

Analytical methods for hydrogen purity

Dr Thomas Bacquart

Workshop on hydrogen quality and flow metering for hydrogen fuel cell vehicles 11-12 September 2019, Delft (NL)

Overview

- What will the audience learn in this session?
- ISO/FDIS 14687 What techniques are available?
- What parameters to consider for the analytical methods?
- Method validation / Standardised methods status
- What is the European laboratory capability?
- Where are the next challenges?

Hydrogen quality standards ISO 14687 / SAE J2719 / EN 17124

	ISO 14687: 20	012 / SAE J2719:2011	ISO/FDIS	14687 / EN 17124:2018
	Max. admissible value [µmol/mol]	notes	Max. admissible value [µmol/mol]	notes
Water	5		5	
Total hydrocarbons (TC)	2	Due to CH4, TC > 2 μmol/mol	2 except CH₄	including oxygenated organic species
Methane	-		100	
Oxygen	5		5	
Helium	300		300	
Nitrogen	100	N2+Ar<100	300	
Argon	100	N2+Ar<100	300	
carbon dioxide	2		2	
Carbon monoxide	0.2		0.2	CO+HCHO+HCOOH < 0.2µmol/mol
Total sulphur compounds	0.004	H2S, COS, CS2, mercaptans (NG)	0.004	H2S, COS, CS2, mercaptans (NG)
Formaldehyde	0.01		0.2	CO+HCHO+HCOOH < 0.2µmol/mol
Formic acid	0.2		0.2	CO+HCHO+HCOOH < 0.2µmol/mol
Ammonia	0.1		0.1	
Halogenated compounds	0.05 (total)	i.e. HBr, HCI Cl2, organic R-X	0.05	HCI, organic R-CI
Max. particulate conc.	1 mg/kg		1 mg/kg	

Multiple compounds / large range of amount fraction Reactive compounds / extremely low amount fraction

MetroHyVe review

			Impurities														
Family	Technique	Number of impurities	Ammonia	Argon	Carbon diœide	Carbon monœide	Formaldehyde	Formic Acid	Halogenated compounds	Helium	Methane	Nitrogen	Non-methane hydro carbons (NMHC)	Oxygen	Total hydrocarbons	Totals ulphur compounds	Water
Number of suitable	e techniques per impurity		6	4	6	7	5	5	0	2	7	5	4	7	4	4	10
	GC-ECD	0							Partial								
	GC-ELCD	2							Partial				1		<u>.</u>		
	GC-FID	3			•						1				İ		
	GC-HID	2									<u> </u>		-		1		
Gas	GC-MS	6			•				?				•		İ		
chromatography	GC-MS with jet pulse	_											1		t		
	injection	7															
	GC-PDHID	6															
	GC-SCD	1															
	GC-TCD	5			LOD =												
	GC-FPD (with	2															
	pre-concentrator)	-															(
	GC-MS (with	1							Partial								
	GC-MS (with																
6	pre-concentrator) +	0							Partial								
chromatography	GC-ELCD																
with	GC-SCD (with	1															
pre-concentration	pre-concentrator)	-															<u> </u>
	Methanizer GC-FID	5															
	TD-GC-FPD/MS	0			<u> </u>						<u> </u>				ļ	Partial	<u> </u>
	TD-GC-MS	1			•				Partial		•						•
	TD-GC-MS/FID	0			<u> </u>				Partial				1		LOD =		
	TD-GC-PDECD	0							Partial								<u> </u>
		0							Parual								
	DNPH-HPLC-UV-VIS DNPH-HPLC	1															
Liquid	HPLC-CD	0	LOD =								<u>.</u>		1		<u>.</u>		
chromatography	IC	0			٥		•	?			•				\$?	
	IC with concentrator	2							Partial		.		1		1		
	IC-CD	1			••••••		••••••										
	Impinger - IC	0						?	?								
	Continuous wave CRDS	7															
	CRDS	1															
Spectroscopy	FTIR	7			•				Partial								
	OFCEAS	8							Partial							Partial	
	AI2O3 sensor	1															
	Chilled mirror	1															
	hygrometer	-											ļ		ļ		
	Colorimetric tube	0											ļ				
Others	Coulimetric	1			<u> </u>						<u> </u>		<u> </u>				<u>∔</u>
	EC sensor	1											ļ				
	Electrolytic hygrometer	1			<u> </u>		<u> </u>				<u> </u>		<u> </u>		<u> </u>		
	Quartz crystal	1															
	SCD	1									<u>i</u>		1		1		
	000	-									1	i	1		1		i

