
Evaluation of the CORAL Approach for Risk-driven
Security Testing based on an industrial Case Study

Gencer Erdogan, Ketil Stølen, Jan Øyvind Aagedal

Background and Objective
 Security testers face the problem of determining tests that are most

likely to reveal severe security vulnerabilities.

 We have developed a method for risk-driven security testing sup-
ported by a domain-specific modeling language referred to as CORAL.

 CORAL aims to help security testers to select and design test cases
based on the available risk picture.

 Objective: Evaluate to what extent CORAL helps security testers in
selecting and designing test cases.

The CORAL Language
 The CORAL language is based on UML interactions.

signature

Messages

Name

General message

Node type Notation

signature

signature

signature

signature

New message: A message

initiated by a threat

Altered message: A mes-

sage in the system under

test altered by a threat

Deleted message: A mes-

sage in the system under

test deleted by a threat

Unwanted incident

message: Indicates that

an asset is harmed

Lifelines

General lifeline

Node type Notation

Deliberate threat lifeline:

A human threat that

has malicious intents

Name

Name

Name

Accidental threat lifeline:

A human threat that

does not have malicious

intents

Non-human threat

lifeline: A threat that may

be anything else except

a human

Name

Asset lifeline:

Represents a security

asset we want to protect

Risk-measure annotations

Frequency: Represents

either the frequency of the

transmission or the reception

of a message

Node type Notation

Conditional ratio:

Represents the ratio by

which a message is received,

given that it is transmitted

Consequence: Represents

the consequence an

unwanted incident has

on an asset

frequency :

time unit

conditional ratio

consequence

Overview of Case Study
 The case study was carried out in three phases which correspond

to the overall steps in CORAL: Test planning, security risk assess-
ment, and security testing.

 The system under test was a web-
based application providing services
related to equity-based compensation
plans.

Test planning (phase 1)
1.Prepare the system model (the figure

on the right is a fragment of the sys-
tem model in the case study).

2.Identify security assets to protect.

3.Define frequency and consequence
scales.

4.Define the risk evaluation matrix.

sd Exercise Options (black-box)

:Client web
browser

exercise(options)

:Exercise
Options form

continue(exerciseMethod)

exerciseRequestConfirmation

Security risk assessment (phase 2)
 Identify, estimate, and evaluate risks, and select risks to test.

Security testing (phase 3)

 Design security tests based on selected risks and execute tests.

[20,

50>:1y

exercise(options)

:Client web

browser
:Exercise

Options form Integrity

of data

Malicious

user

:Network tool

sd Malicious user accesses another system feature by

changing parameter exerciseMethod (black-box)

interceptRequest

Another system feature is accessed

by changing parameter exerciseMethod

respOtherSysFeat

setExerciseMethod(otherSysFeat)

continue(otherSysFeat)

selectExerciseMethod

continue(exerciseMethod)

Moderate

[16,

40>:1y

[16,

40>:1y

0.8

exercise(options)

<<TestComponent>>

:Client web browser

<<SUT>>

:Exercise

opt. formMalicious

user

<<TestComponent>>
:Network tool

sd Test Case Malicious user accesses another system feature by

changing parameter exerciseMethod (black box) : Verdict

interceptRequest

respOtherSysFeat

setExerciseMethod(otherSysFeat)

continue(otherSysFeat)

selectExerciseMethod

interceptHTTPRequest

continue(exerciseMethod)

<<TestComponent>>

<<validationAction>>
fail

Results and Discussion
 The case study results indicate that CORAL is effective in terms of

producing valid risk models. This is backed up by two observations.

First, we identified in total 21 risks, and 11 of these risks were con-

sidered as severe, while the remaining 10 risks were considered as

low risks. By testing these 11 risks we identified 11 vulnerabilities, whi-

le by testing the remaining 10 risks we identified only 2 vulnerabilities.

Second, we identified all relevant security risks compared to previous

penetration tests. In addition, we identified five new security risks and

did not leave out any risks of relevance for the features considered.

 The CORAL approach seems to work equally well for black-box and

white-box testing.

 Finally, one of the most important findings we did in the case study

is that the CORAL approach is very useful for identifying security test

cases. We used all threat scenarios identified in the case study for the

purpose of security test case design and execution.

