METROLOGY for HYDROGEN VEHICLES

WP 3 'Hydrogen Quality Control'

Janneke van Wijk (VSL)

MetroHyVe SAB Workshop 24/01/2018

This project has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

WP3 Overview

Aim

To develop and validate continuous online analysers for measuring key impurities, particulates and humidity in hydrogen at the refuelling station following the implementation of quality control techniques specified in ISO 19880-8.

- Candidate methods include spectroscopic and low-cost sensor technology. The development of the analysers will be focused on the key impurities specified in ISO 14687: water, CO,O₂ and H₂S
- A similar development and validation approach will be used for the humidity measurements in hydrogen using online hygrometers and particulate concentration and size using online particulate analysers
- Perform an instrument intercomparison for online purity analysers against laboratory reference gas standards of hydrogen sulfide, carbon monoxide, oxygen and water

WP3 Tasks

- Task 3.1:Online measurement of gaseous impurities M1-M22
(NPL, AP2E, CT, Shell)Task 3.2:Online measurement of humidity– M14-M29
(NPL, ITM, AP2E, CT)Task 3.3:Online measurement of particulate mass concentration and seizing– M1-M36
(NPL, ITM)Task 3.4:Low costs sensors for hydrogen purity– M1-M31
(AL, VSL)
- Task 3.5:Intercomparison of online purity analysers- M1-M31(VSL, AL, AP2E, CT, Shell, NPL)

AIR LIQUIDE

Dutch Metrology Institute

Development and validation of instruments: current status

Component	Required LOD	Cascade Technologies	AP2E	Shell
СО	0.2 µmol/mol	OK	OK	ОК
Water	5 µmol/mol	OK	OK	OK
O ₂	5 µmol/mol	Development needed	OK	X
H ₂ S	4 nmol/mol	Development needed	OK	OK

NPL will supply 3 gas mixtures for analyser validation Composition: according to specifications only amount fraction H_2S has to decided upon

Online measurement of gaseous (1) impurities (3.1) and intercomparison of online purity analysers (3.5)

- These 2 tasks are closely related
- Instrument developed in 3.1 will take part in the intercomparison (January. – June 2019)
- The intercomparison will take place at NPL and is open to other instrument suppliers
- If anyone wants to participate now is a good time to show interest as the protocol for the intercomparison is being discussed

METROLOGY for

HYDROGEN VEHICLES

Online Measurement of Humidity

- Progress is dependent on task 2.3.4 development of NPL's multi-gas, multipressure humidity calibration facility
- Michell Instruments, GE Sensing, Alpha Moisture Systems, Tiger Optics, Shaw Moisture Meters, SUTO –iTec have been contacted to confirm if they are willing to loan instruments for calibration in hydrogen - (July 2018 – December 2018)
- The measurements will be performed in hydrogen :
- at pressures up to 20 bar in hydrogen
- at a flow rate of 0.5 slpm
- at dew-point temperatures from -65 °C to -20 °C
- (corresponding to amount fractions of water vapour from 0.5 µmol/mol upto 50 µmol/mol at 20 bar)

Online Measurement of particulate mass concentration and sizing

- Risk evaluation for using a TEOM with hydrogen has been performed but NPL is waiting on confirmation from the supplier before purchasing the instrument
- NPL will add concentrations of particles (nominally 1000 to 5000 particles/mL and 2 µm to 10 µm) to pure hydrogen from a gas cylinder in a laboratory environment to produce a stream of particle laden hydrogen at close to atmospheric pressure
- This stream will be assessed for particle size and number concentration using an OPC and then used to carry out direct comparisons of particulate mass using TEOM and traditional offline filter techniques. The method developed in task 2.2.1 will be used for the filter weighing element. (January 2018 – December 2018)
- Field measurements at a HRS will be performed and a good practice guide will be written (NPL and ITM) (July 2019 – May 2020)

- Aim: Evaluate the feasibility to use online continuous "quality sensors" at HRSs in order to
- Measure canary species key impurities that guarantee global quality of H2 in accordance with risk assessment conclusions
- Improve the efficiency of the quality survey of H2 supply chain
 - 1. Cost of quality assurance
 - 2. Minimize delays (sampling + delivery + analysis on lab)
- Perform a survey (questionnaire) which will be sent to relevant research organisations, universities and sensor manufacturers to investigate the options and availability of low cost sensors for performing online measurement of impurities at HRSs and write a review on the results.
- Test a sensor at VSL when a sensor can be bought or borrowed

Low cost sensors for hydrogen purity

Safety considerations	Performances & Characteristics
Including vent system	Sensitivity under the specification
Including sealed system	Sensitivity at the specification
Including leak detection	Sensitivity at a High concentration
Other request	Accuracy
Definition of a "sensor"	Linearity
Low Cost	Response delay at the specification (< 1 mn)
Small Size	Response delay at a high concentration (< 1 mn)
Plug & Play	Other request (interferences, drift, calculation interval?)
TRL Level (Prototype or existing material)	Impurities to monitor
Including data treatment	со
Other request	H ₂ O
Management of alarm by HRS operator	H ₂ S
At the Specification concentration	O ₂
At the High concentration	Other request
Reset option	Characteristics
External Relay	No Spare part
Other request	Utilities included
Measurement mode	Monitoring data
Cumulative	No Metrology program
Instantaneous	No Purging integrated
Other request	Other request

THANK YOU

Any Remark or Question?