4

Techniques currently tested by analytical laboratory

 No consensus or one favoured techniques

		Impurities																
Family	Technique	Ammonia	Argon	Carbon di oxide	Carbon monoxide	Formaldehyde	Formic acid	H alogen ated com poun ds	Helium	Methane	Moisture	Nitrogen	Non-methane hydrocarbons	Oxygen	Total hydrocarbons	Total sulfur	Number of impurities	Number of laboratories
	GC-PDHID		3	2	3					1		2		2			6	4
	GC-MS	1	2	1		1]	2	1		1	2		1			9	3
	GC-TCD		2					1	4			2					4	5
	GC-FID]				}			2			3		2		3	3
	TD-GC-MS/FID							1							1	1	3	1
	TD-GC-MS						1	1					1				3	2
	Methanizer GC-FID			1						1					1		3	1
GC	GC-SCD															2	1	2
	GC-HID				1					1							2	1
	GC-FPD											1				1	2	1
	GC-ELCD	1					1										2	1
	TD-GC-PDECD							1									1	1
	TD-GC-FPD/MS															1	1	1
	GC-MS (with							1									1	1
	pre-concentrator)							1									1	1
Spectroscopy	OFCEAS	1		1	1	1					2			1		1	7	2
spectroscopy	FTIR	1		1	1		1	1		1							6	1
LC	IC with concentrator	1					1	1									3	1
	HPLC-CD	1															1	1
	Electrochemical cell													2			1	2
	Ultrathin Alumina Capacitance										1						1	1
	SCD															1	1	1
Others	Electrolytic										1						1	1
	Hygrometry										-						-	·····
	Coulimetric													1			1	1
	Colorimetric tube	1															1	1
	Aluminium Oxide										1						1	1

Large choice of techniques

Nu mber of impurities find and ioxide and ioxide and ioxide and ioxide and the firm on a strate and the firm of the firm of the firm and the firm an	Nitrogen Non-methane hydrocarbons (NMHC)	0xygen	otal carbons	ulphur ounds	5
			T hydro	Totals comp	Wate
Number of suitable techniques per impurity 6 4 6 7 5 5 0 2 7	5 4	7	4	4	10
GC-ECD 0 Partial					
GC-ELCD 2 Partial	Ī	Ť			
GC-FID 3		-			
GC-HID 2					
Gas GC-MS 6		-			
chromatography GC-MS with int pulse					
injection 7					
GC-PDHID 6 C					
GC-SCD 1					
GC-TCD 5 LOD=					
GC-FPD (with 2					
pre-concentrator) *					
GC-MS (with 1 Partial					
GC M (with					
pre-concentrator) + 0					
Gas GC-ELCD					
Chomatography GC-SCD (with 1					
pre-concentration pre-concentrator)					
Methanizer GC-FID 5					
TD-GC-FPD/MS 0				Partial	
TD-GC-MS 1 Partial	?				
TD-GC-MS/FID 0 Partial			LOD =		
TD-GC-PDECD 0 Partial					
CIC 0 Partial Partial				?	
DNPH-HPLC-UV-Vis 1					
HING CD 0 100-					
Liguid mr. Co. Co.				-	
chromatography is u u u u u u u u u u u u u u u u u u					
		++			
Continuous wave crucia /					
Spectroscopy ETIP 7		•••••••••••••••••••••			
				Pretini	
				ratual	
hygrometer 1					
Colorimetric tube 0					
Coulimetric 1					
Uthers EC sensor 1					
Electrolytic hygrometer 1		-			
Quartz crystal 1 1					
SCD 1		Ī			

Total / Partial

What do I want to measure?

			Impurities															
Family	Technique	Number of impurities	Ammonia	Argon	Carbon diœide	Carbon monœide	Formaldehyde	Formic Acid		halogenated compounds	Helium	Methane	Nitrogen	Non-methane hydrocarbons (NMHC)	Oxygen	Total hydrocarbons	Totals ulphur ∞mpounds	Water
Number of suitable	e techniques per impurity		6	4	6	7	5	5		0	2	7	5	4	7	4	4	10
	GC-ECD	0								Partial								
	GC-ELCD	2								Partial		Ī		Ī				
	GC-FID	3			••••••						1			1				
	GC-HID	2							T									
Gas	GC-MS	6			•					?				1		.		
chromatography	GC-MS with jet pulse	7																
	injection	· · · · · ·																
	GC-PDHID	6																
	GC-SCD	1																
	GC-TCD	5			LOD =				_									
	GC-FPD (with	2																
	GC-MS (with																	
	pre-concentrator)	1																N
	GC-MS (with				•											7		
Gas	pre-concentrator) +	0																
chromatography	GC-ELCD								ļ					Ļ				
with	GC-SCD (with	1																
pre-concentration	pre-concentrator)	-			1													
	TD CC EPD/MS	2									·····						Devetion	·
	TD-GC-FFD/IVIS	1			<u>.</u>					Pastial				5			Faruar	
	TD-GC-MS/FID	-								Partial			-			100-		
	TD-GC-RDECD									Partial						100-		
	CIC	0							-	Partial								— — —
	DNPH-HPLC-LIVAVis				<u> </u>									1				
	DNPH-HPLC	1																
Liquid	HPLC-CD	0	LOD =						Ī									
chromatography	IC	0			• •			?						<u>.</u>		.	?	
	IC with concentrator	2								Partial								
	IC-CD	1			•													
	Impinger - IC	0						?		?								
	Continuous wave CRDS	7																
S	CRDS	1										Ī						
spectroscopy	FTIR	7								Partial	/			[/
	OFCEAS	8								Partial							Partia	
	Al2O3 sensor	1																
	Chilled mirror	1							Ī									
	hygrometer	-												ļ				
	Colorimetric tube	0																
Others	Coulimetric	1												ļ				
	EC sensor	1																
	Electrolytic hygrometer	1																
	Quartz crystal	1																
	SCD	1			<u>.</u>							<u>-</u>		1		<u>†</u>		
	300	-											1	1				

