of minerals
CO ₂ accounting and monitoring	 Cross border supply chain emissions Delayed CO₂ removal CO₂ stored permanently 	 Immediate CO₂ removal CO₂ stored permanently 	 Immediate CO₂ removal Permanence subject to monitoring Sink saturation 	 Delayed CO₂ removal Permanence subject to monitoring Sink saturation 	 Immediate CO₂ removal Sink saturation
Regional variability of performance	• Yield, water requirement, sustainable biomass availability	 Cost Carbon footprint of energy 	 Growth rate Risk of releasing CO₂ 	• CO ₂ uptake	

Research and innovation challenges

- NETs and GGR are still nascent
- Many remaining research challenges
 - Technology demonstration and price discovery is a work in progress
 - For BECCS,
 - We need to properly understand the value of the co-products
 - Is bioelectricity the best use of the biomass? Heat? Power? Mobility? H₂?
 - Scalability, permanence of CO₂ removal, and broader sustainability
 - Social license and political economy, in particular, remain unclear
 - How will different countries, and regions, collaborate for optimal deployment?
 - How will NETs/GGR be incentivised, monitored, and regulated?

ON CCU(S) Jaap Vente Mission Innovation Session 19 – 20 June 2019

EGN TNO

innovation for life

SCENARIO ANALYSIS RESULTS FOR CCUS

- CCS will be required to reduce emissions of any remaining fossil fuels use (power sector, industry)
- In the case of higher ambition targets, CCS combined with biomass is required to generate negative emissions
- It also seems necessary for certain hard to decarbonize industrial processes
- CCU synthetic fuels and materials (e.g. in plastics) are also seen as options

CONVERTING CO₂

Royal Society

Science direct

Smart spec platform

ECN) **TNO** innovation for life

MAIN ROUTES

Main CO₂ utilisation routes and applications

ECN > **TNO** innovation for life

POTENTIAL

PRODUCTION POTENTIAL: CO₂-BASED

> Annual global CO₂-production in steel industry vs. current annual markets

MANY INITIATIVES

CRI Methanol

Covestro Polyols

H2020 Steelanol

H2020 FReSMe project

CHALLENGES

- > Often renewable H₂ required
- Most often other options are economic more favourable
- > Climate benefits are questioned
- Many routes are still in infancy

ECN) **TNO** innovation for life

ENERGY CONTAINING RESIDUAL STREAMS

- > Unique feature of current steel making processes
- > Presence of diluted energy containing streams

Gas type	CO ₂	СО	N ₂	H ₂	CH ₄	LHV (MJ/Nm ³)
BFG	22	22	49	4		3.2
BOFG	14	57	14	3		7.5
COG	2	5	7	62	24	15.3

10Mt/year Iron&Steel Mill, see IEAGHG report on Iron&Steel, http://www.ieaghg.org/docs/General_Docs/Reports/2013-04.pdf

- BFG Blast Furnace Gas
- BOFG Basic Oxygen Furnace gas
- COG Cokes Oven gas

CURE CO₂ to Urea

ENERGY TO VALUE ADDED CHEMICALS

- > Currently energy is used for electricity production
- After STEPWISE technology
 - N₂ goes with the H₂
 - > Treated BOF gas has the right H_2/N_2 ratio for ammonia synthesis

CURE CO_2 to Urea

BUSINESS CASE

- Comparable economics for natural gas based and BOF-gas based urea
- Urea pays for capture technology, storage ready CO₂ as side product

ECN > TNO innovation for life

LIFE CYCLE ANALYSIS

- Global Warming Potential (GWP) reduction of ~13% without CO₂ Storage.
- 70% CO_{2,eq} avoided if deployed with storage and transport.
- Electricity consumption is the primary source of remaining CO_{2,eq.}

> THANK YOU FOR YOUR ATTENTION

Jaap Vente E: jaap.vente@tno.nl M: +31 (0) 61 014 74 95

TNO.NL/ECNPARTOFTNO

ERA CCUS Investments

Mission Innovation Challenge CCUS Workshop

Mark Summers (<u>msummers@eralberta.ca</u>) Emissions Reduction Alberta

June 19, 2019

MANDATE

Reduce greenhouse gas (GHG) emissions and grow Alberta's economy by accelerating the development and adoption of innovative technology solutions

VISION

Alberta has competitive industries that deliver sustainable environmental outcomes, attract investment, and are building a diversified, lower carbon economy.

