

Hydrogen purity introduction

Thor Aarhaug, SINTEF

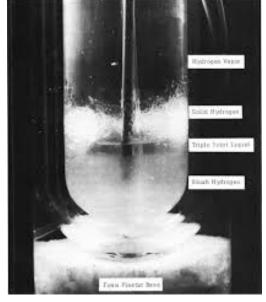
MetroHyVe / HYDRAITE Workshop 2019-09-11

Overview

- Applications of hydrogen
- Classification of hydrogen grades
- Fuel quality specifications
- Impact of impurities
- Hydrogen production
- Hydrogen purification

Applications of hydrogen fuel

- ICE
- Hydrogen turbine
- PEM technology



Classification of hydrogen

Type	Grade	Category	Applications				
	A	-	Internal combustion engines for transportation; Residential/commercial combustion appliances (e.g. boilers, cookers and similar applications)				
	В	_	Industrial fuel for power generation and heat generation except PEM fuel cell applications				
I	С	_	Aircraft and space-vehicle ground support systems except PEM fuel cell applications				
Gas	D	_	PEM fuel cells for road vehicles				
			PEM fuel cells for stationary appliances				
	E	1	High efficiency/low power; minimum hydrogen fuel index of 50%				
		2	High power; minimum hydrogen fuel index of 50				
		3	Hydrogen applications; minimum hydrogen fuel index of 99.9%				
Ⅱ Liquid	С	_	Aircraft and space-vehicle on-board propulsion and electrical energy requirements; Off-road vehicles.				
	D	_	PEM fuel cells for road vehicles				
Ⅲ Slush	_	_	Aircraft and space-vehicle on-board propulsion				

Slush hydrogen

Fuel quality specification: non-PEM

Constituents		Type I	Type II	Type III	
(assay)	Grade A	Grade B	Grade C	Grade C	
Hydrogen fuel index ^a (minimum mole fraction, %)	98,0 %	99,90 %	99,995 %	99,995 %	99,995 %
Para-hydrogen (minimum mole fraction, %)	NS	NS	NS	95,0 %	95,0 %
		Impuritie			
		(maximum cor	itent)	T	
Total gases			50 μmol/mol	50 μmol/mol	
Water (mole fraction, %)	NC b	NC	c	с	
Total hydrocarbon	100 μmol/mol	NC	С	С	
Oxygen	ь	100 μmol/mol	d	d	
Argon	b		d	d	
Nitrogen	Ъ	400 μmol/mol	С	С	
Helium			$39~\mu mol/mol$	39 μmol/mol	
co ₂			е	e	
СО	1 μmol/mol		е	e	
Mercury		0,004 μmol/mol			
Sulfur	2,0 μmol/mol	10 μmol/mol			
Permanent particulates	g	f	f	f	
Density					f

NOTE 1 NS: Not specified

NOTE 2 NC: Not to be condensed

- a The hydrogen fuel index is determined by subtracting the "total non-hydrogen gases" expressed in mole percent, from 100 mole percent.
- b Combined water, oxygen, nitrogen and argon: maximum mole fraction of 1,9 %.
- $^{\text{C}}\,$ Combined nitrogen, water and hydrocarbon: max. 9 $\mu mol/mol.$
- d Combined oxygen and argon: max. 1 μmol/mol.
- $^{\text{e}}\,$ Total CO $_2$ and CO: max. 1 $\mu mol/mol.$
- f To be agreed between supplier and customer.
- g The hydrogen shall not contain dust, sand, dirt, gums, oils, or other substances in an amount sufficient to damage the fuelling station equipment or the vehicle (engine) being fuelled.