ISO 19880-8 Quality control Risk assessment

Air Liquide study

M. Carre, Quality Assurance to ensure H2 quality at HRS, HYDRAITE 1st OEM Workshop (Ulm, 07/03/2018)

			Impurities														
Family	Technique	Number of impurities	Ammonia	Argon	Carbon dioxide	Carbon monoxide	Formaldehyde	Formic Acid	Halogenated compounds	Helium	Methane	Nitrogen	Non-methane hydrocarbons (NMHC)	Oxygen	Total hydrocarbons	Totals ulphur compounds	Water
Number of suitable	e techniques per impurity		6	4	6	7	5	5	0	2	7	5	4	7	4	4	10
	GC-ECD	0							Partial								
	GC-ELCD	2							Partial								
	GC-FID	3															Ì
	GC-HID	2															
Gas	GC-MS	6							2								
chromatography	GC-MS with jet pulse	7															
	GC-PDHID	6															
	GC-SCD	1															
	GC-TCD	±			100 -												
	GC-FPD (with	2			200 -												
	GC-MS (with	1							Pastial								
	pre-concentrator) GC-MS (with	1							railiai								
Gas	pre-concentrator) + GC-ELCD	0							Partial								
with	GC-SCD (with pre-concentrator)	1															
pre-concentration	Methanizer GC-FID	5															
	TD-GC-FPD/MS	0														Partial	
	TD-GC-MS	1							Partial				7				
	TD-GC-MS/FID	0							Partial						LOD =		
	TD-GC-PDECD	0							Partial								
	CIC	0							Partial							2	
	DNPH-HPLC-UV-Vis DNPH-HPLC	1															
Liquid	HPLC-CD	0	LOD =														
chromatography	IC	0						7								7	
	IC with concentrator	2							Partial								
	IC-CD	1															
	Impinger - IC	0						?	?								
	Continuous wave CRDS	7															
Spectroscopy	CRDS	1													ļ		
opectroscopy	FTIR	7							Partial								
	OFCEAS	8							Partial							Partial	
	Al2O3 sensor	1															
	Chilled mirror hygrometer	1															
	Colorimetric tube	0															
Others	Coulimetric	1															
others	EC sensor	1															
	Electrolytic hygrometer	1															
	Quartz crystal microbalance	1															
	SCD	1															

Techniques / Analytical methods

- **Techniques:** A device or a combination of **devices** used to carry out an analytical process.
- Analytical methods: The analytical procedure refers to the way of performing the analysis. It should describe in detail the steps necessary to perform each analytical test. This may include but is not limited to: the sample, the reference standard and the reagents preparations, use of the apparatus, generation of the calibration curve, use of the formulae for the calculation, uncertainty.

Impurity	Threshold in ISO	Limit of detection for GC-PDHID (µmol.mol ⁻¹)									
	14687-2 (µmol.mol ⁻¹)	NPL	CDFA-DMS	Labo 1	Labo 2	Labo 4	Labo 5				
Carbon monoxide	0.2	0.012		0.05		0.02	0.1				
Carbon dioxide	2	0.015		0.05		0.02					
Methane	100	0.006		0.05							
Oxygen	5	0.006			1-5		2				
Nitrogen	300	0.003	11.08		1-5		100				
Argon	300	0.01	11.08	0.05	1-5		100				