STRATEGIC PRIORITIES

What We Fund

<u>Projects</u> that accelerate innovative solutions that secure Alberta's success in a lower-carbon economy

EMISSIONS REDUCTION

ALBERTA

total projects: 163

FUNDS COMMITTED: \$571M

>\$4.5 B

VALUE:

CUMULATIVE GHG REDUCTIONS BY 2030: $43 \text{ Mt CO}_2 \text{e}$ GDP IMPACT IN ALBERTA BY 2023:

>\$2B

JOBS CREATED IN ALBERTA BY 2023: >18,000PERSON-YEAR)

Low-Carbon Industrial Processes & Products (34 Projects) Food, Fibre & Bioindustries (46 Projects)

Carbon Capture Technologies: ERA and Al

- Chemical solvent: HTC Purenergy
- Enzyme Enhanced Chemical solvent: CO₂ Solutions
- Oxy-fuel combustion for SAGD
- Solid sorbent: Inventys
- Solid sorbent: UO and PNNL
- Polymeric membrane: MTR
- Polymeric membrane: NTNU
- MCFC and SOFC
- Cryogenic Capture: Sustainable Energy Solutions (SES)
- ITM oxygen membrane
- Direct Air Capture: Carbon Engineering

+ HTC-Husky: Modified Amine Process

- HTC Purenergy System
- Solvent and packing system improvement
- Modular system tailored for SAGD
- 30 TPD field demonstration
- Located at Husky Lashburn facility
- CO₂ captured from a slipstream off of a 50 MMBtu OTSG
- Captured CO₂ transported to nearby field for enhanced oil recovery

Inventys: Solid Sorbents

- Unique process design
- Lab pilot complete
- 30 TPD field pilot at Husky Lashburn under construction

Molten Carbonate Fuel Cell (MCFC) for Capture

- Good integration with SAGD
- 90% CO2 capture + heat + power + water

10

- 200 kW pre-FEED JIP
- 1.4 MW demo being developed
EMISSIONS REDUCTION ALBERTA

• Shell Quest: 1 million tonnes of CO₂ each year from the Scotford Upgrade, in operation

• Alberta Carbon Trunk Line: under construction

NRG COSIA Carbon XPRIZE

(separate, but complimentary)

The \$20M NRG COSIA Carbon XPRIZE will drive innovation for a cleaner energy future by incentivizing the development of technology that can convert CO₂ into valuable products.

24 Projects Funded:

- \$25M project value
- \$12M ERA funding

ERA Grand Challenge Round 2

Four Projects Ongoing:

- Solidia: A Sustainable Method for Cement Production and CO₂ Utilization
- **CarbonCure**: Carbon dioxide utilization in concrete
- UBC/Mangrove: Field pilot demonstration of conversion of carbon dioxide and desalination of wastewater in Alberta
- McGill University / Lumenfab: Carbon Dioxide Transformation System Powered by Sunlight

One finalist to be selected for \$10M grant

CARB CARB

Doing more with less impact on what matters most October 28-30, 2019 Edmonton Convention Centre Register at: eralberta.ca/SPARK-2019

Energy and Hydrogen input from low carbon sources

Energy and Hydrogen input from low carbon sources

Partnership Intake Program

- New program launched in 2018
- Funding for projects referred by *Trusted Partners*
- Leverage organizations with fair, rigorous processes
- Allows ERA to better respond to needs of innovators
- To date, \$28.4 million for 8 projects worth \$650 million
- 12 trusted partners currently, for example:

SUSTAINABLE DEVELOPMENT TECHNOLOGY CANADA TECHNOLOGIES DU DÉVELOPPEMENT DURABLE CANADA

Natural Resources

Canada

Canada

ATURAL GAS INNOVATION FUND AZ NATUREL FINANCEMENT INNOVATION

Ressources naturelles

Canada

CARBON COPY

EMISSIONS REDUCTION ALBERTA ERALBERTA.CA

Carbon Copy is a show about the technology, engineering and economics of a low carbon future. Join host, Dr. Mark Summers, as he dives into the topics and technology innovations that are critical to delivering sustainable environmental outcomes, attracting investment, and building a diversified, lower carbon economy. Carbon Copy, a new podcast from ERA, takes a closer look at the technologies and people that will change our climate impact and help reshape Alberta's economy.