Fuel quality specification: PEM automotive

Constituents	Type I, Type II
(assay)	Grade D
Hydrogen fuel index (minimum mole fraction) ^a	99,97 %
Total non-hydrogen gases	300 μmol/mol
Maximum concenti	ration of individual contaminants
Water (H ₂ O)	5 μmol/mol
Total hydrocarbons except methane ^b (C1 equivalent)	2 μmol/mol
Methane (CH4)	100 μmol/mol
Oxygen (O ₂)	5 μmol/mol
Helium (He)	$300~\mu\mathrm{mol/mol}$
Nitrogen (N ₂)	300 μmol/mol
Argon (Ar)	300 μmol/mol
Carbon dioxide (CO ₂)	2 μmol/mol
Carbon monoxide (CO) ^c	0,2 μmol/mol
Total sulfur compounds ^d (S1 equivalent)	0,004 μmol/mol
Formaldehyde (HCHO) ^c	0,2 μmol/mol
Formic acid (HCOOH) ^c	0,2 μmol/mol
Ammonia (NH₃)	0,1 μmol/mol
Halogenated compounds ^e (Halogen ion equivalent)	0,05 μmol/mol
Maximum particulate concentration ^{f, g}	1 mg/kg

For the constituents that are additive, such as total hydrocarbons and total sulfur compounds, the sum of the constituents shall be less than or equal to the acceptable limit.

- ^a The hydrogen fuel index is determined by subtracting the "total non-hydrogen gases" in this table, expressed in mole percent, from 100 mole percent.
- b Total hydrocarbons except methane include oxygenated organic species. Total hydrocarbons except methane shall be measured on a C1 equivalent (µmolC/mol).
- ^C Sum of CO, HCHO, HCOOH shall not exceed 0.2 μmol/mol.
- $^{
 m d}$ As a minimum, total sulfur compounds include H2S, COS, CS2 and mercaptans, which are typically found in natural gas.
- e Halogenated compounds include, for example, hydrogen chloride (HCl) and organic halides (R-X). Halogenated compounds shall be measured on a halogen ion equivalent (μmol/mol).
- $^{
 m f}$ Particulate includes solid and liquid particulates. Large particulates can cause issues with vehicle components and should be limited by using filter as specified in ISO19880-1 and ISO19880-8,
- g Particulate includes oil mist. No visible oil shall be found in fuel at a nozzle.

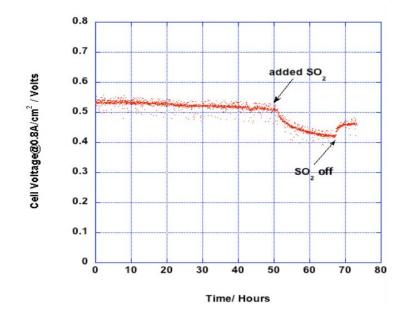
ISO 14687-2:2019

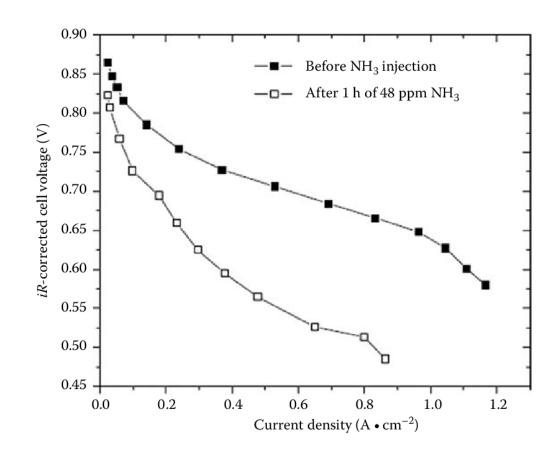
Fuel quality specification: PEM stationary

