

Reversible impurities

Jari Ihonen (VTT) and Sylvie Escribano (CEA)

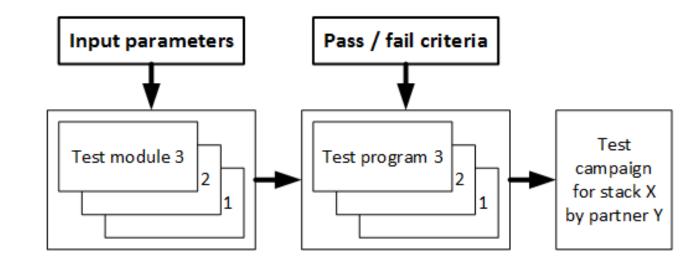
Workshop on hydrogen quality and flow metering for hydrogen fuel cell vehicles 11-12 September 2019, Delft (NL)

Overview

- Experimental procedures, programs and campaigns from HYDRAITE project are presented.
- Results examples for stack level measurements using HYDRAITE procedures and HYDRAITE or HyCoRA stacks
- Preliminary results of gas analyses applied in the FC measurements

Experimental procedures, programs and campaigns in HYDRAITE project

Overall work distribution in WP2


Partner		VTT	SI	NTEF	C	EA	Z	SW	2	вт	N	PL	Total effort
Task, impurity measurement type	days	period	days	period	days	period	days	period	days	period	days	period	
2.1 CO 0.5 ppm tolerance	10	M1-	5	M13-	10	M1-	10	M1-					35
		M24		M24		M24		M24					
2.1 CO 0.2 ppm tolerance	10	M1-	5	M13-	10	M1-	10	M1-			5	M1-	40
		M24		M24		M24		M24				M12	
2.1 CO 0.05 ppm tolerance	10	M1-	5	M13-	10	M1-	5	M1-			5	M1-	35
		M24		M24		M24		M24				M12	
2.1 O ₂ effect for CO tolerance	15	M1-	5	M13-							10	M1-	30
(internal AB)		M24		M24								M12	
2.1 Mixed effect of $CO + CO_2$	5	M1-					5	M1-					10
		M12						M12					
Task 2.1 total	50		20		30		30				20		150
2.2 Sulphur contamination recovery					30	M16-			30	M1-	30	M1-	Task 2.2
						M30				M30		M30	90
2.3 New impurities from HRS - ionic			30	M13-	20	M13-	30	M13-			20	M13-	Task 2.3
liquids, halogenates, hydrocarbons				M35		M35		M35				M35	100
2.4 Mixtures (e.g CO, S, CO ₂)			20	M13-	15	M13-	15	M13-			20	M13-	Task 2.4
including new mixtures HRS				M35		M35		M35				M35	70
2.5 New MEAs CO 0.5 ppm	10 +	M16-	5	M16-	5	M16-			5	M16-			20 (S2) + 10
tolerance - S2 stack with new anode	5(S3)	M35		M35		M35			(S3)	M35			(S3)
Pt alloy (0.02 mgcm-2)													
2.5 New MEAs CO 0.2 ppm	10	M16-			10		10	M16-	10	M16-			40 (S3) + 10
tolerance - S3 stack and high current	+ 5	M35			+ 5			M35		M35			(S2)
	(S2)				(S2)								
2.5 New MEAs CO 0.05 ppm	5	M16-			10	M16-	10	M16-	15	M16-			40 all S3
tolerance - S3 stack and high current)		M35				M35		M35		M35			
2.5 New MEAs O ₂ effect for CO	5	M16-	5	M16-									10 all S2
tolerance (internal AB). Ultra-thin		M35		M35									
MEAs or/and new anode Pt alloy													
2.5 Mixed effect of $CO + CO_2$ with	10	M16-	5	M16-	5	M16-							20 all S2
new anode Pt alloys		M35		M35		M35							
Task 2.5 total	50		15		35		20		30				150

Test modules, test programs and test campaigns for stacks illustrated for Task 2.1

- The experimental work is planned using Stack-test project recommendations.
- Test programs (typically for one day, 6-12 hours) has been built from test modules.
- Ten such programs form a test campaign for one stack by one partner.

Test campaigns - 15 campaigns for Task 2.1

1-1 VTT	1-2 NPL	1-3 ZSW
2-1 ZSW	2-2 CEA	2-3 VTT
3-1 NPL	3-2 VTT	3-3 CEA
4-1 CEA	4-2 SINTEF	4-3 VTT
5-1 SINTEF	5-2 VTT	5-3 ZSW

HYDRAIT

 Each stack is measured by three partners.

 Each measurements is repeated 2 or 4 times by 2 partners.