Appendix 4:

Presentations from group work sessions (slides)

Trondheim Workshop, June 19-20 Topic no: 1 Decarbonizing industry sectors

1. Which opportunities are identified from an industrial point of view?

- CCUS is the only current mature technology able to dramatically reduce process CO₂ emissions. Opportunity for deep reduction (net zero emissions) by BECCS.
- "Waste heat" available for the CO₂ capture system: integration of the production & consumption of heat/steam/energy between the production facility and the CO₂ capture unit. Industry offers an opportunity for partial capture at moderate cost
- \bullet Flexibility on getting tailored CO_2 capture systems based on the site/region specifications
- Starting with the "low hanging fruit": capturing the "easy" CO₂, higher concentration emissions. Opportunity to scale-up by CO₂ will demonstrate economic benefits.
- Wide varieties of CO₂ capture technologies. Opportunity to tailor those to the flue gas/facility. Some knowledge transfer from the power sector to the production facilities, and stimulating dialog, learning from the past mistakes/success
- Solids looping technologies may play a role integrated in the cement production emissions.

2. How do we most effectively get from research to commercial product?

- Database that contains the successes and failures of projects
 - Where did the pathway fail and why? Early risk identification
 - Can we make use of existing databases and build upon those?
- Starting on the learnings from the power sector or existing plants: available space, available waste heat. Business model analysis. Flexibility on the electricity grid and/or base load following renewable energy
- Build larger demos and test centers for other industrial emissions
- Appropriately sizing pilots and demonstration often based on available funds?
 - Evaluating the need and the success/failure metrics
 - Starting with the learnings, and tailoring the systems to the specific facility
- Incremental scale-up by CO₂ emissions sources in the production plant or by size

2. How do we most effectively get from research to commercial product?

- Knowledge sharing and openness, from academia to private partners. Joint activities
 - Data sharing of all commercial processes, international test center network (including visiting facilities), ACT, harmonizing data, standardization and building plants for different industrial sources.
- IP-sharing: challenging task, that is the bread and butter of the vendors
- At long term: Recognize regulation/standards is important
 - Not wait for unicorn technologies, try to shorten time for construction and operational permits

Iterative learning process before scaling-up

- Public engagement in parallel with technology development, facilitate championing CCS plants in operation
- Educating non-conventional stakeholders
- Social engineering: encouraging people to buy low-CO₂ footprint products (consumers will drive the market price)
- Standards (in the long term), incentives or market pull
- Transfer knowledge and business models from operating plants to other industry, and from one plant to another
- Joint effort on consistent requirement for reporting on successes and failures
- Making use of development banks, linking construction opportunities with financial institutions, a gap exists between the two groups

- At early stages we have a lot of governmental support, students and universities
 - Difficult to get support at higher TRLs, when you have to test at scale (TRLs 4-8 are the valley of Death!)
- We need to learn how $DeSO_x$ and $deNO_x$ became a commercial success with lower costs through just building plants with engineering improvements.
- Global governments need to share incentives for CCS

- Existing financial structures: Revenue models, risk management, funding, capital & ownership need to be shared openly
- Buisiness cases who can offer which services? Multiple stakeholders in different industry sectors
- 45Q market pull
- Interaction between industries (e.g. H₂ production with steel or chemicals production)
- Increase on production cost assumed along the final product chain
- Joint procurement commitment, involving government procurement

