



#### Lessons learnt with hydrogen sampling

Ole S. Kjos SINTEF

12/9 - 2019



#### **Overview**

- Fuel quality results
- Sampling methodology
- Sampling experiences
- Shipment
- Analytical comparison
- Filter analysis
- Conclusions





#### Introduction

- Sampling H<sub>2</sub> from HRS since 2012
- Experience from 38 gas and 18 particulate samples will be covered here (Hydraite + Hycora)
- 4 European countries
- 4 Sampling campaigns (4 years)







#### **Fuel quality results**

- Results from analysis by SmartChemistry using ASTM methods
- Main finding is that despite some violations the fuel quality is good







#### **Fuel quality results**

- Based on analysis from SmartChemistry using ASTM methods
- Main finding is that despite some violations the fuel quality is good
- Most common violations are components from air, and hydrocarbons
- No violations for CO, halides or sulphur
- Often an explanation for the violations
- No particulate samples above ISO limits





#### **Fuel quality violations**

| Component                   | Limit<br>[ppm] | Average<br>[ppm] | Median<br>[ppm] | Max<br>[ppm] | Violations             |
|-----------------------------|----------------|------------------|-----------------|--------------|------------------------|
| O <sub>2</sub>              | 5              | 7.3              | 5.7             | 13           | 7 (+1 at<br>the limit) |
| $N_2 + Ar$                  | 100*           | 527              | 398             | 1444         | 6                      |
| CO <sub>2</sub>             | 2              | 5.7              | 5.7             | 5.7          | 1                      |
| Non Methane<br>Hydrocarbons | 2              | 30               | 30              | 30           | 1                      |





#### Fuel quality violations

|          | -      |        |        |        |        |        |        |        |        |               |        |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|--------|
|          | HD-SC1 | HD-SC1 | HY-SC3 | HY-SC2 | HY-SC2 | HY-SC2 | HY-SC2 | HY-SC2 | HY-SC2 | HY-SC1        | HY-SC1 |
| Station  |        |        |        |        |        |        |        |        |        |               |        |
| ID       | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 3             | 10     |
|          |        |        |        |        |        |        |        |        |        |               |        |
| THC (C1) | 0.4346 | 0.1704 | 47     | 0.07   | 0.36   | 0.30   | 0.42   | 5.1    | 0.88   | 0. <b>5</b> 5 | 0.1    |
| Methane  | 0.41   | 0.14   | 17     | 0.062  | 0.18   | 0.18   | 0.38   | 5.0    | 0.85   | 0,093         | 0.03   |
| Acetone  | 0.009  |        |        | 0.0045 | 0.0069 | 0.0174 | 0.011  | 0.045  | 0.0072 | 0.0078        | 0.0078 |
| 02       | 1.1    | <1     | 1.8    | 11     | 5.7    | 5.2    | 5.4    | 13     | 5.4    | 4.1           | 5.7    |
| He       | <10    | 15     |        |        | 40     |        |        |        |        |               |        |
| N2 & Ar  | 237.48 | 234.47 | 452    | 26     | 18     | 56     | 378    | 419    | 76     | 1444          | 34     |
| N2       | 237    | 234    | 448    | 26     | 18     | 56     | 378    | 416    | 76     | 1443          | 34     |
| Ar       | 0.48   | 0.47   | 4.3    |        |        |        |        | 3.1    |        | 0.67          | 0.46   |
| CO2      | <0.1   | <0.1   | 0.37   |        |        |        |        | 5.7    |        | 0.43          |        |





#### **Fuel quality violations**

|                       | HD-SC1 | HD-SC1 | HY-SC3       | HY-SC2 | HY-SC2 | HY-SC1 H     | -SC1 |
|-----------------------|--------|--------|--------------|--------|--------|--------------|------|
| Station               |        |        |              |        |        |              |      |
| ID                    | 1      | ļ į    | 3            | 7      | 8      | 3            | 10   |
|                       |        |        |              |        |        |              |      |
| THC (C1)              | 0.4346 | 0.1704 | 30           | 0.42   | 5.1    | 0.55         | 0.1  |
| Methane               | 0.41   | 0.14   | 17           | 0.38   | 5.0    | 0.093        | 0.03 |
| <b>O</b> <sub>2</sub> | 1.1    | <1     | 1.8          | 5.4    | 13     | 4.1          | 5.7  |
| He                    | <10    | 15     |              |        |        |              |      |
| N <sub>2</sub> & Ar   | 237.48 | 234.47 | 452          | 378    | 419    | 1444         | 34   |
| N <sub>2</sub>        | 237    | 234    | 448          | 378    | 416    | 1443         | 34   |
| Ar                    | 0.48   | 0.4    | 4.3          |        | 3.1    | 0.67         | 0.46 |
| CO <sub>2</sub>       | <0.1   | <0.1   | 0.37         |        | 5.7    | 0.43         |      |
|                       |        |        | $\checkmark$ |        |        | $\checkmark$ |      |