 Used stack are sent to Sulphur poisoning testing (Test 2.2)

	BoL	Campaign 1	Campaign 2	Campaign 3	EoL before S-poisoning in Task 2.2
			Stacks 1-3 for month	hs 1-12	
	Powercell Break-in, FAT and Reference CO-poisoning	VTT Reference characterization & Reference CO-poisoning x 2 • 0.5 ppm CO (2 reps) • 0.2 ppm CO (2 reps) • Internal AB (13-CO)	NPL Reference characterization & Reference CO-poisoning x 2 • 0.2 ppm CO • Internal AB (13-CO)	ZSW Reference characterization & Reference CO-poisoning x 2 • 0.5 ppm CO • 0.2 ppm CO	Powercell Reference CO-poisoning and FAT
5	Powercell Break-in, FAT and Reference CO-poisoning	ZSW Reference characterization & Reference CO-poisoning x 2 • 0.5 ppm CO (2 reps) • 0.2 ppm CO (2 reps) • CO (0.2 ppm) & CO2 (0 ppm)	CEA Reference characterization & Reference CO-poisoning x 2 • 0.5 ppm CO • 0.2 ppm CO 0/2/20	VTT Reference characterization & Reference CO-poisoning x 2 • 0.5 ppm CO (2 reps) • 0.2 ppm CO (2 reps) • CO (0.2 ppm) & CO2 (0/2/20 ppm)	Powercell Reference CO-poisoning and FAT
	Powercell Break-in, FAT and Reference CO-poisoning	NPL Reference characterization & Reference CO-poisoning x 2 • 0.05 ppm CO (2 reps) • 0.2 ppm CO (2 reps) • Internal AB (13-CO)	VTT Reference characterization & Reference CO-poisoning x 2 Internal AB (13-CO) 0.5 ppm CO (2 reps) 0.2 ppm CO (2 reps)	CEA Reference characterization & Reference CO-poisoning x 2 • 0.05 ppm CO • 0.2 ppm CO	Powercell Reference CO-poisoning and FAT
			Stacks 4-5 for month	us 13-24	
J	Powercell Break-in, FAT and Reference CO-poisoning	CEA Reference characterization & Reference CO-poisoning x 2 • 0.5 ppm CO • 0.05 ppm CO	SINTEF Reference characterization & Reference CO-poisoning x 2 • 0.5 ppm CO • 0.2 ppm CO	VTT Reference characterization & Reference CO-poisoning x 2 • 0.5 ppm CO • 0.05 ppm CO	Powercell CO reference poisoning
	Powercell Break-in, FAT and Reference CO-poisoning	SINTEF Reference characterization & Reference CO-poisoning x 2 • 0.05 ppm CO (2 reps) • 0.2 ppm CO (2 reps) • Internal AB (13-CO)	VTT Reference characterization & Reference CO-poisoning x 2 • Internal AB (13-CO) • 0.2 ppm CO	ZSW Reference characterization & Reference CO-poisoning x 2 0.35 ppm ● 0.05 ppm CO → or ● 0.2 ppm CO (2 reps) 0.8 ppm ● 0.5 ppm CO (2 reps)	Powercell CO reference poisoning
				METROLOGY for	H ₂

DROGEN VEHIC

Example of test campaign details (VTT 1-1)

Day 1 / Begin and end characterisation	Day 6 / ¹³ CO – conditions A
A start-up - modified stack-test	A start-up - modified stack-test
Break-in	Preconditioning
Preconditioning	 Internal AB – measurement 1 A
Polarisation curve	 Shut-down – safe air purge
Reference CO-poisoning	
 Shut-down – safe air purge 	
Day 2 / 0.5 ppm FC-DLC	Day 7 / ¹³ CO – conditions A
 A start-up - modified stack-test 	 A start-up - modified stack-test
Preconditioning	Preconditioning
 0.5 ppm CO with FC-DLC (max 6 hours) 	 Internal AB – measurement 1 B
 Shut-down – safe air purge 	 Shut-down – safe air purge
Day 3 / 0.5 ppm FC-DLC	Day 8 / ¹³ CO – conditions B
 A start-up - modified stack-test 	 A start-up - modified stack-test
Preconditioning	Preconditioning
 0.5 ppm CO with FC-DLC (max 6 hours) 	 Internal AB – measurement 2 A
 Shut-down – safe air purge 	 Shut-down – safe air purge
Day 4 / 0.2 ppm FC-DLC	Day 9 / ¹³ CO – conditions B
 A start-up - modified stack-test 	 A start-up - modified stack-test
Preconditioning	Preconditioning
 0.2 ppm CO with FC-DLC (max 6 hours) 	 Internal AB – measurement 2 B
 Shut-down – safe air purge 	 Shut-down – safe air purge
Day 5 / 0.2 ppm FC-DLC	Day 10 / Begin and end characterisation
 A start-up - modified stack-test 	 A start-up - modified stack-test
Preconditioning	Break-in
 0.2 ppm CO with FC-DLC (max 6 hours) 	Preconditioning
 Shut-down – safe air purge 	Polarisation curve
	Reference CO-poisoning
	 Shut-down – safe air purge

 One campaing (e.g. 1-1) contains ten days.

 In each day one program is used.