- International partnership, learning from projects and other industries, what works where → brings down risks, attracts investors and the public, and keeps them
 - Trying to get more partners and countries into fewer centres of excellence!!
 - Communicate our failures and and how problems were solved, highly valuable!
 - Engage with the financial industry
- Sharing liability and risks to help technology progress in capture and storage
- Creating a backbone CO₂ infrastructure, a public good! Opportunity of clusters and hubs
- Evolving roles of public-private partnerships. As the projects and infrastruture evolves, the public partnership might have a smaller role and the market will take over

Trondheim Workshop, June 19-20 Topic no: 2 The role of CCS in enabling clean hydrogen

Questions to be discussed under each topic:

- 1. Which opportunities are identified from an industrial point of view?
- 2. How do we get most effectively from research to commercial product? a. What steps are needed?
- 3. What joint activities could be established to accelerate technology development and implementation?
 - a. How can joint action accelerate deployment?
 - b. Business models: What funding instruments are/could/would be effective?
 - c. Mobilizing national efforts towards international efforts
 - d. Public-private partnership, co-funding

1. Opportunities from Industrial point of view

- Overarching opportunity: Need to decarbonise!
- Specific opportunities:
 - Heavy duty transportation
 - High temperature heat difficult to electrify
 - Reducing agent feedstock for industry
 - Energy storage
 - Climate positive from biomass with CCS
 - Both CO2 and H2 could be a feedstock (EOR..)
- At the moment, H_2 with CCS has a lower carbon footprint and cost than H_2 from electrolysis
- Can avoid shipping CO_2 , ship H_2 instead avoid London protocol

1. Opportunities from Industrial point of view

- Re-use of existing infrastructure
- Re-use existing competence
- Magnum, H21, H-Vision (Rotterdam)
- There is no 'one size fits all'

2. From research to commercial product - *effectively*

- Successful innovations need many factors for their success (M. Hekkert)
- Demonstrations will only happen when all these functions develop

Prof. Dr. Marco. Hekkert, Utrecht University, is working on innovation system analysis. There are various publications that explain the seven functions for innovation. Seven functions, that are all needed to make the innovation successful F1 Entrepreneurial experimentation F2 Knowledge development F3 Knowledge exchange F4 Guidance of the search F5 Market formation F6 Resources mobilisation F7 Legitimacy creation

2. From research to commercial product

2. From research to commercial product

- Thinking the whole value chain master complexities, inform choices
- Go for large scale: impact, well-informed
- Go for small scale: room for experiments, quick decisions, niches
- Academia should inform discussions
- 'Middlemen' are needed to link the chain
 - Suggest opportunities
 - Industrial symbiosis

2. From research to commercial 'product' - *Effectively*

- Value chain demonstrations
- Knowledge sharing
- In absence of clear CO2 regulation or a clear price for CO2 emission -Government funding – consistent in time – and international level playing field
- International cooperation on test centre, 'TCM for hydrogen'
- Regulation to mandate low carbon content
- Encourage international collaboration and joint industry projects
- Vibrant market for technology vendors
- Encourage industry clusters

2. From research to commercial 'product' - *Effectively*

- Supporting policies and regulations for use of H2 produced with CO2 capture
- Honest about safety
- Demonstration projects should consider
 - Capture rate
 - Energy requirement, purity of CO2, liquefaction CO2 etc.
 - Opportunity for energy storage, H2 or NH3
 - Public acceptance

3. Accelerating implementation

• Integrated in discussion of questions 1 and 2!

Trondheim Workshop, June 19-20 Topic no: 3 CO2 storage & networks

1. Which opportunities are identified from an industrial point of view?

- Large-scale CO2-storage creates enormous business potential
 - Technical knowhow is there (e.g. O&G), but perception issue
 - Opportunities for new business/companies, incl. independent assessment bodies
 - Motivated young people, green topics, open (publishing)
 - Added value by/for complementary activities (water production, EOR, energy production and storage)
- Quantify project risks and benefits
 - Risk quantification; injection wells and legacy wells
- Digitalization / big data applied to CO2 storage & transport/networks
 - Sharing of data, knowledge
 - Machine learning
- Develop cost-effective storage and transport hub systems