Analytical method selection

- What? → Defined compounds / Total family / Selection
 - Total sulphur: carbonyl sulphide, carbon disulphide, tert-butyl mercaptan, tetrahydrothiophene, methylmercaptan, H₂S
 - Total halogenated: dichloromethane, tetrachloroethylene, tetrachlorohexafluorobutane, dichlorobenzene, chloroform, HCI, HBr and Cl₂?
 - Total hydrocarbons: Methane, Ethane, propane, butanes, acetone, methanol, ethanol, octane, decane.
- How accurate?
 - Limit of detection
 - Uncertainty
- How much effort to implement?
 - Method development versus standard method
 - Method validation according to ISO 21087:2019

Total compounds

- Issue: the terminology "total" = impossible
- Analytical method has boundaries:
 - Volatility of compounds
 - Selectivity
 - Identification / Detection
 - Validation possibility (i.e. reference materials, calibrants)
- Clear boundaries on Total compounds is mandatory or expect interpretation from analytical laboratories
 - Question: Does it include any compounds reported in literature or mentioned in industry? How does the information is transferred to analytical laboratory?

Hydrogen Contaminants	Threshold in ISO 14687-2 - EN17124	Technique	Limit of detection (µmol/mol)	Reference
	(µmol/mol)			
		GC-ECD	0.0001 (cannot measure non-organic halogens)	ASTM WK23815 [1]
		GC-MS (with pre-concentrator)	0.001 (only organic halogenates)	D7892-15 [2]
		TD-GC-MS	0.05 (exclusive HCl and Cl_2)	Arrhenius [3]
		GC-MS (with pre-concentrator) for organic	0.001	ASTM WK34574 [4]
Halogenated compounds	0.05	halides + GC-ELCD for HCI, HBr and CI_2	0.01 HBr	
		OFCEAS	0.001 (HCl only)	AP2E - manufacturer's spec [5]
		CIC	0.001 (anions, organic halogens)	ASTM D7359-18 [6], UOP 911-11 [7]
		Impinger - IC	unknown	SCAS [8]
		IC with concentrator	none stated	JIS K0127 [9]
		FTIR	0.02	ASTM D7653-18 [10], JIS K0117 [11]
		IC-CD	None stated, 0.001 achievable	ASTM D7550-09 [12]
Ammonia	0.1	HPLC-CD	0.1	Arrhenius [3]
Ammonia	0.1	Continuous wave CRDS	0.00086	ASTM D7941-14 [13]
		OFCEAS	0.001	AP2E - manufacturer's spec [5]
		OFCEAS	below 0.1	Arrhenius [3]
		ETID	0.02	ASTM D7653-18 [10]
		FTIK	none stated	JIS K0117 [11]
Formic Acid	0.2	OFCEAS	0.005	AP2E - manufacturer's spec [5]
Formic Acid	0.2	Impinger - IC	unknown	SCAS [8]
		IC with concentrator	0.2	Arrhenius [3]
		IC	none stated	JIS K0127 [9]
		CC-MS (with pro-concentrator)	0.001	ASTM WK34574 [4]
		GC-MS (with pre-concentrator)	0.005	ASTM D7892-15 [2]
		GC-MS with jet pulse injection	0.005	ASTM D7649-10 [14]
Formaldehyde	0.01	Continuous wave CRDS	0.0061	ASTM D7941-14 [13]
ronnaidenyde	0.01	FTIR	0.02	ASTM D7653-18 [10]
		OFCEAS	0.001	AP2E - manufacturer's spec [5]
		DNPH-HPLC-UV-Vis	0.002	Arrhenius [3]
		DNPH-HPLC	none stated	SCAS [8]

HYDRAITE

Hydrogen Contaminants	Threshold in ISO 14687-2 - EN17124 (µmol/mol)	Technique	Limit of detection (µmol/mol)	Reference
		GC-SCD (with pre-concentrator)	0.00002	ASTM D7652-11 [15]
		GC-SCD (without pre-concentrator)	0.0014	NPL [16]
		GC-FPD (with pre-concentrator)	0.0016 - 0.0071	CDFA-DMS [17]
Total sulphur compounds	0.004	OFCEAS	0.001 (H ₂ S only)	AP2E - manufacturer's spec [5]
		OFCEAS	0.002 (H ₂ S only)	Arrhenius [3]
		IC	none stated	JIS K0127 [9]
		CIC	ppm	ASTM D7359-18 [6]
		GC-PDHID	0.012	NPL report AS 64 [18]
		Methanizer GC-FID	0.01	NPL report AS 64 [18]
		GC-TCD	0.04	NPL report AS 64 [18]
Carbon monovide	0.2		0.01	ASTM D7653-18 [10]
Carbon monoxide	0.2	FTIR	none stated	JIS K0117 [11]
			0.02	CDFA-DMS [17]
		OFCEAS	0.001	AP2E - manufacturer's spec [5]
		Continuous wave CRDS	0.041	ASTM D7941-14 [13]
			8	NPL Report AS 64 [18]
		GC-TCD	50	Arrhenius [3]
			unknown	SCAS [8]
Nitrogen	300		0.003	NPL Report AS 64 [18]
		GC-PDHID	11.08	CDFA-DMS [17]
			none stated	JIS K0114 [19]
		GC-MS with jet pulse injection	<2.6	ASTM D7649-10 [14]
			5	NPL Report AS 64 [18]
		GC-TCD	none stated	Arrhenius [3]
Argon	300		none stated	SCAS [8]
Aigon	500		0.01	NPL Report AS 64 [18]
			11.08	CDFA-DMS [17]
		GC-MS with jet pulse injection	<2.6	ASTM D7649-10 [14]
				DROGEN VEHICLES