 One program consists in several test modules

Test modules for Task 2.1 (and other Tasks)

Test module	Title	Comment
Test module TM 1	Shut-down without air	Not used normally
Test module TM 2	Shut-down with air	The default
Test module TM 3	Shut-down with hydrogen soak	Only for S-measurements
Test module TM 4	A start-up	
Test module TM 5	A start-up after hydrogen soak	Only for S-measurements
Test module TM 6	Break-in procedure	
Test module TM 7	Preconditioning	
Test module TM 8	Polarisation curve	
Test module TM 9	Reference CO-poisoning	5 ppm CO
Test module TM 10	IAB effect measurement	Internal air bleed using ¹³ CO
Test module TM 11	CO and CO+CO ₂ with FC-DLC	CO: 0.05, 0.2 and 0.5 ppm
		CO2: 0 ppm, 2 ppm, 20 ppm
Test module TM 12	CO and CO+CO ₂ with steady-state	CO: 0.05, 0.2 and 0.5 ppm
		CO2: 0 ppm, 2 ppm, 20 ppm

Test programs for Task 2.1 (Study of reversible impurities)

- The CO levels 0.35 ppm or 0.8 ppm may be added if 0.05 ppm level is not usable.
- The details for the program for ¹³CO oxidation rate (IAB effect) are still developed
- New results for CO₂ importance may change CO+CO₂ programs

Test program	Title	Comment
Test program P-01	Reference characterization	Break-in, Pol curve and ref CO. Day
		1 and day 10.
Test program P-02	IAB effect measurement 1	Selected parameters 1 (cathode or
		cathode/anode pressure as in NPL
		first measurements in campaign 3-
		1)
Test program P-03	IAB effect measurement 2	Selected parameters 2 (anode
		recirculation rate as in NPL in
		campaign 3-1)
Test program P-04	FC-DLC measurement with CO level	
	0.05 ppm CO	
Test program P-05	FC-DLC measurement with CO level	
	0.2 ppm CO	
Test program P-06	FC-DLC measurement with CO level	
	0.5 ppm CO	
Test program P-07	FC-DLC measurement with CO level	
	0.2 ppm + 2 ppm CO ₂	
Test program P-08	FC-DLC measurement with CO level	
	0.2 ppm + 20 ppm CO ₂	
Test program P-09	Steady-state measurement with CO	Optional. For comparing FC-DLC
	level 0.2 ppm CO	and steady-state.
Test program P-10	Steady-state measurement with CO	Optional. For comparing FC-DLC
	level 0.5 ppm CO	and steady-state.
Test program P-11	FC-DLC measurement with CO level	Optional. For comparing SU/SD
	0.5 ppm CO and H2 soak.	procedures.

Test conditions for S2 – mild automotive conditions (limited by pressure ratings of components)

	Parameters	Symbol	Unit	Values		Parameters	Syn
-	Nominal stack operating temperature at stack inlet	T.Si,CL	°C	80		Oxidant (or air) gas inlet humidity	RH. DP1
	Fuel gas inlet temperature	T.Si.A	°C	85	1 -	Oxidant gas outlet pressure	p.Si
	Fuel gas inlet humidity Will depend on recirculation rate. At low power (less than 0.6 Acm ⁻²) dew point is over 64 °C, since minimum	RH.SI.A DPT.SI.A	% RH °C	50 @80°C 64 (1.5 single pass fuel stoic)	THODE	Oxidant Cathode stoichiometry	Con Con Stoi
ш	flow rate must be maintained. Fuel gas outlet pressure (absolute)	p.So.A	kPaa	130		Minimum current density for stoichiometry operation	
ANODE	Fuel gas composition / purity p. 5 in DoA: The level of oxygen in the hydrogen fuel is also controlled if	Conc.Si.A.H2, Conc.Si.A.GasX		According to H2 5.0 quality with details, when needed		Minimum air flow rate value for 10 cell S2 stack	I.S.I
	hydrogen quality is lower than 5.0.			(CO/CO2 more than 20% of ISO limits).	de	ne nominal current density ensity is 0.3 A cm ⁻² and all prrent density and returne	Í the
	Fuel stoichiometry	Stoic.S.A		1.01 (99% total fuel utilisation)			
	Single pass fuel stoichiometry The target is to have 50% RH when i = max. (1.2 Acm ⁻²). This recirculation rate (single point) is used in all measurements, excluding possibly ¹³ CO measurements.	Stoic.sp.A		About 1.5 at 100%, which is 14-16 lpm. ¹	(st	his is also the minimum cu toic 2). The cathode flow rrent density is reduced.	

Parameters	Symbol	Unit	Values
Oxidant (or air) gas inlet humidity	RH.Si.C	% RH	50 @80°C
	DPT.Si.C	°C	64
Oxidant gas outlet pressure	p.Si.C	kPaa	120
Oxidant	Conc.Si.C.O2, Conc.Si.C.GasX		According to ISO 8573- 1:2010
Cathode stoichiometry	Stoic.S.C		2.0
Minimum current density for stoichiometry operation	I.S.MinGasFlow	A/cm2	0.3
Minimum air flow rate value for 10 cell S2 stack	I.S.MinGasFlow	dm3/min	19.4

