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* Themis 5.0:

— "Co-create an innovative Al-driven and human-centric trustworthiness Al ecosystem"

* How we contribute to the project?
— "SafetyCage" - Set of probabilistic approaches to detecting miss-classification
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s \Whoaml?

Milan
* Research scientist at SINTEF Digital, Norway SINTEF Digital

* My research interests
o Applications of Machine Learning to facilitate decision making
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Themis 5.0

|. Project, partners, use case

II. Our contribution
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* Mission statement
o Co-create an innovative Al-driven and human-centric trustworthiness Al

eCOSVStem (ATHOLIEKE UNIVERSITEIT
o Strengthen the dialogue between Al users and practitioners UVEN
o Converge to a better understanding of model accuracy, robustness,
trustworthiness and fairness. @ University of
Southampton

* 16 Partners in Europe

* themis-trust.eu
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meenll UsSe-cases

* Related to Critical Application
and Industry Sectors

* Can we help partners to gain
trust in their models?

USE CASE 1
Healthcare: Al Powered Personalised Risk Assessment
MEDICAL UNIVERSITY OF PLOVDIV

Human genetic data can provide insights into the risks of diseases. Al has appeared to
be the most effective tool for analysing complex biological data sets. However, existing
Al systems lack explainability and transparency on how their results are generated
which raises questions over the trustworthiness of their assessments. Professionals
having trust in Al is fundamental in healthcare systems as decisions can have

significant impacts.

Hlin iimn mama famiinan an tha anbhamanmmant af dabanata that ava sinad fav bvainina ~f Al

USE CASE 2

Managing Disruptions and Dynamic Situations

PORT OF VALENCIA

P 52 : .
- -

Ports have high import and export activity to address the demands of society and the economy.
To ensure port infrastructures can support demand, timely maintenance of the docks is
necessary to detect any risks and damages. If not monitored, serious risk can be posed to
workers, stevedores and even visitors. Al can be used to predict disruptive events and damages
that may pose a risk to those who use the port. However, many of these predictions are difficult

to interpret.

USE CASE 3

Journalism: Preventing Disinformation

ATHENS-MACEDONIA NEWS AGENCY

Social media has cemented itself as a powerful new technology that makes it easy to manipulate and
fabricate information, affecting democracy and trust in society. Social networks via computational
propaganda technigues, such as ‘trolling’, can amplify fake news and disinformation. Journalists risk
being manipulated by actors who frequently intimidate and discredit them, and media institutions.
Increasingly, Al-based tools are being used to help avoid spreading disinformation and publishing of

unchecked information.
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SafetyCage

|. A statistical framework for miss-classification
detection



SINTEF

SafetyCage - Background
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Class (label)

Data point

Digit: 0, 1, 2, ...

Image: hand drawn digits

Chihuahua, Blueberry Muffin

Cancer / No cancer

Image

Patient data
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musl SafetyCage - Background

* Given a trained neural network predicting a class

* Can we train a system (Missclassification Detector - MD) capable of:
o Predicting whether a prediction is incorrect?
o Measuring a degree of confidence?
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sl SafetyCage - Overview
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Applying SafetyCage to a model predicting

SINTEF

sl risk of pancreatic cancer

)

Patient health record (Age,
gender, (co)morbidity,
symptoms etc.

|

Al model

|

Risk level for
pancreatic cancer
(low, medium, high)

General performance on historical data

Classification accuracy = 81% of predictions
correct

Precision low risk factor (proportion of predictions
for risk factor O that is correct) = 90 %

Precision medium risk factor (proportion of
predictions for risk factor 1 that is correct) =73 %

Precision high risk factor (proportion of
predictions for risk factor 2 that is correct) = 78 %

Note:

The table shows what we can expect
in general, but says nothing about
what we can expect for one input
sample
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pesll risk of pancreatic cancer
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Patient health record (Age,
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Al model — SafetyCage
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Applying SafetyCage to a model predicting

pesll risk of pancreatic cancer

)

Patient A health record (Age,
gender, (co)morbidity,

symptoms etc. \

Al model _— SafetyCage

Can we trust the
prediction?

1 N
Risk level for /

pancreatic cancer: .

High risk < 0135 Prediction cannot
0 be trusted
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Applying SafetyCage to a model predicting

pesll risk of pancreatic cancer

Can we trust the
prediction?

)

health record (Age,
gender, (co)morbidity,

symptoms etc. \

Al model — SafetyCage
/ 1
Risk level for
pancreatic cancer: < 0,67
Low risk Prediction should
0 be interpreted with

care
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pesll risk of pancreatic cancer

)

Patient C health record (Age,
gender, (co)morbidity,

symptoms etc. \

Al model —_— SafetyCage
Can we trust the g l / . l
prediction? Risk level for
< 0,91 O

pancreatic cancer:

Low risk Prediction can
(g be trusted
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Patient D health record (Age,
gender, (co)morbidity,
symptoms etc.

|

Al model
Can we trust the l
prediction? Risk level for
pancreatic cancer:
High risk

Applying SafetyCage to a model predicting
el risk of pancreatic cancer

Detailed explanation

According to the misclassification detection method MSP, the
class prediction is correct.

This method looks at the maximum softmax probability value,
which is available in the output from the ML model, as a
measure of the uncertainty in a particular class prediction.
Whenever the softmax probability is less than alpha=0.62, the
safetycage method considers the class prediction as wrong.
The maximum softmax probability value is in this case equal to
0.81.

— SafetyCage

|

4 081 O

Threshold: 0.62 —|

1*

Prediction can
(g be trusted
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sesell Can SafetyCage be trusted?

 SafetyCage is built from statistical arguments

o Not always right!

o 77% of the predicted miss classifications were
indeed missclassified

Perfect missclassification detector:

True misclassification by Al model

T
0 1

Predicted misclassification by
SafetyCage
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mall Further work

Improving the misclassification detectors

Developing other/stronger statistical arguments to assess model confidence
Diversifying SafetyCage portfolio

Demonstrating and deploying SafetyCage in pilot seetings
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1950 — 2025
Technology for a better society

sintef.no/75



https://www.sintef.no/75/
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