Constituents		Type I, grade E				
(assay)	Category 1	Category 2	Category 3			
Hydrogen fuel index ^a (minimum mole fraction)	50 %	50 %	99,9 %			
Total non-hydrogen gases (maximum mole fraction)	50 %	50 %	0,1%			
Water $(H_2O)^b$	Non-condensing at all ambient conditions	Non-condensing at all ambient conditions	Non-condensing at all ambient conditions			
N	Iaximum concentration of	individual contaminants ^c				
Total hydrocarbons except methane ^d (C1 equivalent)	10 μmol/mol	2 μmol/mol	2 μmol/mol			
Methane (CH ₄)	5 %	1 %	100 μmol/mol			
Oxygen (O ₂)	200 μmol/mol	200 μmol/mol	50 μmol/mol			
Sum of nitrogen (N2), argon (Ar) and helium (He) (mole fraction)	50 %	50 %	0,1 %			
Carbon dioxide (CO ₂)	Included in total non- hydrogen gases	Included in total non- hydrogen gases	2 μmol/mol			
Carbon monoxide (CO)	10 μmol/mol	10 μmol/mol	0,2 μmol/mol ^e			
Total sulfur compounds ^f (S1 equivalent)	0,004 μmol/mol	0,004 μmol/mol	0,004 μmol/mol			
Formaldehyde (HCHO)	3,0 μmol/mol	0,2 μmol/mol	0,2 μmol/mol ^e			
Formic acid (HCOOH)	10 μmol/mol	0,2 μmol/mol	0,2 μmol/mol ^e			
Ammonia (NH₃)	0,1 μmol/mol	0,1 μmol/mol	0,1 μmol/mol			
Halogenated compounds ^g (Halogen ion equivalent)	0,05 μmol/mol	0,05 μmol/mol	0,05 μmol/mol			
Maximum particulate concentration	1 mg/kg	1 mg/kg	1 mg/kg			
Maximum particle diameter	75 μm	75 μm	75 μm			

NOTE For the constituents that are additive, such as total hydrocarbons and total sulfur compounds, the sum of the constituents shall be less than or equal to the acceptable limit.

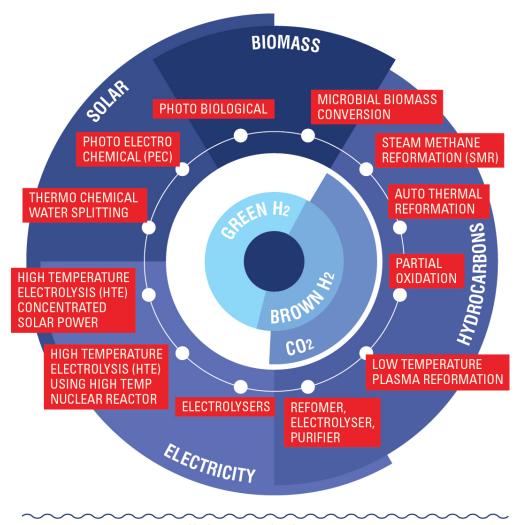
- $^{\rm a}$ The hydrogen fuel index is determined by subtracting the "total non-hydrogen gases" in this table, expressed in mole percent, from 100 mole percent.
- b Each site shall be evaluated to determine the appropriate maximum water content based on the lowest expected ambient temperature and the highest expected storage pressure.
- Maximum concentration of impurities against the total gas content shall be determined on a dry-basis.


ISO 14687-2:2019



Impact of impurities

- Function of feedstock
- Dilution (N₂, Ar, He)
- Catalyst contamination (S, X, CO, HC)
- Balance of plant (inerts, CO₂, CH₄, H₂O)
- Membrane contamination (NH₃)
- Reversible and irreversible effects



Garzon, ECS Transactions 25(1) 2009

Hydrogen production

Source	Fraction	Mt
Natural gas	.48	24
Oil/naphtha	.30	15
Coal	.18	9
Water electrolysis	0.039	2
Rest	0.001	0.005

Hydrogen composition from production

- Composition from production
- Downstream purification
- Target quality

Table 3 — Gas compositions at the outlet of the reactors for the three processes after CO_2 capture [20]									
Component	Steam reforming	O ₂ -Blown ATR (autothermal reforming)	Coal gasification						
H ₂	94.3%	93.2%	87.8%						
CO	0.1%	1.4%	2.6%						
CO ₂	2.5%	1.7%	3.9%						
N_2	0.2%	0.7%	5.0%						
Ar	0	0.6%	0.9%						
CH ₄	2.9%	2.4%	0.01%						
T (°C)	33.3	35.0	30.0						
P (bar a)	26.3	25.0	28.0						
$Q (Nm^3 \cdot h^{-1})$	17318	17631	19402						