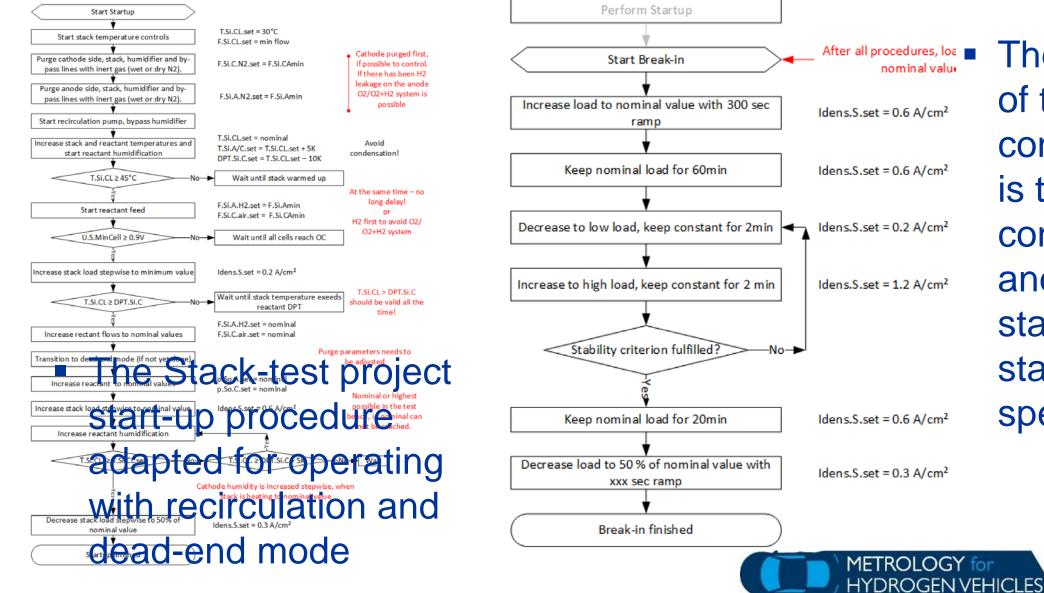
The nominal current density is 0.6 Acm⁻². 50% of nominal current density is 0.3 A cm⁻² and all the measurements are started from this current density and returned to this current density.

This is also the minimum current density for stoichiometry operation (stoic 2). The cathode flow rate is kept constant (19.4 dm3/min) if current density is reduced.

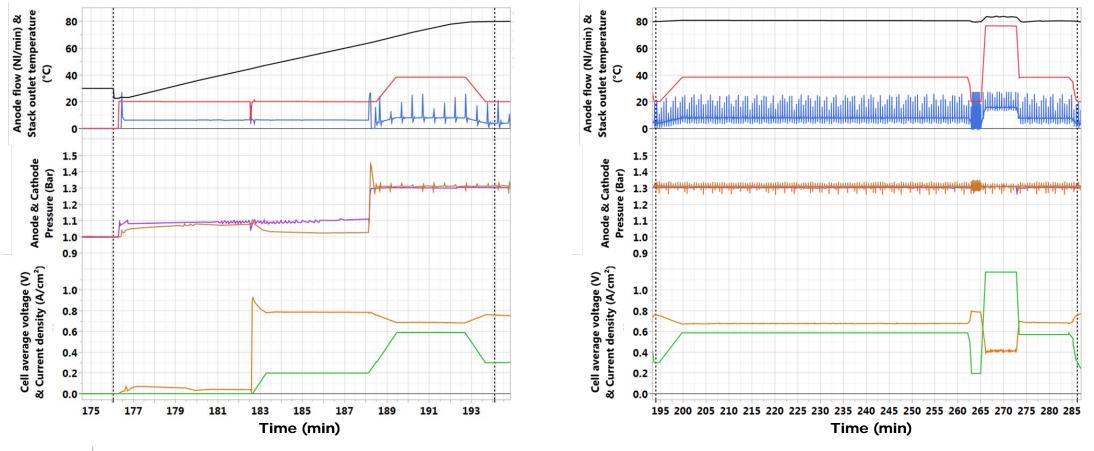
Stacks used in measurements: S2 and S3 from Powercell Sweden

- Anode MEA 0.05 mgPt/cm-2 with or without CRT additives
- In this S2 version MEA has 191 cm2 active area.
- Low pressure drop, easy integration, but only 1.2 Acm-2 max i

Max continuous temperature	85 °C
Humidity	Non-condensing at inlet
Fuel Pressure	< 1.2 Bar (g)
Coolant pressure	< 1.5 Bar (g)
Ambient temperature	-30 - 70 °C
Fuel composition (dry basis)	40-100 % H ₂ (0-60% inert dilutants, i.e. He + N ₂ + Ar)



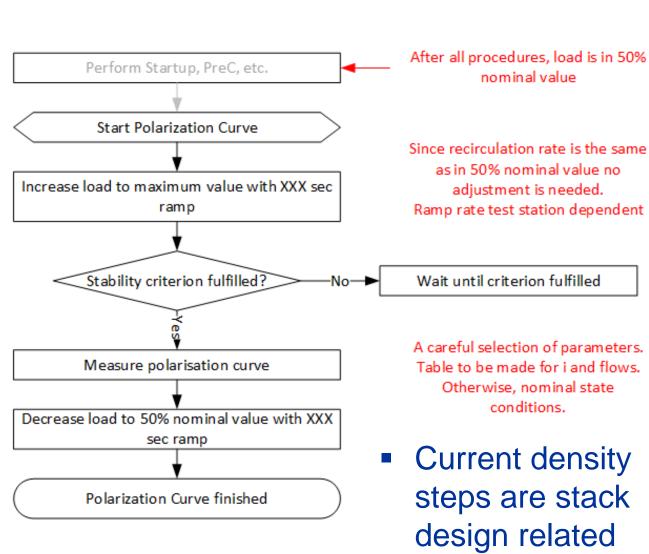
Result examples from different test procedures and programs


