

Session 5: Impact on Fuel Cells What are the next steps?

Merit Bodner

MEA Engineer Nedstack fuel cell technology B.V. merit.bodner@nedstack.com

Hydrogen Quality and Flow Metering for Hydrogen Fuel Cell vehicles 12th of September 2019

Company

Nedstack fuel cell technology BV

Company Profile

\mathbf{O}	
ò	
В	
ō	
<u>р</u>	
	l

Name	Nedstack Fuel Cell Technology BV	Website
Location	Westervoortsedijk 73, Arnhem, the Netherlands	Industry
Founded	1999	
Ownership	Private	Logo

Website	www.nedstack.com	
Industry	PEM Fuel Cells	
Logo	Nedstack PEM FUEL CELLS	

High lights

- Independent Company since 1999 (Akzo-Nobel spin out);
- Leading Global Player in PEM-FC R&D;
- In-house Cell plate production and Stack Assembly;
- > 700 FC Systems installed-base as per 2017;
- > 23.000 Hours in-use Lifetime demonstrated;
- Highly competent Application Support team in-house;
- Strong footprint in EU and China

Industries Served

- PEM FC-Power Plants
- Commercial Vehicle FC Range Extenders
- Marine Fuel Cell Power Modules
- Back Up Power Supply Units

Company Timeline

■ NFCT ■ September 12, 2019 ■

Capabilities

From Powder to Power

Tech & Engineering Services Portfolio

Variable Fuel Cell Application Centre

Project Capacity to Serve Multiple MW size FCPP-projects simultaneously

■ NFCT ■ September 12, 2019 ■

Technology

Low Temperature PEM Stacks & Systems

LT-PEM Fuel Cell Principle

PEM FC's use Hydrogen as a Fuel and a PEM Membrane as Electrolyte

	Operating temp (°C)	Fuel	Electrolyte	
PEMFC	40-90	H ₂	Proton Exchange Membrane	
AFC	40-200	H2	КОН	Noble metals
DMFC	60-130	Methanol	Proton Exchange Membrane	Non-noble metals
PAFC	200	H ₂	Phosphoric Acid	
MCFC	650	CH ₄ , H ₂	Molten Carbonate	
SOFC	600-950	CH ₄ , H ₂	Solid Oxide	

PEM FC Stack Solution

Company

Capabilit

All Nedstack Product Designs are NoBo Verified

		Factorer for progress
	Number: 170901294	
	Date: 5-2-2018	
7	Report number: 1259642	
0	DECLARATION	
4	Supplier: Nedstack Fuel Cel	Technology B.V.
2	Product description: PEM fu	el cell stack
	Available model:	
	Tradename	Model name
	Nedstack	FCS 12-XXL
Decle	Kies declares that the abov against. BN 62282-2-Fuel cell techn No deviations were found. This certificate applies to the A ominoelf active area - including (e mentioned appliances, have been tested successful slogies Part 2 : Fuel cell modules (2012) leditack Fuel Cell Stack (FCS) Product Range – having a 2 the specific model mentioned in this declaration.
New Noticited EX. WireshiftSI P.S. Ber 197	Kitea Nederland B.V.	
The Sathariana	2 m	
	Falco Thuis Unit Manager	

Test	Pass
Leakage Test	✓
Normal Operations Testing	✓
Electrical Overload Testing	✓
Electrical Strength Testing	✓
Differential Working Pressure Testing	✓
Leakage Test Repeated	✓
Normal Operations Test Repeated	✓
Fuel Starvation Test	✓
Oxidant Starvation Test	✓
Stack Short Circuit Test	✓
Coolant Starvation Test	✓
Cross-over Monitoring Test	✓
Freeze and Thaw Cycle Test	✓

IEC 62282-2 Compliant

1) NoBo Report by KIWA (Report Number: 125964 / Project Number: 125964). Dated: December 5, 2011

Time to Refurbishment designed for 30k hours

Performance of XXL stacks in Delfzijl Power Plant

■ NFCT ■ September 12, 2019 ■

Solutions & Markets

REM Fuel Cell

Mission Critical High Power PEM solutions and applications

Nedstack Focus Markets

Maritime & Ports

- Serries
- Cruise Vessels
- Dredging
- Inland navigation
- Fish farming
- Tug boats
- Canal boats

Built Environment

- District heating
- Holiday parks
- Hotels / Conference
- University campuses
- Industry parks;
- Hospitals;
- Shopping malls;

Industry

- Chlor-Alkali industry
- Sodium-Chlorate Ind.
- Semi-conductor

& Maritime & Ports – Value Proposition

Maritime & Ports

- Serries
- Cruise Vessels
- Dredging
- Inland navigation
- Fish farming
- Tug boats
- Canal boats

Challenge

The maritime industry is a massive contributor to global emissions and has recently embraced an enormously ambitious set of emission reductions targets at IMO level. Further local initiatives to establish 0emission shipping zones push for vulnerable areas;

Value Proposition

The use of hydrogen fuel cells in shipping allow for achieving zeroemission operations while still maintaining endurance at sea, acceptable levels of power densities and rapid turn around times.