Besancon, IJHE 34 (2009), pp. 2350-2360

Hydrogen purification

- Adsorption augmented by
 - Pressure (PSA)
 - Temperature (TSA)
- Getter purifiers (Zr)
- (Pd) membranes
- Cryogenic

RELATIVE STRENGTH OF ADSORPTION

+	++	+++	++++	
He	Ar	co	C₃H ₆	
H ₂	02	CH₄	C ₄ H ₈	
775	N ₂	CO ₂	C5+	
	nina	C₂H ₆	H ₂ S	
Carbon Activated	Prefilter	C ₂ H ₄	NH ₃	
Activated	d Carbon	C ₃ H ₈	H ₂ O	
+ Molecul	ar Sieve			

Fig. 1 – The relative strength of adsorption for gases onto the indicated adsorbents [20].

Besancon, IJHE 34 (2009), pp. 2350-2360

Hydrogen purity vs. cost

- Impurity interdependence
- Affects H₂ recovery
- QC cost driving

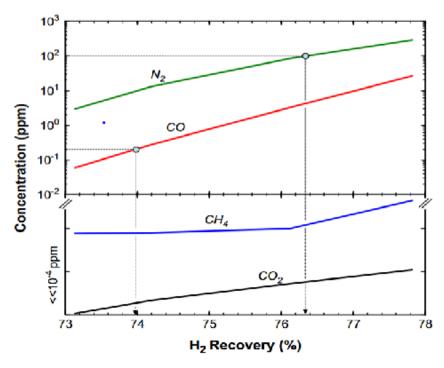


Fig. 3 – Impurity concentrations in the product hydrogen as a function of hydrogen recovery for the base-case set of conditions.

Papadias, IJHE 34 (2009) 6021-6035

Commercial hydrogen purity (HiQ example)

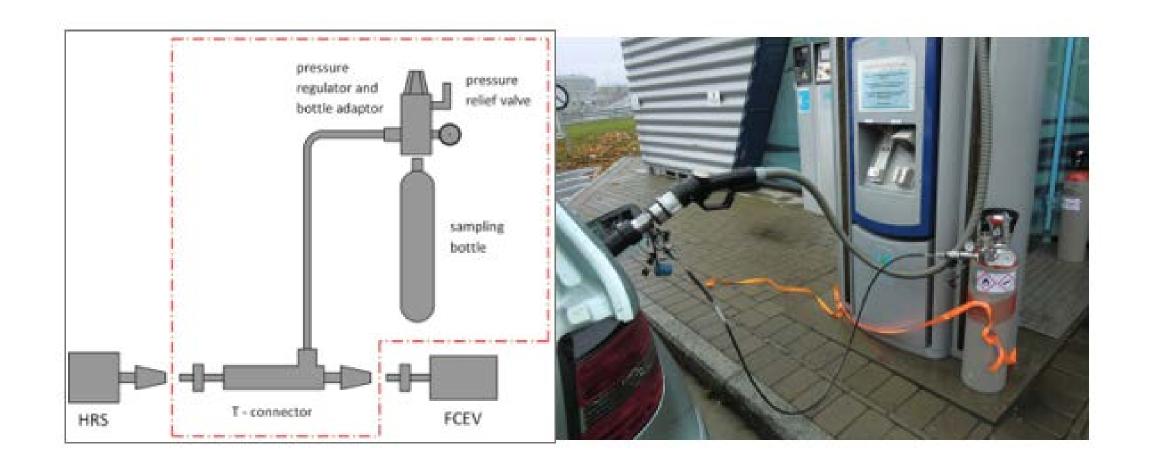
	2.5	4.6	5.0	6.0	5.0 Zero	7.0
Purity	99.5	99.996	99.999	99.9999	99.999	99.99999
H ₂ O	≤ 600	≤ 5 ppm	≤ 3	≤ 500 ppb	≤ 3 ppm	≤ 50 ppb
O_2	≤ 500	≤ 5 ppm	≤ 2	≤ 500 ppb	≤ 2 ppm	≤ 30 ppb
HC			≤ 0.5	≤ 100 ppb	≤ 200 ppb	≤ 30 ppb
N_2	≤ 3000		≤ 5	≤ 500 ppb	≤ 5 ppm	
CO				≤ 100 ppb	≤ 1 ppm	≤ 30 ppb
CO ₂				≤ 100 ppb	≤ 1 ppm	≤ 30 ppb
Total impurities	5000 ppm	40 ppm	10 ppm	1 ppm	10 ppm	100 ppb