Example – start-up and preconditioning procedures

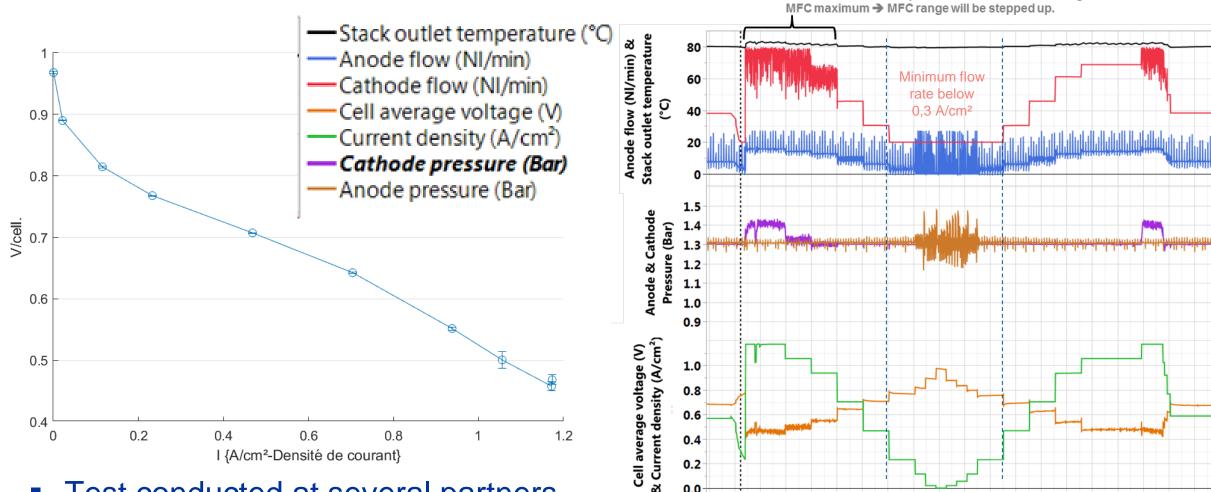
The purpose of the preconditioning is to ensure controlled and similar status of the stack before specific tests

Example – start-up and preconditioning procedures

- Stack outlet temperature (°C)
- Anode flow (NI/min)
 Cathode flow (NI/min)
- -Cathode now (Ni/min
- Cell average voltage (V)
- -Current density (A/cm²)
- Cathode pressure (Bar)
- Anode pressure (Bar)


✓ Steps validated with HYDRAITE PC-S2 stack

Example – polarisation curve procedure


(here for S2)

dwell	i / Acm^-2	Load [%]	Step
5	1.2	100	1
5	1.08	90	2
5	0.96	80	3
5	0.72	60	4
5	0.48	40	5
5	0.24	20	6
2	0.12	10	7
2	0.06	5	8
2	0.024	2	9
2	0	0	10
2	0.024	2	11
2	0.06	5	12
2	0.12	10	13
5	0.24	20	14
5	0.48	40	15
5	0.72	60	16
5	0.96	80	17
5	1.08	90	18
5	1.2	100	19
74	Total time		
	Total time OGY for GEN VEHICLES		C

HYDRAITE

Example results – polarisation curve HYDRAITE

280

290

300

310

320

HYDROGEN VEHICLES

METROLOGY for

330

Time (min)

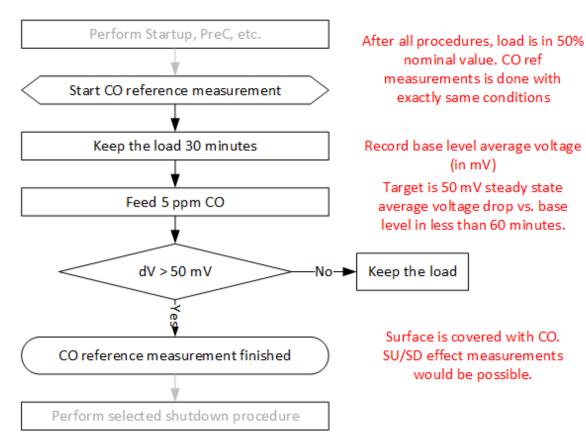
340

350

360

6

H X D K A I

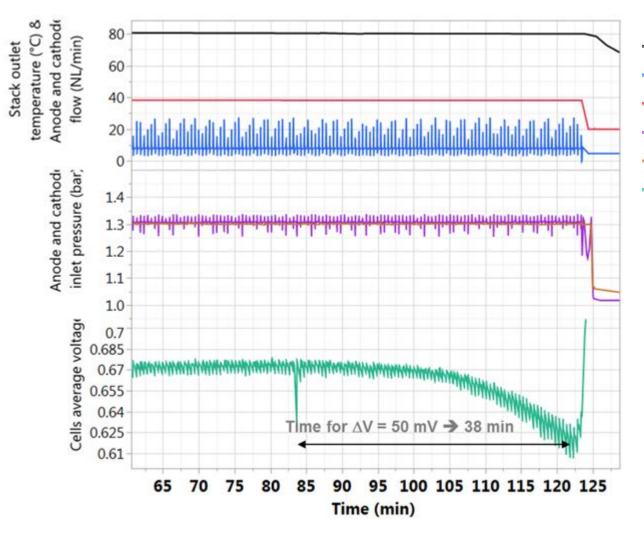

370

Bad cathode flow and pressure control when working at

- Test conducted at several partners (performance consistent with PC data)
- ✓ Procedure ok Test to be repeated for final validation

