METROLOGY for HYDROGEN VEHICLES

Work Package 2 'Quality assurance'

Thomas BACQUART (NPL)

MetroHyVe SAB Workshop 24/01/2018

This project has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

WP2 'Quality assurance' Overview

<u>Aim</u>

To support hydrogen purity testing as specified in ISO 14687

- developing traceable offline gas analysis methods
- stable and accurate primary reference gas mixtures
- the metrological tools to enable the introduction of low cost gas analysers suitable for use by commercial gas analysis laboratories
- develop a robust method for accurately performing measurement of particulates

Develop and validate a choice of analytical methods and standards with traceable reference values to the existing and emerging hydrogen quality assurance laboratories.

Support the development of a European network of analytical laboratories capable of performing accurate hydrogen purity analysis as specified in ISO 14687

WP2 Tasks

- Task 2.1:Validated Analytical Methods for Measuring Reactive Compounds M1-M34(VSL, AP2E, AIR LIQUIDE, CEM, IFE, LINDE, NPL, SINTEF, RISE)
- Task 2.2:Validated Methods For Performing Traceable Measurement Of Particles M1-M36(NPL, AIR LIQUIDE, ITM, NEN, SHELL, SINTEF)
- Task 2.3:Primary reference gas mixtures and dynamic reference standards for low levelimpurities in hydrogen M1-M31

(CEM, LINDE, NPL, VSL)

- Task 2.4: Optimisation of impurity enrichment devices M1-M31 (NPL, SINTEF)
- Task 2.5:A cost-efficient offline system for ISO 14687 purity analysis M1-M34(RISE, AP2E, CEM, IFE, LINDE, NEN, NPL)
- Task 2.6:Interlaboratory comparison for ISO 14687 hydrogen measurements M1-M36(NPL, AIR LIQUIDE, CEM, IFE, LINDE, SHELL, SINTEF, RISE, VSL)

Validated analytical methods for measuring reactive compounds

- Objectives:
 - Review, develop, validate and disseminate the best analytical methods available for offline testing of hydrogen purity according to ISO 14687
- Review existing methods for hydrogen purity (ISO 14687 scope);
- Assessment of ASTM standards and comparison to selected European validated method;
- Assessment of JIS standards and comparison to selected European validated method;
- Method validated following the guidelines of EURACHEM Guide and new document ISO/CD 21087 "Hydrogen fuel - Analytical methods - Proton exchange membrane (PEM) fuel cell applications for road vehicles".

Validated analytical methods for measuring reactive compounds

- Halogenated compounds: new method development and validation:
 - Selected halogenated compounds: Thermo desorption with gas chromatography and mass spectrometry (TD-GC-MS);
 - HCI (if possible Cl₂): Cavity ringdown spectroscopy (CRDS), Optical feedback cavity enhanced adsorption spectroscopy (OFCEAS), Ion chromatography (IC), pre-concentration with IC / electrolysis / ICP-MS.
- NH₃, CH₂O₂, CH₂O: new method development and validation:
 - GC based method;
 - Fourier transform infrared spectroscopy (FTIR);
 - Impinger (possibly solid phase extraction) with IC, capillary electrophoresis;
 - CH₂O₂, CH₂O: OFCEAS and CRDS;
 - NH_3 , CH_2O_2 : Filter with IC.
- S<u>ulphur compounds</u>: new method development and validation:
 - H_2S : OFCEAS;
 - H₂S and mercaptans: pre-concentration with IC / electrolysis / ICP-MS.

Carbonyl sulphide Carbon disulphide Tert-butyl mercaptan, Tetrahydrothiophene, Methylmercaptan

Validated analytical methods for measuring reactive compounds

- Discussion:
 - Users of ASTM / JIS standards;
 - Important compounds with lack of analytical methods;
 - New analytical methods;
 - Method validation additional information (transfer of knowledge / process);
 - Relevance of the selected compounds for halogenated/sulphur compounds.

Validated methods for performing traceable measurement of particulates

- Objectives:
 - Good practice guide for handling and transporting filters for offline particulate sampling
 - Good practice guide on the best approach for traceable gravimetric weighing
 of particulate filters
- Validate a method based on ASTM D7651-10;
- Validate appropriate type of filter;
- Assessment of environmental contamination on the results;
- Comparison online analysis by Tapered elements oscillating microbalance (TEOM) and optical particulate monitor (OPC).