FCV fuel: 99.97%, ≤ 200 ppb CO

Commercial hydrogen purity (AIRGAS example)

Hydrogen (H₂)

A flammable, colorless, odorless, compressed gas at high pressure.

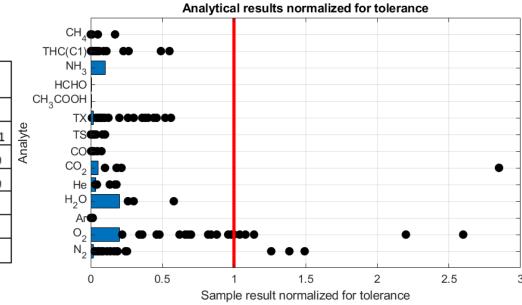

Grade	% Purity	02	H ₂ O	THC	Ar	со	CO ₂	N ₂
Research ⁽¹⁾	99.9999	0.5	0.5	0.1	0.5	0.1	0.1	0.5
Ultra Pure Carrier	99.9995	1	1	0.5		10	10	3
Semiconductor ^(#)	99.999	1	2	0.5		10	10	5
Ultra High Purity	99.999	1	2	0.5		1(2)	1(2)	5
Zero Grade	99.998	5	3	0.5				
High Purity/High Pressure	99.995	4	3					
Prepurified	99.99	10	5					

Concentrations given are ppm by volume unless otherwise specified.

Sampling of hydrogen for quality control

Analysis of hydrogen samples

- Comprehensive
- Expensive
- Challenging
- Need Risk Assessment to define some of the tolerance limits


Analyte	ASTM	Technique	Pre-concentration
THC (C1), HCHO, C-X	D7892	GC-MS	Cryo/TD/Cryo
He	D1946	GC-TCD	
N ₂ , Ar, O ₂ , H ₂ O, CO ₂	D7649	GC-MS	
со	D1946	GC-TCD	Cryo
HCO₂H, NH₃, HCl, HBr, Cl₂	WK34574(v1)	GC-ELCD	Cryo/TD/Cryo
Total sulfur	D7652	GC-SCD	Cryo/Cryo

Hydrogen purity: HyCoRA results

	N ₂	O2	Ar	H₂O	He	CO2	со	TS	тх	CH₃COOH	нсно	NH ₃	THC (C1)	CH ₄
Tol	300	5	300	5	300	2	0,2	0,004	0,05	0,2	0,2	0,1	2	100
LOD	5	1	0,4	1	10	0,1	0,0005	0,0001	0,01	0,001	0,001	0,01	0,001	0,001
mean	131	4,58	1,24	1,90	33,6	1,21	0,003	6,7E-05	0,01	n.a.	n.a.	n.a.	1,25	1,00
mean*	32,6	3,51	1,24	1,90	33,6	0,312	0,003	6,7E-05	0,01	n.a.	n.a.	n.a.	0,19	1,00
ND	2	3	19	25	23	22	0	0	1	28	28	28	0	0
Violations	4	7	0	0	0	1	0	0	0	0	0	0	1	0
Max	1443	13	4,3	2,9	54	5,7	0,015	0,0004	0,028				30	17

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 779475. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe and Hydrogen Europe Research.

metrohyve.eu

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