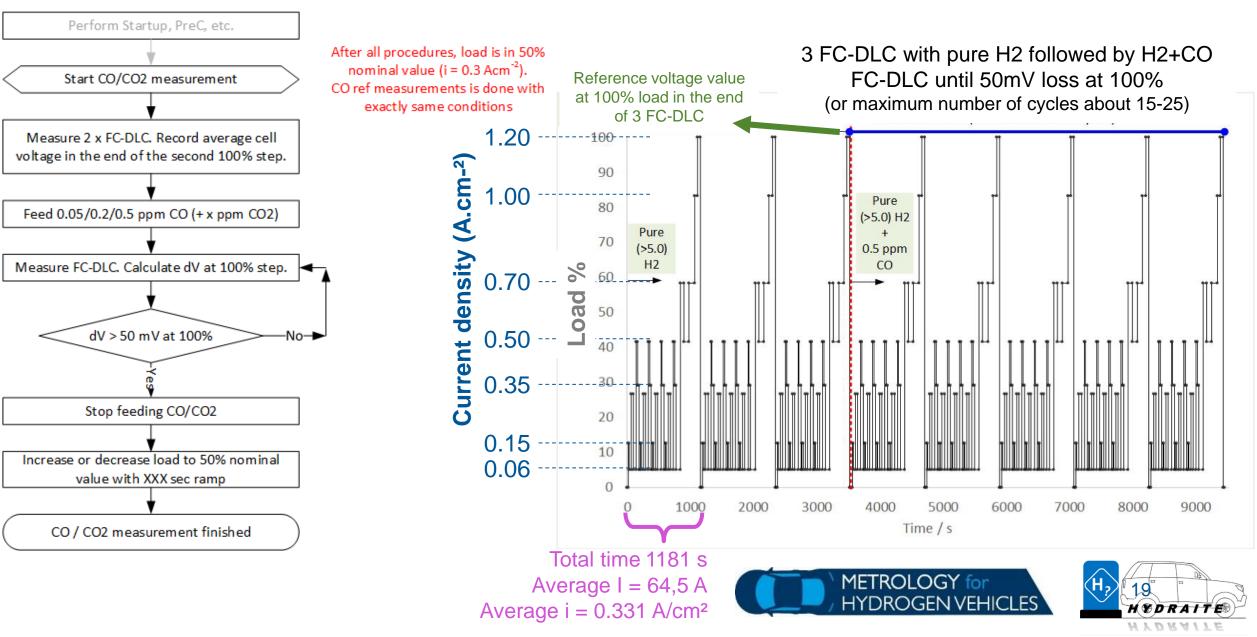
Example results – CO reference poisoning

(in mV)

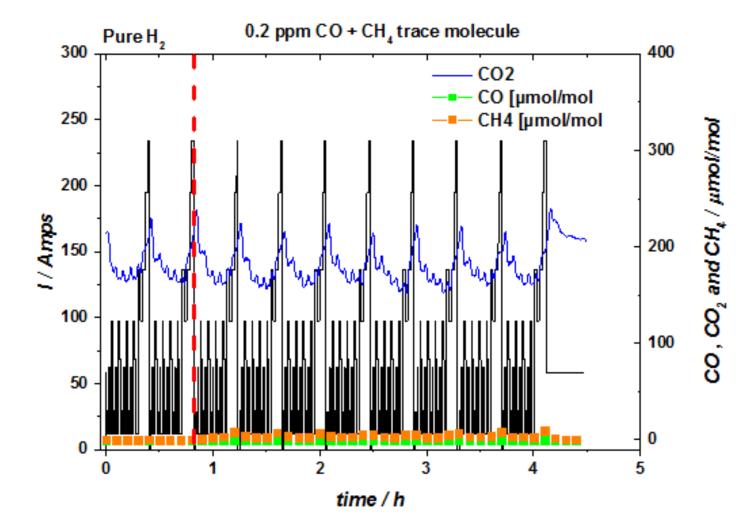

The purpose with CO reference poisoning is to

- a) Verify that stack has not been aged too much during previous tests
- b) Verify that CO poisoning by different partners can give similar results
- The CO concentration is high to minimize effects of test station