Hydrogen Contaminants	Threshold in ISO 14687-2 - EN17124 (µmol/mol)	Technique	Limit of detection (µmol/mol)	Reference
			13	NPL Report AS 64 [18]
Holium	200	GC-TCD	20	CDFA-DMS [17]
Helium	300		none stated	SCAS [8]
		GC-MS	none stated	JIS K0123 [20]
		EC sensor	0.3	ASTM D7607-11 [21]
	5	GC-MS with jet pulse injection	<2.7	ASTM D7649-10 [14]
Overgon		GC-TCD	3	NPL Report AS 64 [18]
Oxygen		GC-PDHID	0.006	NPL report AS 64 [18]
		OFCEAS	1	AP2E - manufacturer's spec [5]
		Continuous wave CRDS	0.00012	ASTM D7941-14 [13]
			0.015	NPL Report AS 64 [18]
		Methanizer GC-FID	0.23	CDFA-DMS [17]
			none stated	SCAS [8]
		GC-PDHID	0.015	NPL report AS 64 [18]
		CC MS with jet pulse injection	<2.7	ASTM D7649-10 [14]
Carbon dioxide	2	GC-MS with jet pulse injection	none stated	JIS K0123 [20]
Carbon dioxide	2	GC-TCD	2	Arrhenius [3]
			0.01	ASTM D7653-18 [10]
		FTIR	0.011	CDFA-DMS [17]
			none stated	JIS K0117 [11]
		OFCEAS	0.2	AP2E - manufacturer's spec [5]
		Continuous wave CRDS	0.161	ASTM D7941-14 [13]

Hydrogen Contaminants Total hydrocarbons	Threshold in ISO 14687-2 - EN17124 (µmol/mol) 2	Technique GC-FID	Limit of detection (µmol/mol) 0.06 1 0.012 none stated none stated	Reference ASTM D7675-15 [22] Arrhenius [3] CDFA-DMS [17] JIS K0114 [19] SCAS [8]
		Methanizer GC-FID GC-MS FTIR	0.01 0.001 (0.002 ethane and ethene) 0.71 none stated	NPL Report AS 64 [18] ASTM D7892-15 [2] ASTM D7653-10 [10] JIS K0117 [11]
Non-methane hydrocarbons	2	Methanizer GC-FID GC-MS	0.01 0.001 (0.002 ethane and ethene)	NPL Report AS 64 [18] ASTM D7892-15 [2]
Methane	100	GC-FID GC-PDHID FTIR Continuous wave CRDS OFCEAS	0.1 0.006 0.012 0.00068 0.001	CDFA-DMS [17] NPL report AS 64 [18] CDFA-DMS [17] ASTM D7941-14 [13] AP2E - manufacturer's spec [5]
		Chilled mirror hygrometer	1 none stated none stated 2	Review NPL [23] JIS K0225 [24] SCAS [8] Review NPL [23]
Water	5	Quartz crystal microbalance CRDS Continuous wave CRDS OFCEAS GC-MS GC-MS with jet pulse injection FTIR	none stated 0.01 0.00008 0.01 0.8 <4 0.12 none stated	JIS K0225 [24] NPL report AS 64 [18] ASTM D7941-14 [13] AP2E - manufacturer's spec [5] NPL report AS 64 [18] ASTM D7649-10 [14] ASTM D7653-18 [10] JIS K0117 [11]

HYDRA

Method validation for hydrogen fuel quality

- New standard and requirement ISO 21087:2019
 - Requirements for ISO/FDIS 14687 results

- Analytical laboratory needs to comply with ISO 21087:2019
 - Inhouse analytical method
 - Standardised method: ASTM or JIS

ISO 21087:2019 - Gas analysis -- Analytical methods for hydrogen fuel -- Proton exchange membrane (PEM) fuel cell applications for road vehicles

Requirements for analytical method validation and fit for purpose

The standard defines:

- parameters to be checked;
- fit for purpose criteria

The standard does not prescribe any methodology or strategy

Validation report should be available upon request

Table 1 — Overview of characteristics for analytical methods - --

6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.8

10 1 1

ISO 21087:2019 - Gas analysis -- Analytical methods for hydrogen fuel -- Proton exchange membrane (PEM) fuel cell applications for road vehicles

