

HYDROGEN REFUELLING STATION CALIBRATION WITH A TRACEABLE GRAVIMETRIC STANDARD

Rémy Maury (Cesame Exadebit / LNE LADG)

VSL, Delft 11th September 2019

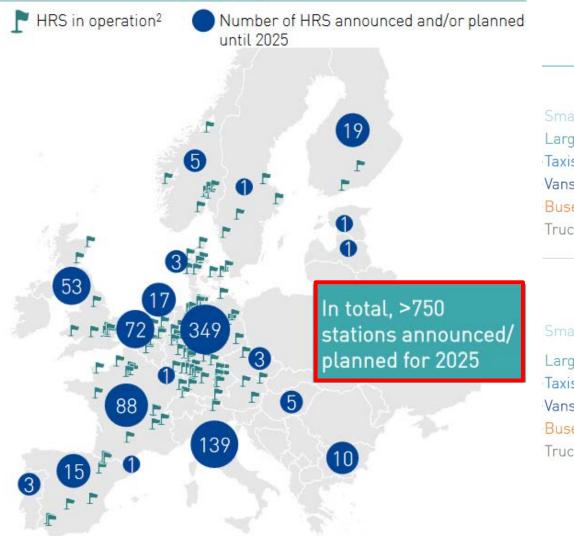
métrologie française LNE-LADG

D This work has been realized within two European projects

MetroHyVe – EURAMET EMPIR call

FCH-JU : FCH / OP / 196 : "Development of a Metering Protocol for Hydrogen Refuelling Stations"

- **Background regarding HRS in Europe**
- **Basic operating principle of a HRS station**
- Test protocol for HRS calibration (on-site) and primary gravimetric standard.
- Results from on-site measurements with the primary traceable gravimetric standard.
- **Conclusions and perspectives**



HYDROGEN REFUELLING STATION CALIBRATION Background regarding HRS in Europe

• H2 HRS growth in Europe

Current and planned HRS in Europe

		FCEV share in respective segment				
		2030	2050			
all cars		2%	22%			
ger cars		5%	39%			
is		14%	61%			
s/LCVs		8%	49%			
ses	Como D	6%	45%			
cks	9	1%	35%			
all cars		0%	14%			
ger cars		2%	28%			
is		8%	57%			
s/LCVs		3%	30%			
ses		2%	25%			
cks	.	<1%	21%			

HYDROGEN REFUELLING STATION CALIBRATION Background regarding HRS in Europe

- Why H2 dispensers are not certified yet?
 - Flow meters are not approved according to OIML R139 due to the absence of testing facilities (H2, 700 bar, ...)
 - OIML R139-2014 was <u>not adapted</u> for hydrogen dispensers

The standard has been revised in 2017-2018. New version issued on Oct 2018.

→ Therefore, short-term solution for the approval H2 dispensers is necessary for the ramp-up of the HRS network in Europe

- **Background regarding HRS in Europe**
- **Basic operating principle of a HRS station**
- Test protocol for HRS calibration (on-site) and primary gravimetric standard.
- Results from on-site measurements with the primary traceable gravimetric standard.
- **Conclusions and perspectives**

HYDROGEN REFUELLING STATION CALIBRATION Basic operating principle of a HRS station

• Basic principle and listing of the component:

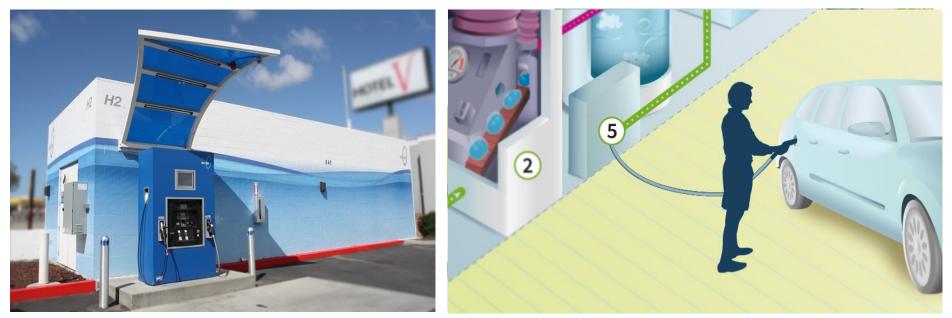
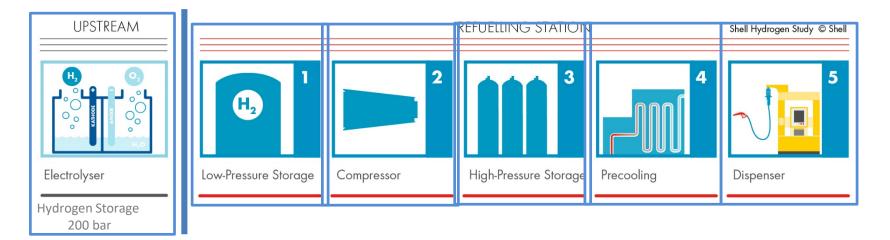



Photo courtesy of the California Fuel Cell Partnership

- **Background regarding HRS in Europe**
- □ Basic operating principle of a HRS station
- Test protocol for HRS calibration (on-site) and primary gravimetric standard.
- Results from on-site measurements with the primary traceable gravimetric standard.
- **Conclusions and perspectives**

HYDROGEN REFUELLING STATION CALIBRATION Test protocol for HRS calibration (on-site)

- Revision of the OIML R139 standard for gaseous dispensers
 - OIML R139 revision initiated in **March 2017** to include specificities of Hydrogen dispensers
 - Accuracy classes have been largely discussed and revised in the new revision **October 2018**:
 - Class 2 & Class 4 have been created for hydrogen service

		MPE for the meter	MPE for the complete measuring system [in %_of the measured quantity value]		
Accuracy class		[in % of the measured quantity value]	at type evaluation, initial or subsequent verification	in-service inspection under rated operating conditions	
For general application 1.5		1	1.5	2	
For hydrogen only	2	1.5	2	3	
For hydrogen only	4	2	4	5	

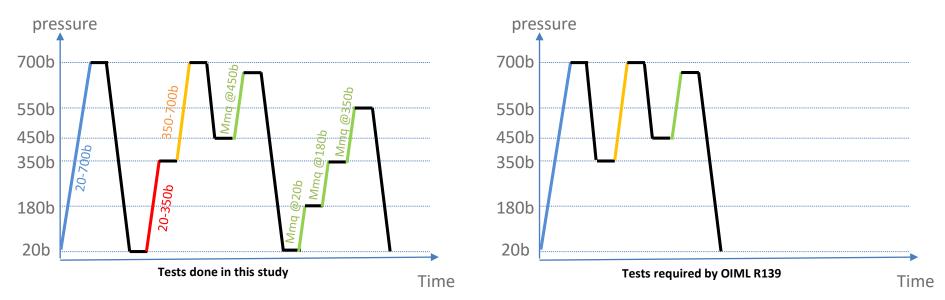
Table 1 - MPE values

In principle: Class 2 is accepted for <u>future</u> stations, whereas Class 4 is tolerated for <u>existing</u> stations

How to test a complete measuring system?

HYDROGEN REFUELLING STATION CALIBRATION Test protocol for HRS calibration (on-site)

- Accuracy tests based on <u>OIML R139-2018</u>
 - Full series of tests:
 - 1 full fillings 20-700 bar
 - 1 partial fillings
 20-350 bar
 - 1 partial fillings
 350-700 bar
 - 4 MMQ fillings


with different starting pressure (450 bar - 20 bar - 180 bar - 350 bar)

1Kg

Automatic stop Manual stop Automatic stop

Manual stop

– This series of tests is performed **4 times**

Which kind of technologies have been tested ?