Example results – reference (5 ppm CO) poisoning

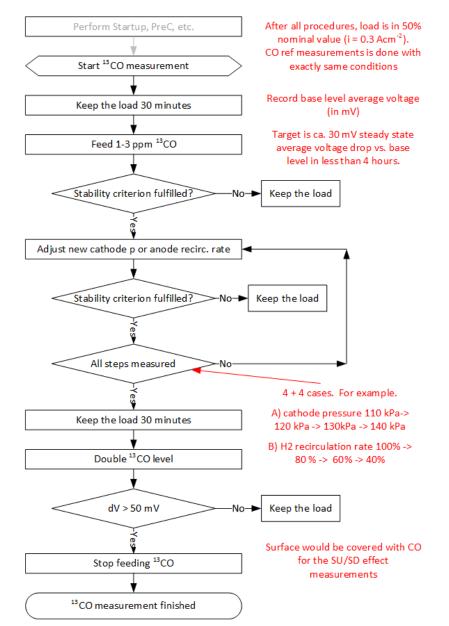

- Stack outlet temperature (°C)
- Anode flow (NL/min)
- cathode flow (NL/min)

- —Anode pressure (H_PT_02)
- Cathode pressure (O_PT_02)
- Cells average Voltage (V)
 - Procedure ok
 But still preliminary measurement
 → done at 0.6 instead of 0.3 Acm⁻²



Example results – FC-DLC measurement

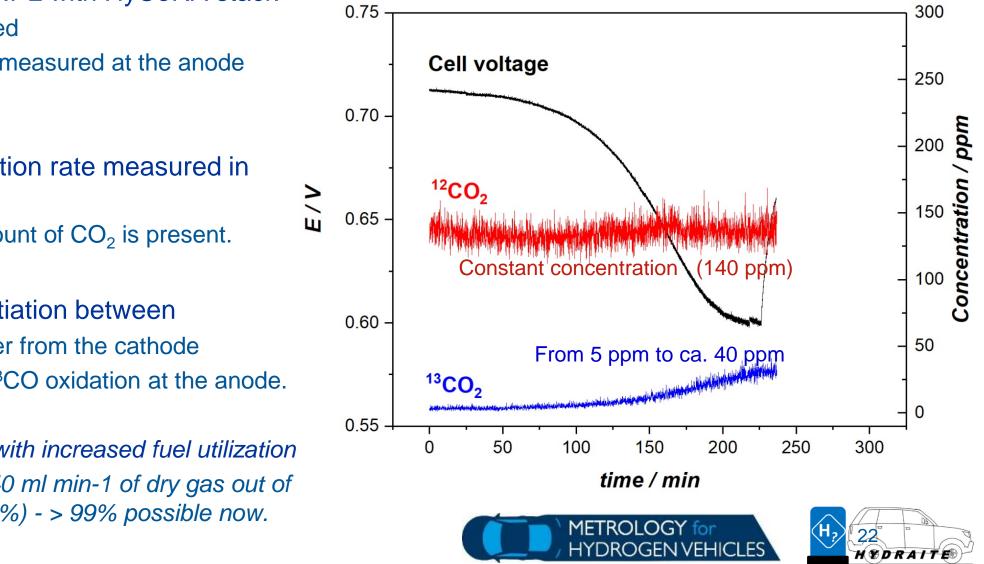
Example results – FC-DLC with 0.2 ppm CO



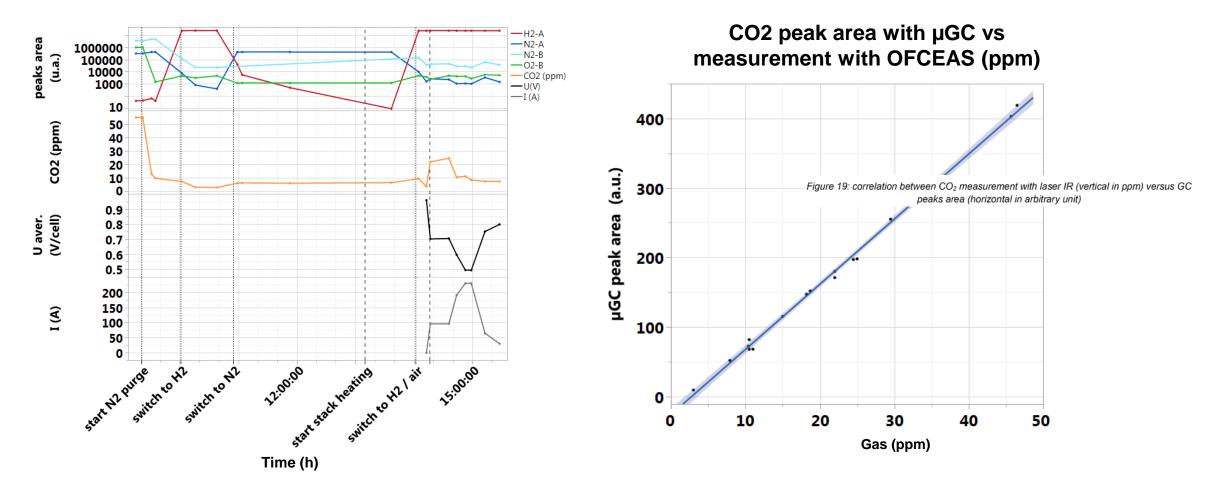
- Procedure tested on HyCoRA stack at NPL
- Low (95%) fuel utilisation
 Still 150-200 ppm CO2
- No CO detected at the exit of the stack

Example results – ¹³CO measurement (HyCoRA stack)

- A central part of the experimental work in WP2 in HYDRAITE project is to measure CO oxidation rate when CO contamination is proceeding using ¹³CO.
- In ¹³CO measurements the rate of CO oxidation is measured as a function of different parameters (pressure, recirculation rate).


