

Impurities beyond the scope of ISO 14687

Dr. Christian Spitta¹, Thomas Optenhostert¹ Dr. Thor Aarhaug² ¹ Zentrum für BrennstoffzellenTechnik, ZBT ² SINTEF

Workshop on hydrogen quality and flow metering for hydrogen fuel cell vehicles 11-12 September 2019, Delft (NL)

Overview

- Motivation
- Work plan
- Results
- Outlook

Motivation

- The actual ISO 14678-2 considers contaminants, which are originated from hydrogen production processes.
- Especially impurities originated by the HRS are not covered.
- Recently beside the known impurities included by the ISO 14768-2 new potential contaminants from HRS technology like oil, grace, lubricants etc. have been found in the hydrogen fuel.
- Information on the potential sources, impact of the fuel cell and measures for mitigation of the risk of contamination of the hydrogen fuel are required.

Workplan – what has been done

- Detailed questionnaire,
- Literature survey and
- Interviews

with HRS component suppliers, HRS manufacturer and operators etc. for gathering information regarding

- maintenance and service plans incl. cleaning materials etc.,
- used materials at "events" like commissioning, repairs etc. and
- implemented materials in HRS components (compressors, sealing etc.)
- Discussion with OEMs etc. at 1st Hydraite Workshop

- Detailed information regarding maintenance practices could not be gathered.
- Lubricants, solvents and cleaning agents have been mentioned such as
 - Acetone,
 - Mobil DTE 10 Excel 68,
 - 10 W 40 and
 - Tramos oxygen cleaner and
 - Steamclean HPC NF
- Also ionic liquids but without further specification
- Purging with N₂ and H₂ is performed partly manually after maintenance works at the H₂ lines. Neither sufficient H₂ drying nor the H₂ quality are checked after those events.

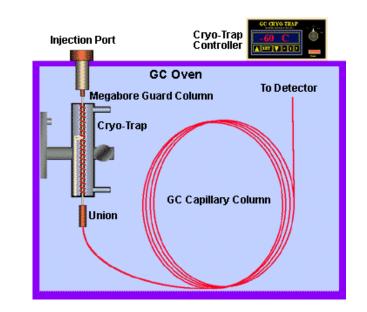
Impurities introduced by HRS components, manufacturing & maintenance

Component	Pot. poisonous ingredient	Process	Source of Pollution	Pot. poisonous ingredient	
Sealing gasket	Si (Silicon)	Piping	Insufficient cleaning after manufacturing	O ₂ , N ₂	
Cooling, Refrigerants	Freons (C ₄ Cl ₄ F ₆)	Piping	Insufficient drying after manufacturing	H ₂ O	
Compressor	Oil component	Piping	Insufficient cleaning after manufacturing	Particulates	
Compressor	Ionic liquids	Piping	Residues lubricant	Oil, sulphur	
New SS tubing	Particulates	Piping	Residues detergent	Surfactant, sodium salt, acetone, alcohol, sodium hydroxide	
Valves	Particulates	Maintenance,	Incomplete flushing	N ₂ ,O ₂ ,CO ₂	
Seals	Particulates	commissioning			
Filter	Particulates	Maintenance	Residues lubricant	Oil, sulphur	
Polymeric coating	Delaminated Coating components (Me, Carbon, Cl, P, Silicon, S)	Maintenance	Residues detergent	Surfactant, sodium salt, acetone, alcohol, sodium hydroxide	
Sealing	Sulphur vulcanised FKM, EPDM with carbon black as filler	New SS tubing	Used lubricants	Sulphur compounds	

- Residues of lubricants can be the source of various contaminants.
 - Paraffins, sulfur compounds and numerous metal compounds
- Stable coatings are a major challenge for high pressure applications.
- Polymeric materials are subject to special stresses in high pressure hydrogen applications (swelling and deforming).
- Interactions of surface-active surfactants (detergent) with system components are difficult to predict. By nature, these are capable of covering surfaces.
- Ionic liquids are another class of substances that needs to be monitored.

Assumption can be made that if there are present

- ionic surfactants,
- traces of oils or
- nonionic surfactants


they accumulate in the particle filters in a crystalline manner. However, the particle filters are not barriers to such substances.

- Currently it is not possible to estimate with what probability and with what concentration these substances can occur.
- Therefore, the risk posed by such substances cannot be conclusively assessed. This requires more analysis and practical research.

- Identification of suitable wide-scope analysis important to detect and identify new impurities like
 - GC-MS or IC or
 - Component specific analysis of particulates with SEM etc.
- Ideally: pre-concentration of samples with
 - Thermal desorption
 - Pd membrane separation
 - Cryo-focussing
- Analysis of hydrogen samples from HRS for quantification

Outlook

- Risk analysis of further H2 production and purification process like
 - Production from biomass
 - Hydrogen as by-product Chlor-alkali electrolysis
- FC measurements for analysis for the impact
- Measures and recommendations for mitigation of the risk of contamination of the hydrogen fuel

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 779475. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe and Hydrogen Europe Research.

THANK YOU

metrohyve.eu

hydraite.eu

Dr. Christian Spitta

12

c.spitta@zbt.de **_____**ZBT

+49 203 7598-4277