Requirements for analytical method validation and fit for purpose

The standard defines:

- parameters to be checked;
- fit for purpose criteria
 - Working range: LOQ + k*LOQ < ISO 14687 threshold < 2 * ISO 14687 threshold
 - Limit of detection:
 - $k_a = 10$ for specification value $\geq 1 \ \mu mol/mol$
 - k_a = 5 for 1 µmol/mol > specification value ≥ 10 nmol/mol
 - k_a = 3 for specification value < 10 nmol/mol
 - <u>Uncertainty</u> (including precision and bias) at the ISO threshold
 - From micromole/mol to 10 nmol/mol \rightarrow Relative uncertainty < 10%
 - Below 10 nmol/mol

 $x_{LOQ} + u_{LOQ} < x$ threshold

where u_{L00} is the uncertainty at the x_{L00} value.

- \rightarrow Relative uncertainty < 50%

Validation report should be available upon request

Method validation for hydrogen fuel quality

- Method validation following ISO 21087:2019
 - Requirements for ISO/FDIS 14687 results
- Standardised method: ASTM or JIS
 - Clear procedure applied to hydrogen fuel
 - ASTM D7652 11 -Standard Test Method for Determination of Trace Hydrogen Sulfide, Carbonyl Sulfide, Methyl Mercaptan, Carbon Disulfide and Total Sulfur in Hydrogen Fuel by Gas Chromatography and Sulfur Chemiluminescence Detection
 - JIS K0123 General rules for gas chromatography / Mass spectrometry
 - Standard method need to comply with ISO 21087:2019
 - 13.2 *Reproducibility*—The reproducibility of this test method for measuring impurities present in H2 fuel gas, is being determined and <u>will be available within five years</u> of the publication of this standard, based upon the results of interlaboratory testing.
 - 13.3 *Bias*—The bias for each component analyzed <u>will be determined by experimental results</u> within five years of the release of this standard.

Fit for purpose?

Comply with ISO 21087 criteria?

New analytical methods for reactive compounds - MetroHyVe

- VSL: Analytical method using mid-infrared CRDS spectrometer
 - Formic acid: Working range: 20 nmol/mol –10 µmol/mol
 - Formaldehyde: Working range: 7 nmol/mol –20 µmol/mol
 - HCI: Working range: 1.5 nmol/mol –50 µmol/mol
 - Use of passivated system and dynamically generated standards

RISE: TD-GC-MS (Tenax TA / Carboxen 1003 / Carbograph 1)

 Halogenated compounds: chloroform, dichloromethane, tetrachloroethylene, 1,2-dichlorobenzene, 1,3dichlorobenzene, 1,4-dichlorobenzene, 2,2,3,3-tetrachlorofluorobutane, 1,2,3,4tetrachlorofluorobutane, 1,1,3,4-tetrachlorofluorobutane.

European analytical laboratories: RISE

Hydrogen contaminant	Threshold in ISO 14687-2	Limit of detection	Technique
Moisture	5 µmol/mol	0.05	OFCEAS
Oxygen	5 µmol/mol	1	OFCEAS
Carbon monoxide	0.2 µmol/mol	0.002	OFCEAS
Total sulphur	0.004 µmol/mol		
H2S	Subset of TS	0.001	OFCEAS
Mercaptans	Subset of TS	0.005	TD-GC/MS-FID
Thiophenes	Subset of TS	0.005	
Nitrogen	300 µmol/mol	30	GC/TCD
Halogenated compounds	0.05 µmol/mol		
organic halogenated compounds	Subset of T-X	0.01	TD-GC/MS-FID
Formic acid	0.2 µmol/mol		
Formaldehyde	0.2 µmol/mol		
Argon	300 µmol/mol	30	GC/TCD
Helium	300 µmol/mol		
Carbon dioxide	2 µmol/mol	0.2	OFCEAS
Total hydrocarbons	2 µmol/mol	2	GC/FID+TD-GC/MS-FID
Non-methane hydrocarbons	2 µmol/mol	1	
alkohol (methanol, ethanol)	Subset of Total hydrocarbons	1	GC/FID
Ketones (acetone)	Subset of Total hydrocarbons	1	GC/FID
Methane	100 µmol/mol	0.04	GC/FID
Ammonia	0.1 µmol/mol	0.1	HPLC/Conductivity detector

 (\mathbf{H})