HYDROGEN REFUELLING STATION CALIBRATION Test protocol for HRS calibration (on-site)

HRS technologies

- compressed gas or liquid hydrogen (cryo pump) & compressed gas (ionic compressor)
 MFM located in the station, which can be far away from the dispenser / 3 different mass
- flow meters manufacturers

HRS location (France, Germany (mainly) and Netherland)

HYDROGEN REFUELLING STATION CALIBRATION primary gravimetric standard (Air Liquide)

- Main characteristics and design (Air Liquide + Cesame Exadebit)
 - High precision scale: 150 kg resolution 0.2g, Ex-certified
 - Composite tank type 4 of 104L (i.e. 4,0 Kg of Hydrogen at 700 bar, 15°C)
 - **Mobile** test bench (trailer) to be moved on each HRS
 - Trailer walls, doors and roof serve as protection against wind
 - Protection against fire (TPRD)
 - Possibility to remove the scale for transportation
 - Valve panel to **inert tank with N2** for transportation
 - Independent **vent stack** for depressurization of the tank

HYDROGEN REFUELLING STATION CALIBRATION primary gravimetric standard (Air Liquide)

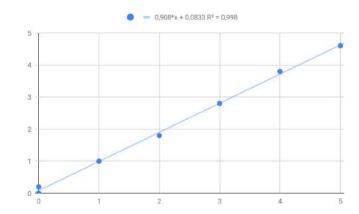
- Testing device designed and manufactured by Air Liquide (with Cesame Exadebit)
 - Certified by PTB (March 2018) as <u>first reference standard</u> for calibration, conformity assessment and verification of hydrogen refueling dispensers
 - Also accepted by LNE (France) and NMI Certin (Netherlands)
 - Fulfills metrological requirements as per OIML R139-2018
 - Uncertainty U < ⅓ MPE = 0,3%</p>
 - Uncertainty budget defined in collaboration with PTB / LNE / Cesame Exadebit

• CE approval

- Issue: tank is not designed as per PED, but EC79 (on-board storage)
- Long process with the Notified Body to get a Conformity Assessment according to PED

• Testing equipment conform to Ex rules

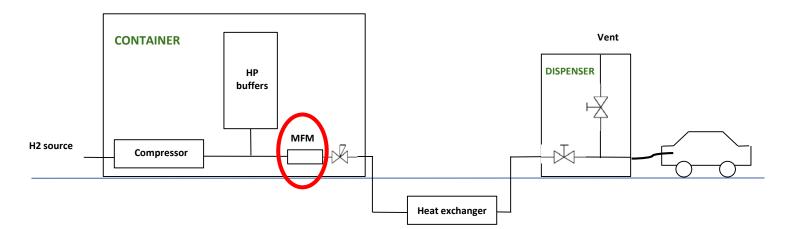
- **Background regarding HRS in Europe**
- □ Basic operating principle of a HRS station
- Test protocol for HRS calibration (on-site) and primary gravimetric standard.
- Results from on-site measurements with the primary traceable gravimetric standard.
- **Conclusions and perspectives**

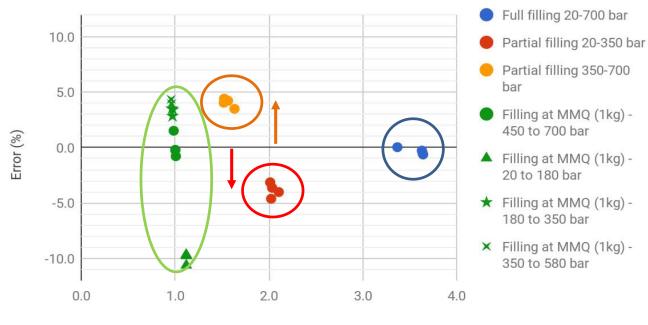


- Typical planning of a testing week:
 - Installation: 2-3h
 - Scale verification: 30 min
 - Accuracy test: 3 days
 - De-installation: 2-3h

