

Norwegian University of Science and Technology

Remote Access Security Recommendations for Norwegian Petroleum Companies

Peder Grundvold & Jon Smebye

Introduction

pedergrbr@gmail.com

jonsmebye@gmail.com

Responsible professor: Maria Bartnes

Supervisors: Lars Bodsberg Roy Thomas Selbæk Myhre

Introduction

Agenda

Method

Results:

Tech/solutions identified

Functional reg. and user stories

RQ: How can new ideas and emerging technologies in remote access be applied in the development of improved remote access security recommendations for Norwegian petroleum companies?

Threat actors and goals Identified focus areas **Evaluation** Final Recommendations Q&A

Agenda

- Method
- Results
 - Technologies/solutions found in lit. study
 - Functional Requirements and User Stories
 - Threat Actors and Goals
 - Identified focus areas
 - Final recommendations

Feel free to ask us questions at the end of the presentation!

Introduction

Agenda

Method

Results:

Tech/solutions identified

Functional req. and user stories

Threat actors and goals

Identified focus areas

Evaluation

Final Recommendations

Method

- Literature study
 - Existing frameworks, standards, and industry guidelines
 - Emerging RA technologies (identify different solutions)
 - Previous attacks towards ICSs
- Cooperation with the industry
 - Meetings/workshops with two petroleum companies (Alpha and Beta)
 - Insight into their remote access solutions
 - Feedback on current work
- Evaluation of identified solutions
 - SWOT-analysis
 - Meetings and feedback from Alpha and Beta
- Final result:
 - A set of concise recommendations for how new technologies could improve existing solutions

Remote Access Solutions and Technologies Identified

- VPN
- Zero Trust Security
- DMZ
- Firewalls
- Access management
- Network Access Control
- Sandboxing security
- Sheep dipping
- Intrusion and Anomaly Detection Systems
- Unidirectional Security Gateways

Category	Developed / men- tioned by	Technology	Comment	
VPN	Nyakomitta et al. (2020)	Secure Remote Access Method (SRAM)	Prevention mechanisms to six named security threats, includ- ing session hijack and mas- querading	
	Jahan et al. (2017)	L2TP with IPSec	Compares different VPN proto- cols and find L2TP with IPSec to be the best choice	
	Korhonen (2019)	Software-Defined Perime- ter (SDP)	A security framework designed to micro-segment network access (based on ZT)	
Zero Trust	Boumhaout et al. (yet unpublished)	ZTA for ICS	An approach to implement ZTA in an ICS environment	
	Osborn et al. 2016	BeyondCorp ZTA	An overview of a ZTA solution by Google's BeyondCorp	
	Qi An Xin Group / Gartner (2019)	Client-Initiated ZTNA	Enforce ZT policies using a client agent that requests access from an SDP Controller, and giving access through an SDP Gateway	
	Waverley Labs	OpenSDP	An open-source Software- Defined Perimeter solution	
DMZ	Ning et al. (2018)	A DMZ using dual- firewall	 Provides better security a clear management separation the DMZ 	
Firewalls	Li et al. (2018)	ScadaWall	A firewall for SCADA sys- tems that can filter on SCADA protocol-specific packages	
	Nivethan et al. (2016)	ICS Firewall	A firewall that uses iptables as an effective firewall for SCADA systems	
	Gartner	Next-generation firewalls	Deep level packet examination to add application-level inspection of packets	
	Mungekar et al. (2019)	ICS Firewall	ICS firewalls with NGFW capa- bilities and that can understand ICS specific protocols	
Access Sindiren E. and Ciy- lan B. (2019)		Privileged Account Access Control System (PAACS)	A model to enable the privileged accounts to be controlled, man- aged, and followed at minimum cost	

Introduction

Agenda

Method

Results:

Tech/solutions identified

Functional req. and user stories

Threat actors and goals

Identified focus areas

Evaluation

Final Recommendations

Functional Requirements & User Stories

Who

- System operators
- Managed service providers (third-party suppliers)
- Field technicians
- System support specialists

From what

- Dedicated terminal desktop
- Corporate desktop
- Personal desktop
- Personal tablet or mobile

From where

- Offshore via remote access
- Onshore control room
- Onshore, inside the corporate network
- Onshore, outside the corporate network

Network to be accessed

- Platform industrial DMZ
- Internal platform network (Purdue level 2/3)
- Network switches (for SCADA, DCS, Telecom..)
- Specific SCADA and DCS systems
- Industrial safety systems

To do what - Read values using controlled client/program - Support using read-only video - Upload files - Perform task via controlled client/program

- Perform task via full terminal access (read/write/execute)

Introduction

Agenda

Method

Results:

Tech/solutions identified

Functional req. and user stories

Threat actors and goals

Identified focus areas

Evaluation

Final Recommendations

Q&A

An example of a user story:

13. A managed service provider wants to, from a dedicated terminal desktop outside the corporate network, access a specific SCADA- or DCS system and upload several patch files.

