

The advantages of using Dynamic reference standards

Janneke van Wijk

MetroHyve/Hydraite Workshop Delft, 2019-09-11

Overview

- The advantage and disadvantages of dynamic reference standards
- The developments in MetroHyve

Measurement challenge

- What can be considered as a dynamic reference standard versus a dynamic calibration method?
- ISO1645 describes many different dynamic blending methods but applying the standard does not necessarily make a dynamic reference standard

NPL Multi-gas, Multi-pressure Standard Humidity Generator

- Dynamic humidity calibrations in "industrial" conditions.
- Non-air gases (e.g. hydrogen, methane, synthetic natural gas, CO₂, argon)
- Pressures up to 3 MPa (30 bar)

- Hybrid generator able to generate values in single pressure dew-point temperature generation mode from -60 °C to +15 °C
- Ability to mix gases using array of mass flow controllers

MetroHyVe Hygrometer study

- Six commercially available metal-oxide hygrometers loaned by collaborators were tested by comparison against the NPL Multi-gas, Multi-pressure Standard Humidity Generator:
 - Calibrations performed in nitrogen and hydrogen:
 - at pressures of 0.17 MPa and 2 MPa
 - at dew-point temperatures from -65 °C to -20 °C
 - corresponding to amount fractions of water vapour from 0.5 µmol mol⁻¹ to 50 µmol mol⁻¹ at 2 MPa
 - generated uncertainty typically ± 0.12 °C

Summary of findings in online gas analysers session.

Novel method of H₂O reference cylinder production with primary traceability

- Novel method developed to transfer NPL Multigas, Multi-pressure Standard Humidity Generator traceability to binary H₂O in hydrogen gas mixtures in cylinders.
- MetroHyVe research target mixtures with reference value of 5 µmol mol⁻¹ water vapour content in hydrogen.
- Tests of the long-term stability of the reference gas mixtures will inform the uncertainty that can be associated with the reference values.

Permeation-based gas generation method (ISO 6145-10)

Calibrated and passivated MSB (TA Instruments)

Temperature \pm 0.02 °C Pressure \pm 0.1 mbar Flow rates \pm 1.5 mL/min Stabilization period \pm 3 days

Mass measurement stability: ²³ ≤ 3 µg over 5 days

 Permeation rate (q_m) = mass loss per unit of time

Hydrogen fluoride

- HF in H₂ can be analysed in the nmol/mol and lower µmol/mol range
- Preliminary results indicate that the method is sufficiently sensitive to analyse HF in H₂ samples according to ISO 14687-2

Dilution system for formaldehyde

- Generated formaldehyde using a MSB with permeation tube (Fine Metrology).
- Generated different amount fractions around the ISO 14687-2 threshold (0.2 ppm) by changing the dilution flow and/or permeation chamber temperature.
- Measurement by CRDS.
- Purity of the permeating gas still needs to be analyzed (some water is expected).

Use of sorption tubes

- Can be prepared in a lab and taken to the place of analysis
- Depending on the expected concentration of the impurity more gas can be flushed through the tube to gain a reasonable amount for analysis
- Direct sampling at HRS is difficult due to the high pressure of the H₂
- Disadvantage: they can only be used for one analysis; then they have to be conditioned and loaded again

Sorbent tubes for short term stability test

Sorbents

Tenax TA

Carboxen 1003

Dual bed sorbent trap – Tenax TA & Sulficarb

- Sulfides
 - H_2S was not trapped on the sorbent materials CH_4S was not trapped on the sorbent materials

COS

 CS_2

THT

T-BM

n-Hexane as internal standard

Schematic drawing dilution system

Short term stability sulphides on different sorbents (~ 140 ng)

Short term stability sulphides on different sorbents (~ 28 ng)

2.4

2.2

2.0 1.8 1.6

1.4

0.8 -0.6 -0.4 -0.2 -0.0 -

-2

법 1.2 임 1.0

Short term stability for different halogenates (1)

METROLOGY for HYDROGEN VEHICLES

Short term stability for different halogenates (2)

Tenax TA

Schematics of the mixing station developed at VSL

Initial results

Gas	MFC actual [ml/min]	Mixed actual [%]	GC AA1234 [%]	AA1234 D [%]	GC AA1235 [%]	AA1235 D [%]
N ₂	58.72	18.05	18.202	0. 83	18.188	0.75
CO ₂	48.33	14.86	14.996	0. 94	14.967	0.74
CH₄	206.11	63.36	63.399	0. 05	64.054	1.09
	40.40	0.70	2 402	0.7	0 704	05
H ₂	12.12	3.73	3.403	-8.7	2.791	-25
		N ₂ +CO ₂ +CH ₄	96.597	N_2 +CO ₂ +CH ₄	97.209	

- 3 of the 4 MFC operated under 20% FS
- Verification performed against VSL gravimetric standards
- AA1234 average of 10 injections at 3 barA
- AA1235 average of 6 injections at 4 barA
- Testing on Hydrogen purity mixtures has yet to be performed

Purging on dynamic dilution systems

Purging method: flow through and at elevated pressures

Time Elaspsed (hr:min:sec) •Oxygen •Nitrogen

Oxygen and nitrogen levels in pure hydrogen after being purged at 3 barg

Available resources

- A2.3.1 Hydrogen purity analysis: suitability of sorbent tubes for trapping hydrocarbons, halogenated carbons and sulfur compounds
- Reports on dynamic dilution system and purging will become available in due time
- ISO6145 is off course available at ISO

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

THANK YOU

metrohyve.eu

hydraite.eu

Janneke van Wijk

22

jvwijk@vsl.nl

+31 15 2691500