2. How do we get most effectively from research to commercial product?

- Projects at scale beyond lab: field projects, pilots, real projects
 - Technology development/testing
 - Additional role: public perception role, local technology demonstration
- Mature R&D technologies in specific fields: *pressure management, *fault & fracture risk, *well integrity, *resource optimization/mobility control, *pipeline fracture propagation, * network & hubs planning tools
 - Many of them need pilots/demos, application in full-scale projects
- International cooperative project «International Earth Geonome project» (like Biogenome project, Space station, IODP)
 - Mapping national storage resources similarly to other resources
 - Big international test site
- «MI project» twining idea 2 or more countries together on specific projects (technology development, pilot & demonstration)
- Transparency / openness
 - Proactive communication on risk and mitigation (NASA approach), balance with info on benefits
- Regulatory rules

3. What joint activities could be established to accelerate technology development and implementation?

- Data sharing and using international digital platforms
 - Stimulate data sharing by public incentives (e.g. tax)
- MI Platform for sharing stories, knowledge and case studies
 - Better use of existing technical knowledge
 - Facilitates public communication and risk quantification
- Engage with insurance industry in building confidence in storage
- Maturation of international certification process for bankable storage resource
- Standardization of terminology and processes
- Establish internationally recognized CO2 storage software (open source)

PRDs

- Advancing multiphysics and multiscale fluid flow to achieve capacity
- Understanding dynamic pressure limits for GT-scale CO2 injection
- Optimizing injection of CO2 by control of the near-well environment
- Developing smart convergence monitoring to demonstrate containment and enable storage site closure
- Realizing smart monitoring to assess anomalies and provide assurance
- Improving characterization of fault and fracture systems
- Achieving next-generation seismic risk forecasting
- Locating, evaluating, and remediating existing and abandoned wells
- Establishing, demonstrating, and forecasting well integrity

Questions to be discussed under each topic:

- 1. Which opportunities are identified from an industrial point of view?
- 2. How do we get most effectively from research to commercial product? a. What steps are needed?
- 3. What joint activities could be established to accelerate technology development and implementation?
 - a. How can joint action accelerate deployment?
 - b. Business models: What funding instruments are/could/would be effective?
 - c. Mobilizing national efforts towards international efforts
 - d. Public-private partnership, co-funding

Trondheim Workshop, June 19-20 Topic no: 4 Storage Monitoring

Monitoring Verification and Performance Metrics

Agenda of Subpanel Workshop

- Context setting by the chair- 30 min
- Divide into groups to discuss topics- 1.5 hours
 - Introductions –country and expertise
 - Choose a group chair/reporter
 - Refine the topics enough to answer the questions
 - Put ideas on a PowerPoint presentation
- Lunch 45 min
- Plenum to report/integrate ideas for reporting 1.5 hours

Given that...

- Regulations require some form of monitoring
- Many tools and techniques have now been tested at demonstration projects
- Technological advances present new opportunities to further improve capabilities
- Challenges are within the context of upscaling, knowing that many projects may operate in close proximity creating large volumes
- Approaches will apply to either deep or shallow zones

taken from the Report of the Carbon Capture, Utilization and Storage Experts' Workshop `Storage Panel: Monitoring, Verification, and Performance Metrics, September 2017

Challenges Outlined in MI 2017 Report (Groups for discussion)

- Monitoring to demonstrate containment and enable site closure: Transforming far-field monitoring with new tools to directly measure state variables
- 2. Smart monitoring in the far-field
- 3. Improving methodologies for monitoring plans
- 4. Improving interpretation and use of large, complex data sets
- 5. Assessing anomalies and providing assurance location, attribution, quantification

Challenges Integrated into 3 Discussion Groups

- Closure and Far-Field Monitoring to demonstrate containment and enable site closure: Transforming far-field monitoring with new tools to directly measure state variables
- 2. Assessing anomalies and providing assurance location, attribution, quantification
- 3. Well remediation monitoring

Questions to address under each topic:

- 1. Which opportunities are identified from an industrial point of view?
- 2. How do we get most effectively from research to commercial product? a. What steps are needed?
- 3. What joint activities could be established to accelerate technology development and implementation?
 - a. How can joint action accelerate deployment?
 - b. Business models: What funding instruments are/could/would be effective?
 - c. Mobilizing national efforts towards international efforts
 - d. Public-private partnership, co-funding

Closure and Far-Field Monitoring

Identified Industrial Opportunities

- Pilot closure project
 - Goals & approach: identify monitoring plan with minimum cost, evaluate the value of information and monitoring technologies, what is the monitoring system that is most efficient given a site? Highly instrumented, test out the impact of reducing information on evaluating closure; Advance monitoring techs to high TRL
- Learn from existing projects: Ketzin, Tomokomai, Aquistore
- There is an opportunity for a centralized organization to facilitate co-operative activities
- Technologies There is an opportunity to advance monitoring technologies, both low and TRL, to contribute to site closure
- Research "What if":
 - Understanding speed limits to CO2 migration and interaction with the overburden
 - Advance lab to field characterisation technology to provide stronger predictive modelling capabilities
 - Use digital twins to explore unlikely scenarios

Research to Commercial Product

- Pilot study Learning by doing with goals to advance the TRL with the site
- Best practices and data shared from regional, national, state, company experiences
- Defining closure: Key question is how do you show that mass evolution has reached stasis; Should be able to discuss with the regulator how risks will evolve in the context of the specific project, e.g., depleted gas field – from the start of project you should also be working towards closure; Need to follow a trajectory where model uncertainty is large at the beginning of the project and narrow later, this is accommodated in Norway where they also are allowed to define their definition of closure, i.e., how will you be able to demonstrate this; There needs to be flexibility for the precise definition, e.g., of conformance, closure, to allow for knowledge gained during the course of a project; Regulatory agencies need to not be fixated on a particular outcome; Requirements for ongoing monitoring conformance and closure are very similar
- How will closure occur? operators will keep projects going, they will look for opportunities to step out, operators like to be involved in regional development; There are major costs associated with closure; The reasons for, e.g., continuing, developing, closing, are often the result of complicated issues;

Joint Activities

- Pilot closure project
- Far field Data sharing and cooperation between neighboring fields Use existing infrastructure in neighboring areas; In the far field; Seismic in the marine environment often pick up each others' signals and operators are interested in this information; Tomography of overlapping data is useful in regional scale. Pressure interference between wells, vertical and horizontal, at scale between projects
- General learning from experiences; There is a lot that could be learned from, e.g., the Norwegian experience; Onshore and offshore are different beasts – a lot more information onshore, fewer technology options
- Centralized organizations would help to facilitate co-operative activities

Funding Mechanisms and Business Models

- Evaluate existing models and settings: Norwegian, Canadian, and Texan models – differences in closure definition, data sharing, post-closure liability
- Mobilizing national efforts towards international efforts
- Sharing information data sharing , benchmarking, collaboratively on same problems
- Large projects with international collaboration, e.g., CaMI
- International R&D funding mechanisms like the ACT project
- Public-private partnership, co-funding
- International R&D funding mechanisms like the ACT project

Assessing anomalies and providing assurance

Identified Industrial Opportunities

- •Cost effective, confidence, show compliance to regulatory, public acceptance
- •Monitoring tools and techniques that can both attribute and quantify leaks without needing baseline (ref. argument that near surface is so variant)
- •Deciding what types of data to collect, to reduce costs and provide assurance
- •Third party monitoring? Helps public acceptance...
- •Machine learning + process/models understanding
- •Utilize wells drilled checking soil conditions before installation can you put some sensors and information?
- •Risk based monitoring; faults and wells
- •Deep monitoring to inform shallow monitoring, including overburden characterisation
- •Combining physical measurements for locating features with geochemical assessment
- •Quantification technologies and approaches

Research to Commercial

- Tools ready to go tested.
- Need to have vendors involved in the development
- Funding pre-commercial developments