• Scale verification

- Warm-up time required of about 1h30-2h
 - Scale must remain powered during nights to save time each morning
- Verification using reference weights: 1 Kg / 2Kg / 4 Kg / 5 Kg:
 - One full verification on the 1st day
 - Then light verification each morning
- Linear correction brought to mass measurements
 - Based on scale deviation measured each day



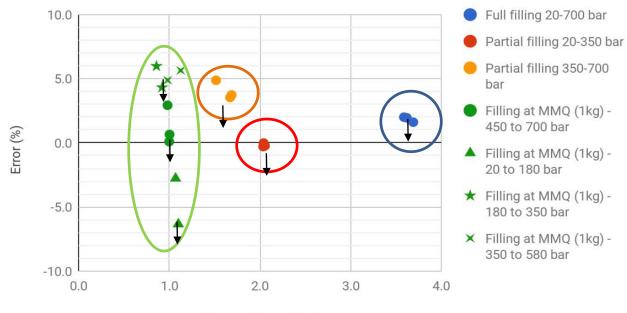


• Same configuration (called 1) of the measuring system:

• Configuration 1: HRS2 (compressed gas) – MFM in the container

Mass delivered (kg)

- Full filling : good repeatability around 0
- Partial filling : negative offset (20-350bar)
- Partial filling : positive offset (350-700bar)
- Large scatter at MMQ depending on initial pressure


Is this tendency often seen with this configuration 1

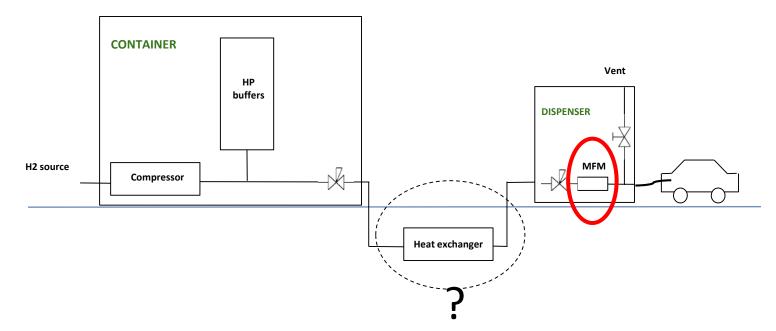
• Configuration 1: HRS1 (compressed gas) – MFM in the container

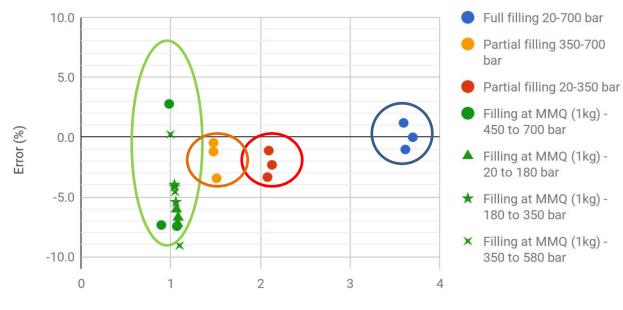
Mass delivered (kg)

- The same trends are observed :
- For all fillings : good repeatability *but offset +2%*

This could be attributed to k factor in the MFM Adjustment in Coriolis has not be realized during this test campaign One adjustment is allowed by the OIML R139

What about other HRS configuration ?



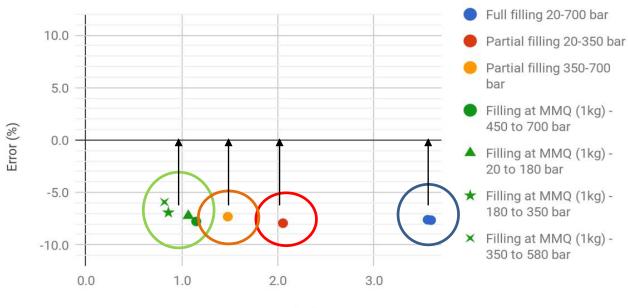


• Same configuration (called 2) of the measuring system:

• Configuration 2: HRS7 (compressed gas) – MFM in the dispenser

Mass delivered (kg)

- Different results than previous HRS
- More dispersion on the test results (other brand of MFM)
- Constant deviation seems observed \rightarrow Icing issue


<u>Remark</u> : weather was bad – high humidity / cold Venting was taken into account – no indication how

• Configuration 2: HRS6 (Liquid H2) – MFM in the dispenser

- Large negative offset
- Results are centered around -7%
- If a correction is applied to the CFM, this configuration could reach a class 1.5 in the OIML R139 classification
- Only one set before HRS failure.