#### **Fuel impurities within limits**

| Component         | Count | Average excl violations [ppm] |
|-------------------|-------|-------------------------------|
| CH <sub>4</sub>   | 38/38 | 0.77                          |
| Acetone           | 19/38 | 0.012                         |
| Ethane            | 12/38 | 0.59                          |
| EtOH              | 19/38 | 0.040                         |
| Isopropyl Alcohol | 9/38  | 0.015                         |
| Propane           | 25/38 | 0.39                          |
| Toluene           | 8/38  | 0.0061                        |
| Isobutane         | 12/38 | 0.24                          |
| N-butane          | 5/38  | 0.0118                        |

Table shows number of samples where compound is identified, total samples in campaign, average value of detecte componds [ppm]





#### **Fuel impurities within limits**

Table shows number of samples where compound is identified, total samples in campaign, average value of detected compounds [ppm]

| Component        | Count | Average [ppm] |
|------------------|-------|---------------|
| H <sub>2</sub> S | 34/38 | 1.49E-5       |
| COS              | 38/38 | 2.99E-5       |
| MTM              | 4/38  | 6.43E-6       |
| CS2              | 12/38 | 3.67E-6       |
| DMS              | 8/38  | 5.19E-5       |
| $C_4Cl_4F_6$     | 38/38 | 0.011         |





#### Gas sampling

- Linde H2 Qualitizer
- Parallel sampling
- Sample bottles are evacuated in the lab, equipment can be purged before sampling
- Efficient sampling
- During cascade change station will do a leak-test (pressure monitoring)
  - $\rightarrow$ Sample bottle have to be closed









#### **Sample containers**

# Spectraseal treated 10L cylinders used

- Evacuated to 2 mbar and filled to 10 bar with 6.0
   H<sub>2</sub> 2x, and then evacuated
- Tracking of cylinders
  → No carryover

|          | HY-SC2-10 | HY-SC3-2  |
|----------|-----------|-----------|
| THC (C1) | 5.1       | 1.7       |
| Methane  | 5.0       | 0.6       |
| Acetone  | 0.045     |           |
| Propane  | 0.066     | 0.018     |
| 02       | 13        |           |
| N2 & Ar  | 419       | 8         |
| N2       | 416       | 8.3       |
| Ar       | 3.1       |           |
| CO2      | 5.7       |           |
| СО       | 0.015     | 0.001     |
| TS       | 0.00011   | 0.00001   |
| H2S      | 0.000012  | 0.0000026 |
| COS      | 0.000085  | 0.0000071 |
| CS2      | 0.00001   |           |
| тн       | 0.0033    | 0.0026    |
| C2Cl2    | 0.0023    |           |
| C4Cl4F6  | 0.0010    | 0.0026    |





#### **Particulate sampling**

- Hydac PSA H70
- Need H<sub>2</sub> amount (HRS)
- Used a 0.2um filter (ASTM) rather than a 5 um filter (iso / Hydac)
- Sensitivity is good with standard deviation 0.1 mg/kg H<sub>2</sub> obtained
- Sufficient to meet the ISO detection limit of 1 mg/kg
- Most samplings have been done in series with Linde qualitizer
- Purging of sampler a possible challenge
  Addressed by redesign by HYDAC







#### **Particulate sampling**

- Filter needs to be weighted, handled and changed in clean atmosphere
- Clean room in the lab
- Inflatable glovebox in the filed
- Measurements with field blanks proves the concept
- Several discarded samples, no easy way to reset equipment fast (Sampler cold, car full etc.)





#### **Practical experiences**

- No safety incidents, and no events that lead the station to shut down
- Using Linde qualitizer and Hydac PSA H70 does not require station operators to be present (local rules might)
- Sampling will be just a regular filling seen from the station side
  - → Refuelling card can be locked after X attempts, can cause challenges due to the need for purging







#### **Sampling challenges**

#### Need for empty FCEV

- Few FCEV available
- Long time to empty
- Contaminated station = contaminated car (gas)
- Most suited for routine analysis







### **Combined sampling**

Obtain particulate and gas sample at the same time

- One car for both samples
- Technically not a challenge
- More equipment = Pressure drop and volume
- Which device should be put first
  - $\rightarrow$  Linde first can trap particulates
  - → Hydac first can trap sulphur species (more surface)








#### **Combined sampling**

Obtain particulate and gas sample at the same time

- One car for both samples
- Technically not a challenge
- More equipment = Pressure drop and volume
- Which device should be put first
  → Linde first can trap particulates
  - → Hydac first can trap sulphur species (more surface)







