Multiconsult

Rapid Step-Rate Test — a new hydraulic jacking test for rock stress estimation

Ph.d. Henki Ødegaard

Background

- PhD project within Norwegian Research Centre for Hydropower Technology (HydroCen), NTNU
- Title: "Rock Stress Estimation for Unlined Pressure Tunnel Design"
- Research topic requested by HydroCen industry partners

The main objective of HydroCen is to enable the Norwegian hydropower sector to meet complex challenges and exploit new opportunities through innovative technological solutions.

https://www.ntnu.edu/hydrocen

Agenda

- 1. Introduction and background
- 2. Development of new test protocol
- 3. Results from laboratory and field
- 4. Conclusions

Unlined pressure tunnels

• Tunnels used to convey water for energy production – no impermeable liner

Figure from Ødegaard (2021)

Unlined pressure tunnels - requirements

- Suitable rock mass that is long-term durable
- Water leakage within acceptable limits

Unlined pressure tunnels – stress estimation

- Current practice based on relatively few test locations (red dots)
- Presumption: Stresses away from measurement location can be predicted to a satisfactory degree of certainty

Unlined pressure tunnels – stress estimation

- Point measurements should be replaced by distributed measurements (green dots)
- Can reduce risk of undetected regions of inferior stresses
- This will require rapid and cost-effective measurements

Developing a new test protocol

- Laboratory experiments using custom-built true-triaxial test rig
- Enabled laboratory controlled hydraulic jacking experiments

Test rig - setup

- A. Rigid test frame
- B. Hydraulic crane
- C. Granite specimen
- D. Hand pumps
- E. Injection pump

Figure from Ødegaard and Nilsen (2021)

Boreholes and packer

• Specimens hydraulically fractured to create a planar fracture for later testing

Figure from Ødegaard and Nilsen (2021)

Acoustic Emission Monitoring

- Used to investigate fracture behavior
- Enabled mapping of fracture geometry

Figures modified from Ødegaard and Nilsen (2021)

Laboratory controlled hydraulic jacking tests

- Known fracture geometry
- Stresses are controlled
- σ_n can be calculated
- Enables efficient testing of various testing protocols

Rapid Step-Rate Test (RSRT)

- Forward-step: Flow increased in equal steps, each of the same duration, until jacking (or fracturing)
- Backward-step: Flow decreased in same steps down to zero flow

Rapid Step-Rate Test (RSRT)

- Step height (Δq) and duration (Δt) adapted to local conditions
- Once set, (Δq) and (Δt) are kept unchanged throughout each test cycle

Figure from Ødegaard (2021)

Rapid Step-Rate Test (RSRT)

- The resulting pressure development used to estimate normal stress
- Interpretative technique derived from works of Hayashi and Haimson (1991) and Raaen et al. (2001)

Interpretation of pressure data

- Changes in the hydraulic "stiffness" is detected in pressure data
- Change of stiffness caused by stages in fracture closure:
 - 1. Hinge-like closure (const. stiffness)
 - 2. Fracture starting to close by lengthreduction
 - 3. Full (mechanical) closure
- Pressure at end of Stage 1 taken as measure of normal stress across stimulated fracture

Figure modified from Savitski and Dudley (2011) and Raaen et al. (2001)

Examples from laboratory experiments

• Red line is calculated normal stress

Figure modified from Ødegaard and Nilsen (2021)

Examples from laboratory experiments

• Red line is calculated normal stress

Figure modified from Ødegaard and Nilsen (2021)

Field experiments at the Løkjelsvatn HPP

Field experiments at the Løkjelsvatn HPP

Figure from Ødegaard (2021)

Figure modified from Ødegaard (2021)

RSRT – example of pressure development

RSRT – example of pressure development

Results from field tests at the Løkjelsvatn HPP

- Pressure development very similar to what was seen in lab fracture closure can be detected
- Result from RSRT correlate reasonably well with values found from preceding HF and OC tests at the same location:
 - σ_n values from RSRT: **7,2 8,7 MPa**
 - σ_3 values from HF and OC: **7 9,5 MPa**

Summary

- The RSRT test protocol is simple and robust enables rapid and cost-effective stress estimation
- Interpretative technique is "transparent" can be done visually in plots of pressure versus linear time
- The term "hydraulic jacking" might be somewhat misleading many tests are believed to involve initial fracturing
- Where the stimulated fracture is oriented normal to the minimum principal stress can the RSRT estimate σ_3 directly

Multiconsult

Thank you!

References

Ødegaard, H. (2021). *Rock Stress Estimation for Unlined Pressure Tunnel Design*. Department of Geoscience and Petroleum. Trondheim, Norway, NTNU. PhD thesis.

Ødegaard, H. and B. Nilsen (2021). Rock Stress Measurements for Unlined Pressure Tunnels: A True Triaxial Laboratory Experiment to Investigate the Ability of a Simplified Hydraulic Jacking Test to Assess Fracture Normal Stress. Rock Mechanics and Rock Engineering 54(6): 21.

Hayashi, K. and B. C. Haimson (1991). *Characteristics of shut-in curves in hydraulic fracturing stress measurements and determination of in situ minimum compressive stress*. Journal of Geophysical Research: Solid Earth **96**(B11): 18311-18321.

Raaen, A. M., et al. (2001). *Stress determination from hydraulic fracturing tests: the system stiffness approach*. International Journal of Rock Mechanics and Mining Sciences **38**(4): 529-541.

Savitski, A. A. and J. W. Dudley (2011). *Revisiting Microfrac In-situ Stress Measurement via Flow Back - A New Protocol*. SPE Annual Technical Conference and Exhibition.