→ Low levels of CO oxidation can be measured from the level of ${}^{13}CO_2$ formed.

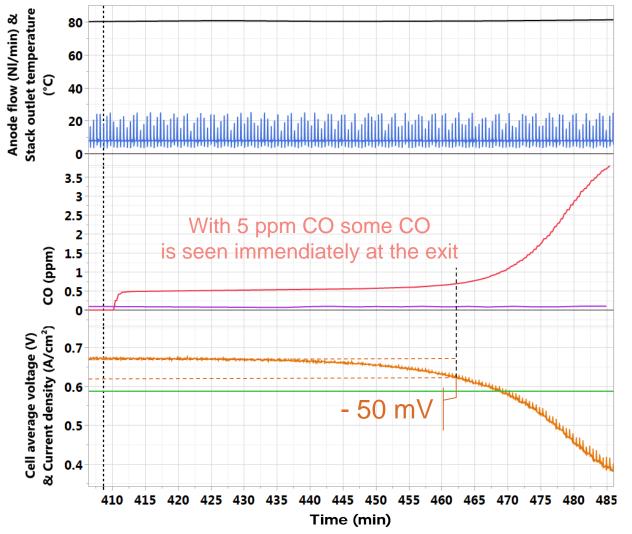
 \rightarrow Give very important information for the contamination risk model.



Example results – ¹³CO measurement

- Test conducted at NPL with HyCoRA stack
 - 2.5 ppm ¹³CO used
 - $^{12}CO_2$ and $^{13}CO_2$ measured at the anode recirculation loop.
- First time CO oxidation rate measured in operated PEMFC While significant amount of CO_2 is present.
- Successful differentiation between $^{12}CO_2$ from cross-over from the cathode $^{13}CO_2$ produced by ^{13}CO oxidation at the anode.
- Next step: same but with increased fuel utilization bleeding a total of 140 ml min-1 of dry gas out of the loop (low Uf 96.6%) - > 99% possible now.

Example results – on-line gas analysis implementation



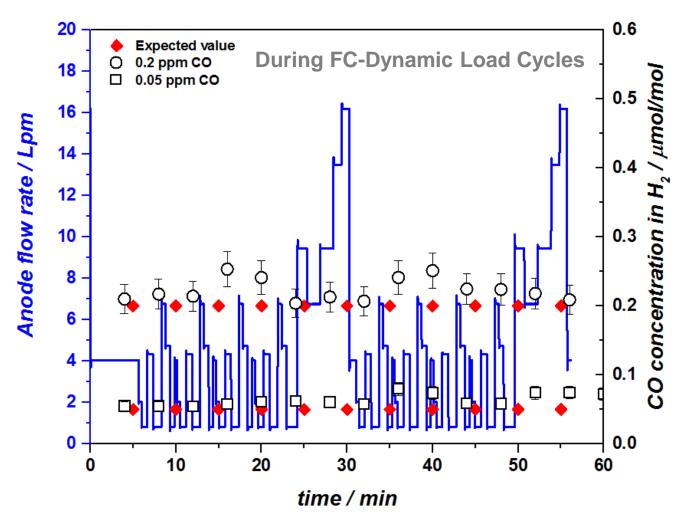
Evolution of gas peaks area measured with µGC (top) and CO2 measured with laser IR (middle), cells voltage and current (bottom) during gas switch and stack operation

Example results – on-line gas analysis during preliminary reference (5ppm CO) poisoning test

- -Stack outlet temperature (°C)
- —Anode flow (NI/min)

—CO (ppm)

- Cell average voltage (V) — Current density (A/cm²)
 - Test with HYDRAITE stack at CEA
 - On-line measurement of CO ok
 - To be added: CO2 and valid O2 measurements


Used as preliminary information

Measurement done at 0.3 instead of 0.6 Acm⁻² Measurement to be stopped with 50 mV voltage drop for the actual reference poisoning test

Example results – on-line gas analysis during FC-DLC with 0.2 or 0.05 ppm CO

- Test conducted with HyCoRA stack
- Dilution system by NPL
- ✓ FC-DLC with 0.2 ppm CO ok
- ✓ FC-DLC with 0.05 ppm CO ok

Summary – Reversible impurities testing in HYDRAITE

- Experimental HYDRAITE procedures defined for Fuel Cell stack measurements based on previous project and adapted to specific requirements for the anode side such as fuel recirculation, dead-end mode and fuel contamination
- Procedures implemented and validated at stack level Preliminary measurements using HYDRAITE or HyCoRA stacks completed for each steps First online gas analyses data available during FC measurements (particularly ¹³CO)
- On-going work and next steps

Complete application of the test programs for the different levels of CO concentration (down to 0.05 ppm when possible), CO+CO₂ mixtures and sharing of the stacks among partners for comparison.

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 779475. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe and Hydrogen Europe Research.

THANK YOU

Jari Ihonen & Sylvie Escribano

jari.ihonen@vtt.fi sylvie.escribano@cea.fr

+358 503460970 & +33 4 38789406

hydraite.eu

metrohyve.eu