HYDRAITE

European analytical laboratories: Air Liquide

Hydrogen contaminant	Threshold in ISO 14687-2	Limit of detection	Technique
Moisture	5 µmol/mol	0.5	OFCEAS
Oxygen	5 µmol/mol	5 µmol/mol 2	
Carbon monoxide	0.2 µmol/mol	0.1	GC-PDHID
Total sulphur	0.004 µmol/mol	See below	-
Methyl mercaptans	Subset of TS	0.001	TD-GC-FPD/MS
Carbonyl sulphide	Subset of TS	0.001	TD-GC-FPD/MS
Hydrogen sulphide	Subset of TS	0.001	TD-GC-FPD/MS
Carbon disulphide	Subset of TS	0.001	TD-GC-FPD/MS
Nitrogen	300 µmol/mol	10	GC-PDHID
Halogenated compounds	0.05 µmol/mol	See below	-
Dichloromethane	Subset of T-X	0.02	TD-GC-PDECD
Formic acid	0.2 µmol/mol	0.1	TD-GC-MS
Formaldehyde	0.2 µmol/mol	0.02	OFCEAS
Argon	300 µmol/mol	10	GC-PDHID
Helium	300 µmol/mol	10	GC-TCD
Carbon dioxide	2 µmol/mol	0.2	GC FID methaniser
Total hydrocarbons	2 µmol/mol	0.2	GC FID methaniser
Non-methane hydrocarbons	2 µmol/mol	-	-
Acetylene	Subset of Total hydrocarbons		TD-GC-MS
Ethylene	Subset of Total hydrocarbons	Subset of Total hydrocarbons	
Ethane	Subset of Total hydrocarbons	Subset of Total hydrocarbons	
Propene	Subset of Total hydrocarbons		TD-GC-MS
Propane	Subset of Total hydrocarbons		TD-GC-MS
Methane	100 µmol/mol	0.2	GC FID methaniser
Ammonia	0.1 µmol/mol	0.03	OFCEAS

European analytical laboratories: VSL

Hydrogen contaminant	Threshold in ISO 14687-2	Limit of detection	Technique
Moisture	5 µmol/mol	0.02	CRDS
Oxygen	5 µmol/mol	5	GC-TCD
Carbon monoxide	0.2 µmol/mol	1	CRDS
Total sulphur	0.004 µmol/mol	0.002	GC-SCD
Halogenated compounds	0.05 µmol/mol	0.0005 (HCI)	CRDS
Formic acid	0.2 µmol/mol	0.007	CRDS
Formaldehyde	0.2 µmol/mol	0.002	CRDS
Carbon dioxide	2 µmol/mol	0.01	CRDS
Total hydrocarbons	2 µmol/mol	0.5	GC-PDHID
Non-methane hydrocarbons	2 µmol/mol	0.5	GC-PDHID
Methane	100 µmol/mol	0.001	CRDS
Ammonia	0.1 µmol/mol	0.1	CRDS

European analytical laboratories: ZBT

Contaminant	ISO/FDIS 14687 / EN 17124:2018	Analytical Method	Detection Limit
Containmant	[µmol/mol]		[µmol/mol]
Water	5	Quartz crystal microbalance IMR-MS	0.1 3.044**
Total Hydrocarbons	2	GC-PED IMR-MS	0.01 0.0105*
Methane	100	GC-PED IMR-MS	0.01 0.0117*
Oxygen	5	GC-PED IMR-MS	0.01 0.209*
Helium	300	EI-MS	0.0041*
Argon	300	GC-PED EI-MS	0.05 0.00039*
Nitrogen	300	GC-PED EI-MS	0.1 0.01*
Carbon Dioxide	2	IMR-MS	0.987**
Carbon Monoxide	0.2	GC-PED IMR-MS	0.001 0.06**
Total sulphur compounds	0.004	TD-GC-SCD IMR-MS	< 0.001 0.0009 (H ₂ S)*
Formaldehyde	0.2	IMR-MS	0.0015*
Formic Acid	0.2	IMR-MS	0.0039*
Ammonia	0.1	IMR-MS	0.0018*
Key halogenated compounds	0.05	IMR-MS	< 0.067**

H X D R A I T E H & D R A I T E

European analytical laboratories: ZSW

Contaminant	ISO/FDIS 14687 EN17124:2018	Analytical Method	Lower Quantification	estimated amount of gas needed
	µmol/mol		[µmol/mol]	[L]
Water	5	Dew Point mirror	< 1*	45
Total Hydrocarbons	2	(GC)-FID	< 0.05*	16
Methane	100	GC-PDHID	< 0.1*	16
Oxygen	5	GC-PDHID	< 0.1*	16
Oxygen	5	GC-TCD	< 5*	6
Helium	300	GC-TCD	10*	6
Argon	300	GC-PDHID	0.1*	16
Argon	300	GC-TCD	< 2.5*	6
Nitrogen	300	GC-PDHID	< 0.1*	16
Nitrogen	300	GC-TCD	10	6
Carbon Dioxide	2	GC-PDHID	< 0.9*	13.6
Carbon Monoxide	0.2	GC-PDHID	< 0.1*	16
Carbon Monoxide	0.2	OFCEAS	0.003**	10
Total sulphur compounds	0.004	TD-(GC-)FPD	0.001 (< 0.001)***	1.2
Formaldehyde	0.2	OFCEAS	0.003**	10
Formic Acid	0.2	OFCEAS	0.003**	10
Ammonia	0.1	OFCEAS	0.01**	10
Halogenated compounds	0.05	TD-(GC-)ECD	< 0.005***	16