#### **Sample shipment**

Shipment of pressurized H<sub>2</sub> is challenging

- Different national rules
- Customs
- Transport companies have little experience, handover between local and global carriers a challenge
- HRS is often not a good collection point for carriers
- Using laboratories as collection points for cylinders
- Should be carried out as fast as possible









#### **Analysis comparison**

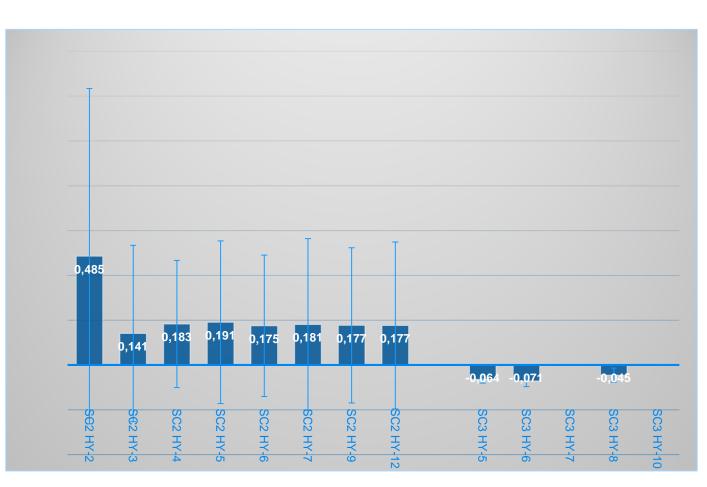
Until Hydraite project only SC in USA were able to analyse the full standard

- Few options to compare data from independent labs
- Some labs could do part of the analysis
- Hydraite  $\rightarrow$  Europe will shortly have 3 laboratories
- SC samples have to be transferred to smaller bottles → Increases risk for contamination





#### Laboratory comparison


|                  | SC       | NPL              | SC       | NPL              | SC       | NPL              | SC       | NPL                      |
|------------------|----------|------------------|----------|------------------|----------|------------------|----------|--------------------------|
|                  | HD-SC1-1 |                  | HD-SC1-4 |                  | HD-SC1-6 |                  | HD-SC1-7 |                          |
| N2               | 75       | 70 ± 11          | 237      | 231 ± 22         | 8.9      | 7.96 ± 0.42      | 234      | 33.5 ± 1.8               |
| Ar               | 0.75     | 0.628 ±<br>0.016 | 0.48     | 0.336 ±<br>0.017 | < 0.4    | < 0.30           | 0.47     | < 0.30                   |
| H <sub>2</sub> O | < 1      | $3.30 \pm 0.20$  | < 1      | 4.29 ± 0.30      | 1.5      | 6.01 ± 0.40      | < 1      | 7.1 ± 0.5                |
| CO <sub>2</sub>  | < 0.1    | < 0.020          | < 0.1    | < 0.020          | < 0.1    | < 0.020          | < 0.1    | <del>0.040</del> ± 0.005 |
| O <sub>2</sub>   | < 1      | 0.794 ±<br>0.023 | 1.1      | < 0.030          | 2.3      | 1.105 ±<br>0.033 | < 1      | < 0.030                  |
| He               | < 10     | < 30             | < 10     | < 30             | 13       | < 30             | 15       | < 30                     |
| NMH<br>C         | 0.14     | < 0.10           | 0.02     | < 0.10           | 0.03     | < 0.01           | 0.03     | < 0.1                    |
| CH <sub>4</sub>  | 0.12     | < 0.020          | 0.41     | < 0.020          | 0.11     | < 0.020          | 0.14     | 0.0194 ±<br>0.0040       |





#### **Gravimetric filter analysis**

- None of the samples were above the limit of 1 mg/kg H<sub>2</sub>
- Standard deviation on measurement from 0.1 to 0.3\*mg/kg
- Low H<sub>2</sub> amount increases uncertanty
- Recommended drying cycle from Hydac not sufficient for our type of filters
- Filters dried / weighted until no weight change
- \*Before drying procedures were improved







### **Filter SEM analysis**

- Visually filters look clean, only traces in SEM
- Edge is compressed by the Oring, but confirmed by SEM to not de-laminate (still contains same amount of fluor, but have less porosity)
- Holes in the filter indicates that particulates penetrates the filter
- Filters look noticeably different after use, but not dirty





#### Conclusions

- Sampling can be carried out safely and without disrupting normal operations of the station
- Overall high purity of the hydrogen, some violations
- No obvious trends for impurities based on feedstock
  - → Most regular impurities comes from operation?
- More capable laboratories will give better analysis
- Filter samples indicates low amount of particulates, but some penetration of the filter







#### **Available resources**

- HYDRAITE deliverable D3.1
- Hycora project reporting
- Publications





[Acknowledgements...]

## **THANK YOU**



metrohyve.eu



hydraite.eu

Ole S. Kjos

ole.kjos@sintef.no

+47 99300116