Market		Nedstack I	PemGen fit
Market Size	Actionable	PemGen Fit	Compliancy
high	starting	high	high

Dutch Zero-Emission-Shipping consortium

Built Environment - Value Proposition

Built Environment

- District heating
- Holiday parks
- Hotels / Conference
- University campuses
- Industry parks;
- Hospitals;
- Shopping malls;

Challenge

Decarbonizing the built-environment requires moving away from fossils all together with inclusion of CNG. The Paris climate agreement has been ratified by many and will result in ambitious transition plans. The Netherlands is pursuing a built environment free of CNG in 2030.

Value Proposition

The use of hydrogen allows for buffering between the demand for residential heat and power and the availability of heat and power from green origins. The Nedstack Energie-erf concept allows for harmonizing the energy system from both a heat and power perspective.

Market		Nedstack I	PemGen fit
Market Size	Actionable	PemGen Fit	Compliancy
high	opening	high	high

With a set of the set

Jedstack

Industry Applications – Value Proposition

Industry

- Chlor-Alkali industry
- Sodium-Chlorate Ind.
- Semi-conductor

Challenge

Chlor-alkali plants are among the main producers of by-product hydrogen. Worldwide, 50 million tons of chlorine is produced annually. Fuel cell conversion of all by-product hydrogen from global chlorine production alone would yield 3000 MW of continuous power.

Value Proposition

Nedstack PemGen Fuel Cell Power Systems allow for capturing byproduct hydrogen and converting it in useful heat and power. This results in up to 20% energy savings on electrolysis costs and avoids massive NOx emissions in the process.

Market		Nedstack I	PemGen fit
Market Size	Actionable	PemGen Fit	Compliancy
low	good	high	high

PEM Power Plant Specifications

PEM-Power Plants

System Name	1-2 MW Power Plants	
FC Туре	Type Long Life - Proton Exchange Membrane Fuel Cell (PEMFC)	
Intended Use	Chlorate-Alkali Plants / other Hydrogen Sources	

Performance Specifications				
Operating Power Range (Net output)	kW / MW	900 p/MW		
Thermal Power output (@65°)	kW	700 p/MW		
Nominal Electric Efficiency (@80% load)	%	50		
Peak Electric Efficiency	% max	60		
Peak Combined Efficiency	% max	80		
Operating Temperature	٥C	65		
Lifetime (till stack refurbishment)	Hrs / years	20.000 / 12		

inpator				
	Electric Power	Туре	380 VAC/ 50 Hz (6kV optional)	
Outputs	Water	Туре	Demineralized water	
Standar	Standardization and Regulatory Compliancy			
Machinery	Safety	CE ISO	2006/42/EC Compliant 121001	
Low Voltage Directive		CE	2006/95/EC	
Emergency Stop systems		ISO	13850	
Hazard and operability evaluation		IEC	61882	
Electro Magnetic Compatibility		CE	2004/108/EC	
Risk Assessment		ISO	14121	
Fuel Cell System Safety		IEC-EN	62282-2	
Pneumatic Systems EN		EN	983	

Dimensional and Environmental Specifications			
System Size	40ft ISO cont.	3 units	
System Footprints	M2 / cont. unit	30	
Ambient Temperature	min-max °C	-20 - +40	

■ NFCT ■ September 12, 2019 ■

CONFIDENTIAL

Inputs and Outputs

PEM Power Plant Reference

Compan

■ NFCT ■ September 12, 2019 ■

Solution in Context

1) Based on IEC-62282-3

Hydrogen supply – challenges and opportunities

Sources of hydrogen:

- Steam-(Methane-)Reforming
 - Possible impurities in the product gas: residual CH₄ (or other organic compounds), CO, CO₂, nitrogen and sulphur containing compounds
- Water electrolysis
 - Solution Possible impurities in the product gas: water and O₂. *Alkaline impurities possible depending on the process*
- Chlor-alkaline electrolysis
 - Solution Possible impurities in the product gas: water, chlorine, hydrochloric acid, salt, alkaline impurities

Other sources of impurities

- Hydrogen transport and storage is what is going in also what is coming out?
 - Possible impurities: particles, airborne impurities (diffusion)
- Hydrogen odour addition
 - Still largely undefined, most option are sulphur based
 - Tolerance or removability?

W Impact and mitigation of common impurities in fuel cells

Impurity	Impact	Method of mitigation	
Organic compounds/CH ₄	Known	Known, could be improved further	
CO	Known	Known, could be improved further	
CO ₂	Known, could be understood better	Known, could be improved further	
Water	Known	Known, could be improved further	
O ₂	Known	Known, could be improved further	
Sulphur and nitrogen containing compounds	Known, could be improved further	Known, could be improved further	
Chlorine and HCI	Known	Known, could be improved further	
Alkaline compounds and salts	Few studies available	Few studies available	

& Further factors

- Air quality
 - Maritime: salt, soot, etc.
 - Residential CHP: few, but depends strongly on the location
 - Industrial: harsh corrosive environment
- Detection and response to detected off-spec gases
 - Reliable measurements of the gases as they enter the system
 - How to respond to off-spec gases? When to mitigate ex- or internally and when to interrupt operation

GRASSHOPPER Grid Assisting Modular Hydrogen PEM Power Plant

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 779430. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme, Hydrogen Europe and Hydrogen Europe research.

Session 5: Impact on Fuel Cells What are the next steps?

Merit Bodner MEA Engineer Nedstack fuel cell technology B.V. merit.bodner@nedstack.com

Hydrogen Quality and Flow Metering for Hydrogen Fuel Cell vehicles 12th of September 2019

