

Introduction to impurity risk assessment

Thor Anders Aarhaug, SINTEF

MetroHyVe / HYDRAITE joint workshop 2019-09-12

What is Risk Assessment?

- A systematic process of evaluating the potential risk that may be involved in a projected activity
- A combined effort of
 - Identifying and analyzing potentially undesirable events (risk analysis)
 - Judging tolerability while considering influencing factors (risk evaluation)
- A risk assessment determines possible mishaps, their likelihood and consequences, and the tolerances for such events
- RA part of broader Risk Management strategy where control measures are introduced to reduce or eliminate risks
- Qualitative and quantitative assessments

- How to assess the risks in your workplace?
 - 1. Identify hazards
 - 2. Decide how might be harmed
 - 3. Evaluate risks and decide on precautions
 - 4. Record your significant findings
 - 5. Review your assessment and update if necessary

Qualitative Risk Assessment

- Risk is the product of
 - Probability of occurrence
 - Impact of event
- Verbal evaluation (e.g. very unlikely, major injury)

R = P * I

			IMPACT	
		Low	Medium	High
-	Unlikely	Acceptable risk Low	Acceptable risk Low	Acceptable risk Medium
ікегіноор	Likely	Acceptable risk Low	Acceptable risk Medium	Unacceptable risk High
	Very likely	Acceptable risk Medium	Unacceptable risk High	Unacceptable risk Very high

Semi-quantitative risk assessment

- Translate verbal scale into numbers
- Avoid ambiguities (resolution)
- From ISO 19880-8:

Occurrence class	Class name	Frequency
0	Very unlikely	0 (Never)
1	Very rare	1 in 1 M fuellings
2	Rare	1 in 100K fuellings
3	Possible	1 in 10K fuellings
4	Frequent	Often

RISK = SEVERITY x LIKELIHOOD

Quantitative risk assessment

- Mathematical modelling of probability and impact
- Population statistics

PEM Stack voltage distibution

Quantitative RA: HyCoRA

- CO concentration in hydrogen produced from NG-SMR-PSA
- ANL simulation model
- Lognormal probability distribution
- RA model further developed in HYDRAITE

Quality Risk Assessment

Objective:

For each H₂ source : Evaluation of the risk if there are impurities above their threshold value

- Risk assessment methodology according to ISO:IEC Guide 73
- 3 fundamental questions:
 - What might go wrong: which event can cause the impurities to be above the threshold value?
 - What is the likelihood (probability of occurrence) that impurities can be above the threshold value?
 - What are the consequences (severity) for the fuel cell car?

RA examples: P of impurities in Steam Methane Reforming

Table 4 – Probability of occurrence of impurities (P) in SMR process with the different barrier existing in the process.										
Contaminant	Thresold [µmol/mol]	Cause possible for the source studied	Existing barrier	Р						
Inert gas: N ₂	100	Raw material	PSA	3						
		PSA malfunction								
Inert gas: Ar		Raw material		2						
Oxygen	5	Not expected to be present.		0						
Carbon dioxide	2	Raw material	PSA	0						
Carbon monoxide	0.2	Raw material	PSA	4						
			CO sensor on line							
Methane (CH ₄)	100	Raw material	PSA	2						
			methane sensor on line							
Water	5	Raw material	PSA	2						
Total sulphur components	0.004	Raw material	Desulfuration unit	0						
			Sulphur trap in reforming system							
			(poisoning/process operation)							
			PSA							
			Stainless steel pipe and vessl							
Ammonia	0.1	Raw material	PSA	0						
Total hydrocarbons	2	Trace of hydrocarbons	PSA	0						
		after reforming process								
Formaldehyde	0.01	Raw material	PSA	1						
Formic acid	0.2	Raw material	PSA	0						
Helium	100	Not expected to be present.		0						
Halogenated compounds	0.05	Raw material	Desulfuration unit	0						
			Chlorinated trap in reforming system							
			(poisoning/process operation)							
			PSA							
			Stainless steel pipe and vessel							

Bacquart IJHE 43 (2018) 11872-11883

RA examples: P of impurities in Water Electrolysis

Table 5 – Probability of occurrence of impurities (P) in Water PEM electrolysis process with the different barrier existing in the process.