Joint Activities

- Access to data share what is done from projects. Funding to utilize data
- A mechanism to connect researcher with the industrial data set
- Good area model need exploration data. For example, if there is an area in the North Sea that is identified as storage hub.
- Projects learning by doing connect funding and R&T to extract learning to broader community
- How do you use large data set and look at anomalies. Bring experts together with AI (Artificial Intelligence). (reference to medical).
- Learn from other fields, health in house treatment of data

other (messy) notes

- Moving away from baseline monitoring...
- Assessing anomalies Combining data to look for anomalies
- Bow tie risk assessment
- We have set up the expectation very high ten times more than O&G. Post operation monitoring...
- Need a good risk analysis and understand where the risk are for CO2 leakage and monitor these
- Everybody feel safe that CO2 is stored in three but nobody care if the three is felt...
- Hard to put properties on faults... micro seismicity
- How can we integrate the monitoring in the deep surface with what we do at the seafloor.....
- Design the seafloor monitoring? Governed by the risk
- New types of technologies that can help design risk based and cost-efficient seafloor monitoring
- Characterization of overburden
- Shearwave good for the shallow pockets of gas.
- Instrument that can find chimneys acoustically
- Monitoring work-flow what informs what ----
- Process-based approaches

Monitoring legacy well integrity and intervention

Identified Industrial Opportunities

- Leakage from legacy wells/faults/reservoir-containment presents a high risk
- Remediation/intervention procedures need to established for licensing, public assurance/education, and actual intervention
- Remediation need to address leakage from legacy wells and containment, and how to deal with different levels in subsurface to the surface remediation (impact on the ecosystem, social perception, impact ...)
- Define thresholds (when and how to intervene (and when not))

- Identifying legacy wells in the injection site (in both HC fields and aquifers) (technology gap)
 - Establishing procedures for well integrity testing for CO2 integrity (certification) for "enough" period of time. Risk assessment of legacy wells
 - Legal/regulatory/spatial planning context
 - Establishing remediation procedures (how to fix risky wells)
 - Developed technologies for the above points depends on well types (offshore (deep, shallow water), onshore, vertical, horizontal ,...)
 - Deal with sssociated uncertainty
 - How to manage the cost overhead
 - Data availability from data owners/ transparency

Containment-leak remediation (active-passive methods)

- Risk from "surprise" faults. Surprise faults are small-mid size faults that could be below the imaging resolution (technology improvement opportunity).
- How to deal will leaky faults/fractures => currently immature technology (use cement, gel, polymers, foams, Issues related to effectiveness and durability)

Social responsibility

- Liability (short term?, and long term?)
- Communication to public (ownership)
- Private-public-government commitment
- Establish specialized governmental agencies to respond to leak emergencies (establish procedures, recommendation)
- Lesson-learned from the failures/successes in the O&G

Joint Activities

- Partnership between stakeholders(companies, states)
- MI to establish an A-Team, to advise/intervene when needed
- MI to establish an advisory "peer-review" panel to help "certifying" CCS projects

Trondheim Workshop, June 19-20 Topic: Going Climate Positive!

Going Climate Positive!

- Tech is here- resource issue
 - Biomass renewable power and how about sustainability
- Need a R&I agenda on a global scale- lacks on national scale
- Need to demonstrate CPS!
- Buisness models
- Rising atmospheirc CO₂ imposes a societal cost, removing is a public good, the public renumeration of that is reasonable

Questions to be discussed under each topic:

- 1. Which opportunities are identified from an industrial point of view?
 - 1. Biomass and secondary biomass (convential and unconvential)
 - 2. Early adaptors- scaling an issue for for instance DAC(S)
 - 3. Maximising the value of the biomass resource
 - 1. Energy to CDR

Questions to be discussed under each topic:

2 How do we get most effectively from research to commercial product?

- Global resource stocktake (terrestrial and marine)
- Algae and marine biomass important maximizing yield and value
- Recognizing the cost of carbon- account for damages

Questions to be discussed under each topic:

3. What joint activities could be established to accelerate technology development and implementation?

- Importance of knowledge sharing and standardization, best practices
- Leveraging R&I co-operation- global broker for climate positive solutionsaccounting
- Cost of carbon consumption and scaling up
- No one fits all!- regional and even local solutions will have to play out
- Leveraging and managing consumer purchase power
- Cerification and standardization of Climate positive