Summary of all experiments and accuracy class for HRS

Results from on-site measurements with gravimetric standard

		C	CONFIGURATION 2				
MEAN VALUES	HRS1 (based on adjusted values)	HRS2	HRS3	HRS4 (based on adjusted values)	HRS5	HRS6 (based on adjusted values)	HRS7
Full fillings 20-700 bar	0,00%	-0,32%	0,52%	0,00%	0,50%	0,00%	0,04%
Partial fillings 20- 350 bar (*)	-2,03%	-3,84%	-2,46%	-0,83%	-3,89%	-0,31% (*)	-2,26%
Partial fillings 350- 700 bar	2,19%	4,05%	0,72%	1,00%	4,58%	0,31% ^(*)	-1,71%
Filling at MMQ 450 to 700 bar	-0,63%	0,08%	1,99%	0,50%	4,84%	-0,14% (*)	-4,01%
Filling at MMQ 20 to 180 bar (*)	- 6,41%	-10,02%	-9,95%	-1,71%	-6,75% ^(*)	0,40% ^(*)	-6,65%
Filling at MMQ 180 to 350 bar (*)	3,29%	3,28%	-5,13%	0,94%	0,51% ^(*)	0,71% ^(*)	-4,51%
Filling at MMQ 350 to 580 bar (*)	3,41%	3,69%	-1,08%	0,71%	4,63% ^(*)	1,70% ^(*)	-4,47%
CLASS OIML R139	4	4	2	2	4	2	4

Legend:

Green = all values are within the limits (MPE)

(*) single value

Orange = mean value is within the limits (or very close to the limits), but some single values are out of the limits (MPE) Red = all values are out of the limits (MPE)

Explanations for the results

(*) tests out of OIML R139:2018 scope

Results from on-site measurements with gravimetric standard

- Good reliability of the testing device in ambient conditions (hot temperatures, moderate wind, cold and humid conditions in winter)
 - Icing phenomenon to be **<u>considered</u>** and better quantified in the uncertainty budget
- Influence of the type of MFM:
 - Three models tested in different configurations
 - Good precision obtained with M1 & M2 MFM (cf. Full fillings) and good overall repeatability
 - Remark on the M3:
 - Dispersion seems more important
 - Further tests required to clearly conclude on the performance of this MFM
- Influence of the measuring system configuration (distance between the MFM and the nozzle):
 - **Configuration 2** show lower errors than configuration 1

Why?

Results from on-site measurements with gravimetric standard

- **Influence of distance between MFM and dispenser: Configuration 1**
- CONTAINER Vent Mass of H2 (pressure P1): not counted but given to the DISPENSER **Buffers** customer. \rightarrow Depends on end pressure of previous filling (independent of the customer) ĸЪ Þ H2 Compressor MFM source Heat exchanger Situation at the end of a fueling Vented quantity: counted, but not in _ customer tank (~ 30g @ 750 bar) **CONTAINER** Vent Mass of H2 (pressure P2): counted but not in the customer tank DISPENSER Buffers \rightarrow Depends on end pressure given by SAEJ protocol (automatic stop) OR manual stop decided by the customer OR abnormal stop (fueling error) W ĸЙ H2 Compressor MFM source Heat

exchanger

Situation at beginning of a fueling _

Results from on-site measurements with gravimetric standard

- Influence of distance between MFM and dispenser: Configuration 1
 - If P1 ~ P2: the customer pays *exactly* the quantity delivered in his tank
 - Initial mass of H2 is replaced by the same quantity at end of fueling