European analytical laboratories: NPL

Contaminant	ISO/FDIS 14687 / EN 17124 :2018	Analytical Method	Detection Limit	Required amount of gas
	[µmol/mol]		[µmol/mol]	[L]
Water	5	Quartz crystal microbalance CRDS	0.2 0.030	30 30 - 60
Total Hydrocarbons	2	GC-Methaniser-FID	0.05	2
Methane	100	GC-Methaniser-FID	0.05	2
Oxygen	5	GC-PDHID	0.3	2
Helium	300	GC-TCD	10	2
Argon Nitrogen	300	GC-PDHID	0.3 1	2
Carbon Dioxide	2	GC-Methaniser-FID	0.02	2
Carbon Monoxide	0.2	GC-Methaniser-FID	0.02	2
Total sulphur compounds	0.004	GC-SCD	0.001	1
Formaldehyde	0.2	GC-Methaniser-FID SIFT-MS	0.05 0.02	2 2
Formic Acid	0.2	FTIR SIFT-MS	0.05 0.02	30 2
Ammonia	0.1	FTIR SIFT-MS	0.05 0.02	30 2
Key halogenated compounds according to ASTM D7892-15	0.05	TD-GC-MS	0.016	1.5

MetroHyVe - Cost efficient analyser – Dedicated scope

ISO 19880-8 Quality control Risk assessment

- CAPEX reduction > 30% (compare 500k€ estimation)
- Optimisation of OPEX (1 hour / sample)

Probability of	Steam methane	Chlor-alkali process	PEM water	Alkaline electrolyser
impurity	reforming with	(membrane cell	electrolysis process	
presence	PSA	process)	with TSA	
Frequent	СО	<i>O</i> ₂	None identified	None identified
Possible	N ₂	None identified	None identified	N ₂
Rare	CH_4 , H_2O and Ar	N_2 and H_2O	N_2 , O_2 and H_2O	0 ₂ , H ₂ O
Very rare	CH ₂ O	<i>CO</i> ₂	<i>CO</i> ₂	Ar
Unlikely	He, CO ₂ , O ₂ ,	He, Ar, CO, CH_4 , CH_2O ,	<i>He, Ar, CO, CH</i> ₄ , <i>CH</i> ₂ <i>O</i> ,	CO ₂ , CO, CH ₄ , Sulphur
	CH ₂ O ₂ , NH ₃ ,	CH ₂ O ₂ , NH ₃ ,	CH ₂ O ₂ , NH ₃ ,	compounds, NH ₃ ,
	Sulphur compounds, hydrocarbons compounds, halogenated compounds	Sulphur compounds, hydrocarbons compounds, halogenated compounds	Sulphur compounds, hydrocarbons compounds, halogenated compounds	hydrocarbons compounds, halogenated compounds, CH ₂ O, CH ₂ O ₂ , He

HYDROGEN VEHICLES

Analytical methods summary

- Multiple techniques and analytical methods potentially applicable
 - MetroHyVe review available soon
- Define your measurand (especially for total compounds)
- Compliance with ISO 21087:2019
 - Validation for standard method if all criteria not covered
 - Measurement reported with uncertainty and validation report available
- European analytical laboratories
 - Competence for ISO 14687 and EN 17124:2018
 - Getting compliant to ISO 21087
- Benefit for reduced scope Reduce CAPEX and OPEX

New challenges

- Compliance with ISO 21087:2019
 - Technical requirement / criteria to be met
- Quality control
 - Reference materials
 - Inter-comparison
- Gas calibrants

Availability of gas standards for all contaminants with suitable uncertainty

Revision of total terminology – standardisation committee?

Available resources

- MetroHyVe A4.3.1: Review and selection of compounds for total measurements (halogenated, sulphur and hydrocarbons)
- ISO 21087:2019
- <u>https://hydraite.eu/1st-hydraite-workshop/</u>
- <u>https://www.metrohyve.eu/downloads/</u>

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 779475. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe and Hydrogen Europe Research.

THANK YOU

metrohyve.eu

hydraite.eu

32

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Dr Thomas Bacquart

thomas.bacquart@npl.co.uk

+44 20 8943 6652