

Session 5: Impact on Fuel Cells Irreversible impurities (H₂S)

Dr.-Ing. Ulrich Misz

Workshop on hydrogen quality and flow metering for hydrogen fuel cell vehicles 11-12 September 2019, Delft (NL)

Outline

- Overview test bench and connection to analytical devices
- Description of test procedure with H₂S contamination and CO reference measurement
- First H₂S measurements with test stack
- Break in procedure with HYDRAITE stack
- Challenges and next steps

Overview test bench and connection to analytic

New test bench with compact recirculation loop

Pictures of heating wires before isolation at stack inlet and water trap in recirculation loop

4 gas sampling points

- a. Dry anode supply
- b. Upstream of stack inlet within recirculation loop
- c. Downstream of recirculation pump
- d. Downstream of purge valve

H₂S measurement

Example of H₂S measurement (dry calibration gas)

GC - SCD

H₂S measurement in low ppb range possible

Motivation for sulphur tests in HYDRAITE

- Sulphur can be introduced by single events due to delivery and distribution
- If sulphur stays in the Pt anode surface then the CO tolerance is seriously lowered
- Tests are not focused on sulphur tolerance of the system
 Reduction in CO tolerance due to sulphur is to be evaluated
- Contamination with 1 ppm H₂S in H₂ until U_{avg.} drop of 30 mV
- CO reference with 5 ppm CO in H₂ until U_{avg.} drop of 50 mV

Operating conditions and test setup

- Due to the expected degradation caused by H₂S first tests were carried out with test stack from the HyCoRA project
- Test procedures for HYDRAITE stack have already been implemented
 - Slightly larger active area of HyCoRA compared to HYDRAITE results in lower current densities at same current level
- Cell temperature and current density during H₂S contamination and CO reference measurements: 80°C at 0.294 A cm⁻² (0.3 A cm⁻² with HYDRAITE stack)
- First tests with stoichiometric operation without purge
 Fuel utilization 96 97 %
- All tests with recirculation and without external humidification at anode

Test procedure

The first measurement campaign involves the following steps and procedures:

- 1. Start up, Polarization curve and reference poisoning (5 ppm CO)
- 2. Stop procedure with air bleed to oxidize CO
- 3. Start up stack
- 4. Poisoning with 1 ppm H_2S in H_2 until 30 mV voltage drop is reached
- 5. Polarization curve and reference poisoning (5 ppm CO)
- 6. Stop procedure with air bleed to oxidize CO (and H_2S)
- 7. Start up stack
- 8. Run defined load cycles
- 9. Reference poisoning measure possible change in CO tolerance
- 10. Further repetitions of points 6 9 depending on results

Implementation of load cycles and CO reference

Example of load cycle and CO reference measurement

Load cycles

CO reference measurement

Overview H₂S contamination test procedure

- Successful implementation of CO, H₂S contamination, stop procedure with air bleed
- Strong negative influence of H₂S at higher load levels

H₂S contamination

- 30 mV voltage loss due to 1 ppm H₂S within 175 minutes
- 2 cells with higher voltage losses compared to U_{avg}
 no recovery after stop of contamination

- Comparison voltage decay vs. H₂S values at dry inlet measuring point
- Max. H₂S concentration could be measured at dry inlet sampling point after 50 minutes contamination

CO tolerance

- 1. CO reference after contamination indicates no lower CO tolerance
- This result was observed up to 16 hours after contamination
 test with 15 ppm CO in H₂

 Voltage loss of 50 mV within one minute (15 ppm CO)
 After short recovery again reference with 5 ppm CO <u>Result:</u> A lower CO tolerance could be detected

Continuation of procedure with load cycles and CO reference

current / A

 After 20 minutes shut down procedure with load cycles and CO reference were performed again

- Seriously lowered CO tolerance
- 50 mV voltage loss due to
 5 ppm CO within 2 minutes

Stop procedure with H₂ soak over night

- Partly recovery due to H₂ soak and downtime over night
 → Higher CO tolerance → but only a temporary effect
 → Voltage increase at lower load points
- Second test run with H₂S contamination

Overview H₂S contamination test procedure (second test run)

- Strong negative influence of H₂S at higher load levels (polarization curve)
- No further load cycles realizable due to strong voltage losses

H₂S contamination and CO tolerance (second test run)

- Strong negative influence due to first H₂S contamination
- Second contamination with 1 ppm H₂S faster compared to first contamination

- Fast voltage loss before second H₂S contamination
- Reproducible voltage course at first CO reference after H₂S contamination
- Again higher CO tolerance

Comparison of polarization curves

- Pt surface on the anode is seriously contaminated before the second H₂S poisoning
- Previously contaminated stack is now more sensitive to H₂S

Break in and CO reference with new HYDRAITE stack

- Comparison of 3 CO reference measurements and load cycles (without analytics)
- No reproducible CO reference measurements

Measurements will be repeated with CO analysis to control the CO concentration at dry anode inlet

Challenges and next steps

- H₂S and CO analytic in recirculation loop (wet gas)
- Perform reproducible CO reference measurements (before contamination with H₂S)
 - Leckage tests to prevent influence of air flow during CO reference
 - Measurement of CO inlet concentration and O₂ concentration
- Based on the first results with H₂S
 - Open discussion and adjustment of the test protocol before starting H₂S procedure with new HYDRAITE stack

- The effect of H₂S on CO tolerance takes some time
- One possibility: Formation of COS or some other molecule?
- As it seems that the contamination process (after H₂S dosing is stopped) takes some time it must be completed before CO tolerance recovery can be monitored

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 779475. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe and Hydrogen Europe Research.

THANK YOU

metrohyve.eu

hydraite.eu

Dr.-Ing. Ulrich Misz

20

u.misz@zbt.de

+49 203 7598 3313