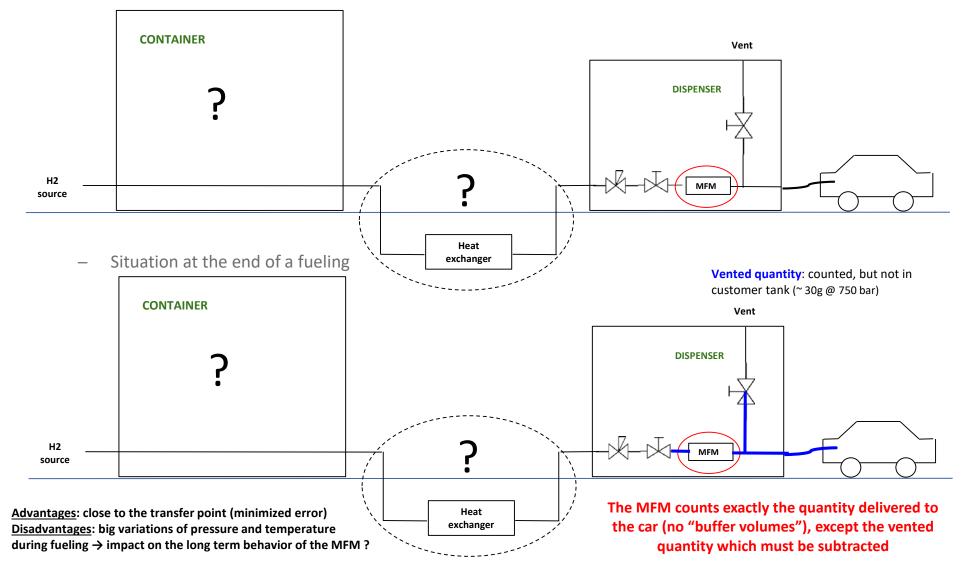
m_delivered ~ m_invoiced

- If P1 > P2: the customer get *more* hydrogen than the quantity invoiced
 - Initial mass of H2 is replaced by a *lower* quantity at end of fueling

m_delivered > m_invoiced (negative error)

- If P1 < P2: the customer get *less* hydrogen than the quantity invoiced
 - Initial mass of H2 is replaced by a higher quantity at end of fueling

m_delivered < m_invoiced (positive error)</pre>



• Strong influence of the distance between the MFM and the dispenser

- The longer is the distance (or volume), bigger is the error
- Larger pressure difference in the pipe at beginning and end of fueling leads to a bigger error
 - Example: MMQ fueling at 450 bar and 20 bar initial pressure
- If the volume of piping is known then errors can be calculated and corrected

Results from on-site measurements with gravimetric standard

- Influence of distance between MFM and dispenser: Configuration 2
 - Situation at beginning of a fueling

- **Background regarding HRS in Europe**
- □ Basic operating principle of a HRS station
- Test protocol for HRS calibration (on-site) and primary gravimetric standard.
- Results from on-site measurements with the primary traceable gravimetric standard.
- **Conclusions and perspectives**

HYDROGEN REFUELLING STATION CALIBRATION Conclusions and perspectives

- A primary test bench as been designed and developed for hydrogen refueling station calibration.
- . An intensive test campaign has been realized in Europe (7 HRS).
- The accuracy classes has been found to mainly comply with Class 4 (for existing stations).
- . The main errors have been measured and some hypothesis have been proposed to understand the difference between two main configurations Configuration 2 seems more accurate but caution has to be taken regarding operating conditions.
- Need to make comparison between primary standard for hydrogen stations and develop new metrological framework for periodic verification to speed up the test campaign
- Need to consider other kind of technologies (bicycles, buses and train) and adapt our reference for these ranges of application.

HYDROGEN REFUELLING STATION CALIBRATION Conclusions and perspectives

• Thank you !



metrohyve.eu

hydraite.eu