Threat Actors and Goals

Who

- Nation-state (APT)
- Script kiddie
- Cybercriminal
- Unintentional insider
- Intentional insider
- Competitors
- Cyber terrorist
- Cyber activist

Goal

- Financial gain
- Hinder production
- Intelligence or intellectual theft
- Terrorism
- Publicity

Introduction

Agenda

Method

Results:

Tech/solutions identified

Functional req. and user stories

Threat actors and goals

Identified focus areas

Evaluation

Final Recommendations

Identified Focus Areas with Today's Solution

- 1. The **access management** used by our collaborating companies in their RAS could be improved.
 - Work permit systems are cumbersome and manually managed, meaning that users have to be manually added and deleted. This leads to high costs because of wasted time and frequent use of technical support.
- 2. According to companies Alpha and Beta **file transfer** is an important feature in the RAS.
 - While current solutions work, as this poses a major attack surface, there is room for improvement.

Introduction

Agenda

Method

Results:

Tech/solutions identified

Functional req. and user stories

Threat actors and goals

Identified focus areas

Evaluation

Final Recommendations

Evaluation

- Seven solutions and/or technologies were evaluated using SWOT analysis
- Criteria used:
 - Security
 - User-friendliness
 - Cost-effectiveness
- Five resulted in new recommendations, two were rejected

Start using Unidirectional Security Gateways to make a separate readonly access channel?

	SWOI A			
Strengths	Security • Ensures read-only access with high certainty	Weaknesses	Security Only helps read-access 	
	Active attacks not possible		User-friendliness Limited QoS for transferred data 	Introduction
	• Hardware solution that removes the inherent weaknesses in software		• Need skilled personnel to im- plement	Agenda
	 Less prone to configurational mistakes 		 Several separate access methods needed 	Method
	• Improved security for legacy hardware in the OT environment		Cost-effectiveness • High capital cost	Results:
T r	User-friendliness • Simplified AM (because only read-access is ensured) • Less evaluation needed before granting access Cost-effectiveness • Low maintenance cost (hardware- based)			Tech/solutions identified
				Functional req. and user stories
				Threat actors and goals
				Identified focus areas
				Evaluation
Opportunities	More people get access to relevant monitor data	Threats	• Need technology, so might not be sufficiently tested	Final Recommendations
	• Simplified AM lead to less administration costs			Q&A
	Recognition from being an early adopter of new technology			

Table taken from the master thesis

- **1**. Use a hybrid approach between perimeter-based security and Zero Trust Architecture, where they continually add security barriers based on **Zero Trust** principles. Barriers to add could be:
 - **a.** Enforce system-wide continuous network monitoring in combination with machine learning-based anomaly detection. This includes support for monitoring OT-specific protocols.
 - **b.** Integrate a risk- and identity-based access management architecture as described above in order to remove workload from the work permit system.
 - **C.** Upgrade the existing NAC mechanism to include user/device behavior and environmental factors such as client use patterns and IP geolocation.

Introduction

Agenda

Method

Results:

Tech/solutions identified

Functional req. and user stories

Threat actors and goals

Identified focus areas

Evaluation

Final Recommendations

Introduction

Agenda

Method

Results:

Tech/solutions identified

Functional req. and user stories

Threat actors and goals

Identified focus areas

Evaluation

Final Recommendations

- 2. Use a **Next-Generation Firewall** with deep packet inspection and intrusion prevention systems at the network perimeter (Purdue level 3.5).
- **3.** Add an **ICS firewall** with NGFW capabilities at the industrial perimeter (Purdue level 1.5) that can operate on OT-specific protocol messages.

Implement a **Sandboxing** solution to use with file transfers, either locally,

cloud-based, or in a hybrid solution.

4.

Introduction

Agenda

Method

Results:

Tech/solutions identified

Functional req. and user stories

Threat actors and goals

Identified focus areas

Evaluation

Final Recommendations

Implement Unidirectional Security Gateways to enforce read-only access to

5.

critical systems.

Introduction

Agenda

Method

Results:

Tech/solutions identified

Functional req. and user stories

Threat actors and goals

Identified focus areas

Evaluation

Final Recommendations

Q&A

14

1. Use a hybrid approach between perimeter-based security and Zero Trust Architecture, where they continually add security barriers based on **Zero Trust** principles. Barriers to add could be:

- **b.** Integrate a risk- and identity-based access management architecture as described above in order to remove workload from the work permit system.
- **C.** Upgrade the existing NAC mechanism to include user/device behavior and environmental factors such as client use patterns and IP geolocation.
- 2. Use a **Next-Generation Firewall** with deep packet inspection and intrusion prevention systems at the network perimeter (Purdue level 3.5).
- **3.** Add an **ICS firewall** with NGFW capabilities at the industrial perimeter (Purdue level 1.5) that can operate on OT-specific protocol messages.
- **4.** Implement a **Sandboxing** solution to use with file uploads, either locally, cloud-based, or in a hybrid solution.
- 5. Implement Unidirectional Security Gateways to enforce read-only access to critical systems.

Introduction

Agenda

Method

Results:

Tech/solutions identified

Functional req. and user stories

Threat actors and goals

Identified focus areas

Final Recommendations

15

Evaluation

Q&A

Introduction

Agenda

Method

Results:

Tech/solutions identified

Functional req. and user stories

Threat actors and goals

Identified focus areas

Evaluation

Final Recommendations

Q&A

pedergrbr@gmail.com jonsmebye@gmail.com