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Background and Objective 
  Security testers face the problem of determining tests that are most 

likely to reveal severe security vulnerabilities. 

 

  We have developed a method for risk-driven security testing sup-
ported by a domain-specific modeling language referred to as CORAL. 

 

  CORAL aims to help security testers to select and design test cases 
based on the available risk picture. 

 

  Objective: Evaluate to what extent CORAL helps security testers in 
selecting and designing test cases. 

The CORAL Language 
  The CORAL language is based on UML interactions. 
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Overview of Case Study 
  The case study was carried out in three phases which correspond 

to the overall steps in CORAL: Test planning, security risk assess-
ment, and security testing. 

  

  The system under test was a web-
based application providing services 
related to equity-based compensation 
plans. 

 

Test planning (phase 1) 
1.Prepare the system model (the figure 

on the right is a fragment of the sys-
tem model in the case study). 

2.Identify security assets to protect. 

3.Define frequency and consequence 
scales. 

4.Define the risk evaluation matrix. 
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Security risk assessment (phase 2) 
  Identify, estimate, and evaluate risks, and select risks to test. 

Security testing (phase 3) 

  Design security tests based on selected risks and execute tests. 
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Results and Discussion 
  The case study results indicate that CORAL is effective in terms of 

producing valid risk models. This is backed up by two observations. 

First, we identified in total 21 risks, and 11 of these risks were con-

sidered as severe, while the remaining 10 risks were considered as 

low risks. By testing these 11 risks we identified 11 vulnerabilities, whi-

le by testing the remaining 10 risks we identified only 2 vulnerabilities. 

Second, we identified all relevant security risks compared to previous 

penetration tests. In addition, we identified five new security risks and 

did not leave out any risks of relevance for the features considered.  

  The CORAL approach seems to work equally well for black-box and 

white-box testing.  

  Finally, one of the most important findings we did in the case study 

is that the CORAL approach is very useful for identifying security test 

cases. We used all threat scenarios identified in the case study for the 

purpose of security test case design and execution. 