Contaminant	Thresold [µmol/mol]	Cause possible for the source studied	Existing barrier	Р
Inert gas: N ₂	100	Maintenance/start-up phase Leakage	Operating procedure (maintenance/restart) PEM membrane cross over	2
The east group Any		Air intake into water tank	H ₂ operating procedure > N ₂ pressure supply	0
Oxygen	5	Generation at the anodic	TSA operating condition	2
oxygen	5	side of cell stack	Oxygen sensor	2
		Membrane cross over TSA malfunction	Operating procedure (maintenance/restart)	
Carbon dioxide	2	Water at anodic side	CO ₂ filter	1
		Air into the pure water tank	reverse osmosis purification unit for water	
			Anodic separator tank	
			Ion exchange resin in closed water loop	
			PEM membrane	
Carbon monoxide	0.2	Not expected to be present.		0
Methane (CH ₄)	100	Not expected to be present.		0
water	5	Reactant	TSA dryer	2
		I nrough PEM memorane	Dew point monitor	
		TSA malfunction	Operating procedure	
Total sulphur components	0.004	Not expected to be present		0
Ammonia	0.1	Water at anodic side	Reverse osmosis purification unit	õ
			PEM membrane	
Total hydrocarbons	2	Not expected to be present.		0
Formaldehyde	0.01	Not expected to be present.		0
Formic acid	0.2	Not expected to be present.		0
Helium	100	Not expected to be present.		0
Halogenated compounds (organo-halogenated)	0.05	Water at anodic side	Reverse osmosis purification unit	0
Halogenated compounds (Cl ₂)	0.05	From process/higher pressure of hydrogen rather than Cl ₂	Safety monitoring at the anode/Separation of Cl_2 and H_2 by the process/detected due to faster diffusivity of hydrogen gas/process would be shut down in time to avoid contamination of hydrogen with $Cl_2(g)$.	0
Halogenated compounds (HCl)	0.05	Conversion of Cl ₂ (g) would be likely to convert into HCl(g) at the catalyst surfaces.	Chemical reaction (negative Gibbs free energy)/Cl2 is unlikely to be present	0

Bacquart IJHE 43 (2018) 11872-11883

RA examples: P of impurities in Chlor-alkali process

	C C •			1.00 .1	• .1
	v of occurrence of im	DUPITIOS (P) ID ('blor-	alkali process with the	different borrier evictin	g in the process
I able 0 – FIUDabiiit	V OI OCCUITEIICE OI IIII	Dunnes (Fringuloi-	aikaii Diocess with the	- umerent banner existin	2 III UIE DIOCESS.

Contaminant	Thresold [umo]/mol]	Cause possible for the source studied	Existing barrier	Ρ
Inort coc: N	100	Maintananco/start un phaco		2
Inert gas: Ar	100	Not expected to be present		2
Ouurgon	F	not expected to be present.		4
Carbon diovido	2	Ovidation of organic matter in the bring	Chamical reaction (CO is avposted	1
Carbon dioxide	Z	Degradation of the membrane on the	to remains in the caustic soda lye	T
		cathode side made of conducting by	that is produced)	
		carboxylic acid end groups	that is produced,	
Carbon monoxide	0.2	Not expected to be present		0
Methane (CH4)	100	Not expected to be present.		0
Water	5	can be present/Process parameter	Drying system to a dew point below - 20 °C (dew point: ~40–60 °C)	2
Total sulphur components	0.004	Not expected to be present.		0
Ammonia	0.1	Not expected to be present.	Use of pure water (demineralised water)	0
Total hydrocarbons	2	Not expected to be present.	,	0
Formaldehyde	0.01	Not expected to be present.		0
Formic acid	0.2	Not expected to be present.	Use of pure water (demineralised water)	0
Helium	100	Not expected to be present.		0
Halogenated compounds	0.05	Not expected to be present.		0
(organo-halogenated)				
Halogenated compounds (Cl ₂)	0.05	From process/higher pressure of hydrogen	Safety monitoring at the anode/	0
		rather than Cl ₂	Separation of Cl ₂ and H ₂ by the	
			process/detected due to faster	
			diffusivity of hydrogen gas/process	
			would be shut down in time to	
			avoid contamination of hydrogen	
	0.05		with $\operatorname{Cl}_2(g)$.	0
Halogenated compounds (HCI)	0.05	conversion of $Cl_2(g)$ would be likely to convert	free energy//CL is unlikely to be	0
		into rieitg) at the catalyst surfaces.	present	

Bacquart IJHE 43 (2018) 11872-11883

Impact classification (ISO 19880-8)

Severity class	FCV impact	Performance impact	Hardware temporary	Hardware permanent
0	None	No	No	No
1	Minor impact Temporary power loss Still in operation	Yes	No	No
2	Reversible damage Requires specific light maintenance Still in operation	Yes or No	Yes	No
3	Reversible damage Requires specific immediate maintenance Gradual power loss that does not compromise safety	Yes	Yes	No
4	Power loss or vehicle stop that compromises safety	Yes	Yes	No
	Irreversible damage Requires major repair procedure		No	Yes
		MET	TROLOGY for	

HYDROGEN VEHICLES

HYDRAITE

Combined RA (ISO 19880-8)