Validated methods for performing traceable measurement of particulates

- Discussion
- Current status of particulate analysis:
 - Technical points:
 - Appropriate equipment: online / offline measurement;
 - Pressure (sampling at 350/700 bar or from sampling cylinder);
 - Transport of filter;
 - Preparation of filter.
 - Measurement issues:
 - Negative mass;
 - Presence of contaminant (liquid, oil);
 - Artefact, interference.

METROLOGY for

Primary reference gas mixtures and dynamic reference standards for low level impurities in hydrogen

- Objectives:
 - Development of static gas mixtures with traceable reference values and uncertainties
 - Development of dynamic gas standards with traceable reference values and uncertainties
- Review of passivation treatments available for gas cylinders
- Primary reference gas mixtures: H₂O, HCI, C₄CI₄F₆ and one halogenated compounds
- Development of dynamic dilution system with dynamic reference value traceable to SI Critical orifices: sulphur compounds and ammonia Diffusion cells: CH₂O

METROLOGY for

Primary reference gas mixtures and dynamic reference standards for low level impurities in hydrogen

Discussion:

METROLOGY for

- Passivation of cylinder known (i.e. Sulfinert / Silconert2000 / spectraseal / Performax);
- Type of dynamic dilution system used;
- Calibration gas
- Water vapour reference standards (amount fraction and stability)
- Interest in PRM/PRGM for dilution system
 - Amount fraction: 100 times the ISO 14687 threshold
 - Volume of gas

Optimisation of impurity enrichment devices

- Objectives:
 - Develop a hydrogen impurity enrichment device capable of concentrating low level impurities including hydrogen sulphide;
 - Define operating conditions and membrane to achieve an enrichment of factor 100
 - Demonstrate the technique capability on real sample with uncertainty budget
- Choice of membrane;
- Achievable amount fraction;
- Tracer: Krypton
- Instrument for final measurements: GC-MS

A cost efficient offline system for ISO 14687 purity analysis

- Design a system to perform offline measurement of all impurities in ISO 14687 by combining several analyser into one unique system
- Reduce CAPEX by 30%, unbiased, relative expanded uncertainty below 20%
- Guideline on how to implement the cost-efficient offline system with the good practice for calibrating the instruments
- Review existing analytical methods (including cost, accuracy), existing laboratory position and equipment
- Selection of the most suitable techniques;
- Design of the coupling system between instruments;
- Development, testing and validation using traceable standards

METROLOGY for

A cost efficient offline system for ISO 14687 purity analysis

- Discussion
 - Future users (end users, quality/process control)
 - Analytical instruments already available

• Requirements:

- Cost of the system: < 250k€ < 350k€ < 400k€
- Parameters: full ISO 14687; reduced list (10 13 compounds); short list (4-7 compounds)
- Delay to report results: 1 day 1 week 2 weeks
- Uncertainty: < 5% < 10% < 25%
- sample volume: < 10 litres < 30 litres < 100 litres

METROLOGY for HYDROGEN VEHICLES

Interlaboratory comparison for ISO 14687 hydrogen measurements

- Objectives:
 - Organise an interlaboratory comparison for more than 8 laboratories on CO, H₂S, O₂ and H₂O
- Design the interlaboratory comparison;
- Select the participants;
- Prepare, validate and ship the samples;
- Participants performed measurements;
- Data evaluation and interlaboratory comparison meeting and feedback;
- Report on the results of the interlaboratory comparison for offline hydrogen purity analysis with conclusions on the participant agreement and recommendations for future improvements.

A cost efficient offline system for ISO 14687 purity analysis Compound

- Discussion
 - Number of participants: limited to 12
 - Selection of participants?
 - List of compounds, target amount fraction and cylinder type (valve, volume, pressure)
 - Delay to perform analysis: < 8 weeks
 - Possibility to keep intercomparison sample: yes/No
 - Anonymous?

	amount fraction [µmol/mol]
СО	0.1 – 1.0
H ₂ S	0.02 – 0.5
O ₂	1 – 10
H ₂ O	1 – 10

METROLOGY for

Project Team

THANK YOU

METROLOGY for HYDROGEN VEHICLES

Dr Thomas BACQUART

thomas.bacquart@npl.co.uk

t: 020 8943 6652