Trondheim Workshop, June 19-20 Topic no: 6 Utilization

Questions to be discussed under each subtopic:

- 1. Which opportunities are identified from an industrial point of view?
- 2. How do we get most effectively from research to commercial product? a. What steps are needed?
- 3. What joint activities could be established to accelerate technology development and implementation?
 - a. How can joint action accelerate deployment?
 - b. Business models: What funding instruments are/could/would be effective?
 - c. Mobilizing national efforts towards international efforts
 - d. Public-private partnership, co-funding

Utilization : sub-topics

- Fuels/chemicals/plastics
- Mineralisation/ building materials
- CO₂-EOR
- Markets and thermodynamics

Sub-topic: Fuels/chemicals/plastics

- Source CO₂ matters: CO₂-products (as chemicals, fuels, plastics) will produce again CO₂ ending up in atmosphere so no GHG mitigation (50% max reduction regards of substitution to fossil products)
- Local potential (niche, small market): interesting for business but not mitigation tool -> will never reduce global emissions (however no clear consensus on this point : CCU could participate in the reduction of CO2 emissions but never substitute CCS)
- Mid-term/long-term should be considered for the selection of CCU technologies
- CO₂-fuels : could be the best case for certains sectors (aviation, marine)

Sub-topic: carbonatation

- Advantages: it is a G-ton market and it is not disruptive (no changes of the technologies)
- Scale up issue: standardisation could help to overcome it
- Need a clear differentiation between the sequestration time of CO₂ in the product and the CO₂ quantity embedded -> set up a label
- Need incentive because cost penalties for mineralisation as tax credit
- Aggregates: flues gases could be used directly (synergy between carbonatation and industries, eg: proximity)
- Need RD: more pilots to assess/ improve the technologies of mineralisation
- Mechanism to harmonize assessment for comparison of products or sources of CO₂
- Legislation issue: waste could be used in carbonatation process but some countries as Germany/France do not allow to use it as raw materials: how to demonstrate safety of these products ?

Sub topic: CO₂-EOR

- The main need for RD is about expanding storage capacity: switch from optimisation of oil/gas extraction to CO₂ storage
- No incentive should be given (consensus from the whole group) -> governments should regulate/ set up a clear framework to communicate on it as a label (?)
- Only low TRL should be considered for national support : need to improve technology at large scale for sustainability (both economic and sustainability)
- Main advantage : facilities already exist (wells, infrastructure,...) -> good opportunity to demonstrate CO₂ storage
- Main disadvantage: fossil fuels should be stopped and CO2-EOR could increase the production *however* fossil fuels are needed during the energy transition and good opportunity for Oil/Gas companies to improve image -> need to communicate why fossil fuels are still needed
- Technology already at commercial scale: proven technology/mature and acceptable in US for energy security and to substitute the use of geological CO₂ by anthropogenic CO₂
- Other opportunity: reduce impact by reusing mature field instead opening new field

Sub topic: Market-thermodynamics

- Concern about market mismatch and thermodynamics:
 - \succ Too much CO₂ than the need from the market
 - > Thermodynamic challenges for most CCU routes: CCU technologies require more energy in than out
- CCU is one part of the solution: not a silver bullet but should not be discarded
- Importance of LCA and TEA for identifying the most promising CCU routes
- Market opportunities: already identified but need to be updated (market evolves)
- Different size of opportunities: all routes should be investigated even for niches
- Assessment: boundaries are very important- linking to the sources (CO₂/H₂) to focus on opportunities with high potential of GHG reduction (limited investment)
- Opportunities and benefices: existing chemicals industries could developed new processes through CCU if the market is right through CO₂ tax or regulations
- Synergy between industries (CO₂ sources) and CCU routes: same location (possibility or use directly flue gases), availability of resources (heat, waste,...)
- Better public acceptance of CCU (contrary to CCS): can be used to broaden a public acceptance for CCS if synergy between CCU and CCS.
- Common barrier for CCU and CCS: capture (even if it is not the same scale)