Probability per one	Occurrence		Severity					
fuelling	occurrence	0	1	2	3	4		
Frequent: Often	4	+	*	*	*	*		
Possible: 10 ⁻⁴	3	+	0	*	*	*		
Rare: 10 ⁻⁵	2	+	+	0	*	*		
Very Rare: 10 ⁻⁶	1	+	+	+	0	*		
Practically Impossible	0	+	+	+	+	+		
Key	+ Acceptable risk a controls su	rea: Existing fficient	G Further inve needed: exist or control i enot	estigation is ting barriers nay not be ugh	Unaccept additional barriers	* able risk; control or required		

Impact on powertrain (ISO 19880-8)

Impurity		ISO 14687-2 threshold valueª	Severity class (from ISO 14687-2 to Level 1)	Level 1 value	Severity class (greater than Level 1 threshold)
		[µmol/mol]		[µmol/mol]	
Total non-H ₂ gases		300	1	UD	UD
Total nitrogen and argon	N ₂ , Ar	100	1 ^b	300ª	4
Oxygen	02	5	UD	UD	4°
Carbon dioxide	CO ₂	2	1	3	4
Carbon monoxide	CO	0,2	2-3 ^d	1	4
Methane	CH ₄	100	1	300	4
Water	H ₂ O	5	4	5	4
Total sulphur compounds	H ₂ S basis	0,004	4	>0,004	4
Ammonia	NH ₃	0,1	4	>0,1	4
Total hydrocarbons	CH ₄ basis	2	1-4 ^b	>2	4
Formaldehyde	CH ₂ O	0,01	2-3 ^b	1	4
Formic acid	HCOOH	0,2	2-3 ^b	1	4
Halogens		0,05	4	>0,05	4
Helium	He	300	1	300	4
Maximum particulate concentration (liquid and solid) ^e		1 mg/kg	4	>1 mg/kg	4

Combined RA SMR supply chain (19880-8)

ISO spec	cification	Supply	chain probabi	ility					Residual		al	
Impurity	Threshold	Production SMR	Pipeline distribution	Fuelling station	Compounded probability	Severity	Criticality	Additional risk reduction measures	Severity reduction measures	Prob- abili- ty	Se- veri- ty	Criti- cality
Inertgas N ₂	100	3	1	3	3	1	0	Systematic N ₂ analysis after shutdown before resuming operation or specific purging procedure	None	1	1	+
Inert gas Ar		2	0	0	2	1	+		None	2	1	+
02	5	0	1	2	2	0	+		None	2	0	+
CO ₂	2	0	0	0	0	1	+		None	0	1	+
со	0,2	4	0	0	4	2	*	CO absorber at fuelling station design margin 100 % + operation procedure for replacement when H ₂ quantity puri- fied = 50 % of design capacity.	None	1	2	+
CH ₄	100	2	0	0	2	1	+		None	2	1	+
H ₂ O	5	0	0	1	1	4	*	Check H_2O at commissioning and after maintenance involving opening of vessels or piping. Measurement shall be done at appropriate location downstream of the considered vessel or piping	None	0	4	+
TS	0,004	0	0	1	1	4	*	Check TS at commissioning and after maintenance involving parts modifi- cation (piping, valves, seals, gaskets). Not required for part replaced by identical component	None	0	4	+
NH ₃	0,1	0	0	0	0	4	+		None	0	4	+
THC	2	0	0	2	2	4	+	Oil/grease cleaning at commissioning and after maintenance. Compressor sur- veillance depending on compressor tech- nology (coalescing filter) THC analysis or commissioning and after maintenance	None	0	4	+

Combined RA SMR supply chain (19880-8)

ISO spec	cification	Supply	chain probabi	ility							Residu	al	
Impurity	Threshold	Production SMR	Pipeline distribution	Fuelling station	Compounded probability	Severity	Criticality	Additional risk reduction measures		Severity reduction measures	Prob- abili- ty	Se- veri- ty	Criti- cality
	µmol/mol												
HCHO	0,01	1	0	0	1	2	+			None	1	2	+
НСООН	0,2	0	0	0	0	2	+			None	0	2	+
Halogens	0,05	0	0	1	1	4	*	Halogenated analysis at commission cies shall be defined) or after main	ning(spe- ntenance	None	0	4	+
Не	300	0	0	0	0	1	+			None	0	1	+
				+			0			*			
Кеу		Acce	eptable ris	k area: existing sufficient	controls	Further in barriers	vestigation is needed: existing or control may not be enough	Unacce	eptable risk; barriers	addition require	al cont ed	trol or	

HYDRAITE RA

- Extend existing RA
 - Chlor-alkali: non-membrane process (chlorate)
 - Water electrolysis: water feed from desalination
- New hydrogen production methods
 - Biomass/pyrolysis (Linde process)
 - Biological hydrogen production
 - Other?
- RA Quantitative modeling

[Acknowledgements...]

metrohyve.eu

hydraite.eu

Thor Aarhaug

19

taarhaug@sintef.no

+47 92682444