

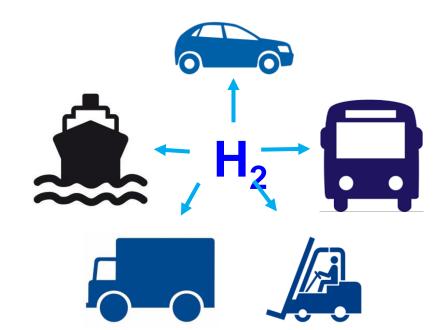
What are the next steps - impurities risk analysis?

Martine CARRE

Workshop MetroHyVe / Hydraite
Delft – 2019 September 11th and 12th

Impurity Risk Analysis and Quality Assurance

- 1. Standards and Regulation
- 2. ISO 19880-8 Application by industry
- Industrial needs and Metrology involvment



European Regulation and standards

- Alternative Fuel Infrastructure European Directive (AFI) is applicable since January 2018
- Each European country has to translate this directive in national regulation
- H2 quality for fuel cell vehicles shall be in agreement with EN 17124
- EN 17124: Hydrogen fuel Product specification and quality assurance — Proton exchange membrane (PEM) fuel cell applications for road vehicles published in November 2018 at CEN level Published in January 2019 (in France)

ISO Standards for quality

ISO 14687

H2 Quality for FCEV (Grade D) **ISO 14687 H₂ Grade D:**

Specifies the quality characteristics of hydrogen fuel produced and distributed for utilization in PEM FCV applications.

ISO 19880-8:

Specifies the methodologies to establish Quality
Assurance plans for H₂

ISO 19880-8

H2 Quality Assurance ISO 21087

H2 Analytical Methods

ISO 21087:

Specifies validation protocol of analytical methods for controlling H₂ quality

ISO 19880-8 - Quality Assurance

Objective:

 For each H₂ Refuelling Station: Evaluation of the risk to have impurities above the threshold values from production up to the HRS

3 key questions:

- What might go wrong: which event can cause the impurities to be above the threshold value?
- What is the likelihood (probability of occurrence) that impurities can be above the threshold value?
- What are the consequences (severity) for the fuel cell car?
- → Define an acceptability table

ISO 19880-8 - Quality Assurance

Acceptability table

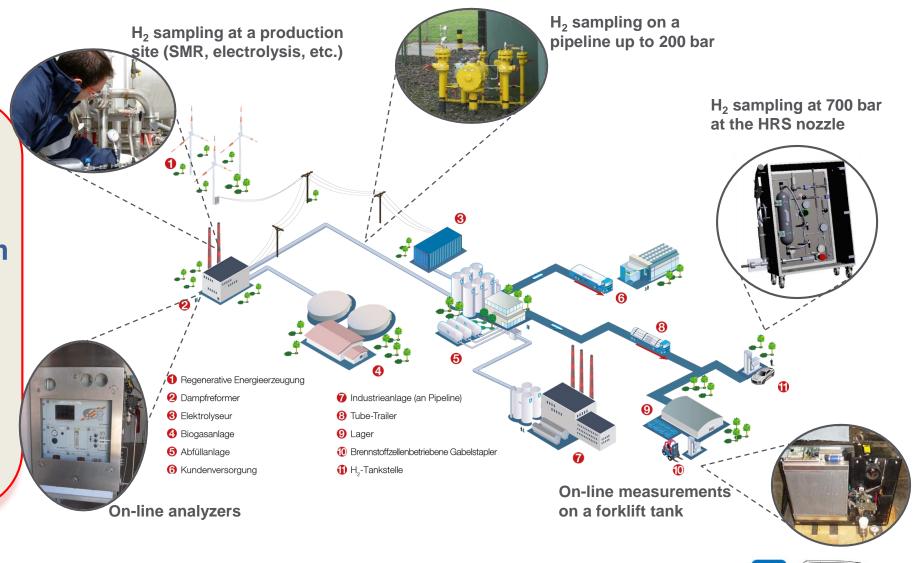
		Severity							
Occurrence		0	1	2	3	4			
as the	4								
combined	3								
probabilities	2								
of	1								
occurrence along the whole supply chain	0								
		able risk ; control or e required	Further investigations are needed: existing barriers or control may not be enough		Acceptable risk area Existing controls acceptable				

Impurity Risk Analysis and Quality Assurance

- Standards and Regulation
- 2. ISO 19880-8 Application by industry
- Industrial needs and Metrology involvment

ISO 19880-8 – Application by industry

Customize the quality assurance according:


- Evaluated risks
- Available controls on the supply chain

To avoid:

Unnecessary costs

To maintain:

High level of guarantee

Establish risk analysis from production to HRS

Example: one HRS supplied by SMR

ISO spec 14687 (r	new)	Supply Chain					
Contaminant	Threshold	Production SMR	Filling center and TT transport	HRS	Compounded probability	Severity	Criticality
Inert gases : N2	300	1	2	3	3	1	
Inert Gas Ar		0	0	0	0	1	
Oxygen	5	0	0	1	1	0	
Carbon dioxide	2	0	0	0	0	1	
Carbon monoxide	0,2	3	0	0	3	2	
Methane (CH4)	100	0	0	0	0	1	
Water	5	0	0	3	3	4	
Total sulphured components	0,004	0	0	0	0	4	
Ammonia	0,1	0	0	0	0	4	
Total hydrocarbons	2	0	1	1	1	4	
Formaldehyde	0,2	0	0	0	0	2	
Formic acid	0,2	0	0	0	0	2	
Halogenated compounds	0,05	0	1	1	1	4	
Helium	300	0	0	0	0	1	

Critical impurities:

N2, CO, H2O, Total Hydrocarbons, Halogenated compounds

To reduce the risk additionnal barriers are necessary

Define the quality assurance plan

- According to the risk assessment:
 - Define the critical impurities to follow
 - □ Define the frequency of analysis
 - □ Establish the sampling protocol (production, transport or HRS)

Selection of laboratory for analysis

- Criteria for selection:
 - □ Is it able to make the sampling?
 - ☐ Is it able to transport samples according to transport regulation
 - □ Is it able to analyze all impurities? In which delay?
 - □ Validation of the methods according to ISO 21087

Impurity Risk Analysis and Quality Assurance

- Standards and Regulation
- 2. ISO 19880-8 Application by industry
- 3. Industrial needs

Industrial needs

- Reduce cost for analysis:
 - □ On line sensors
 - Less impurities to control
 - □ Clarification of "total" in the specification
 - □ Reduce sampling device cost
- Analytical methods validation
 - Need reference gas mixtures
 - Need proficiency tests
- □Collect all data from different production sources and HRS to define probability of occurrence for impurities
- Better knowledge of critical impurities for the fuel cell with acceptable threshold
- **....**

THANK YOU

metrohyve.eu

Metrology involvement

□ To be discussed

Questions for Speakers ?

