

Hydra Project Overview

This project has received funding from the European Union's Horizon 2020 innovation programme under grant agreement number: 875527

Like the mythical beast, HYDRA will take a multi-headed approach to develop the next-generation of high-energy and low-cost Li-ion batteries.

Hybrid Materials

Model-Based Design

Advanced Manufacturing

Sustainability

HYDRA will develop Generation 3b Liion batteries

- Energy density: > 750 Wh L⁻¹
- Cost: < 90 € kWh⁻¹
- Max. Charging rate: 5C
- Max. Discharging Rate: 15C
- Cycle Life: 2000 deep cycles
- TRL 6 Prototype tested in intended environment close to expected performance.

HYDRA

Objective 1

Develop new Co-free hybrid electrode materials & architectures

Objective 2

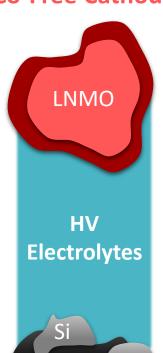
Improve environmental impact and ecological sustainability of batteries

Objective 3

Enhance manufacturing processes for production of new materials

Objective 4

implementation of project results



Hybrid Co-free electrode materials

Co-Free Cathode

Si-C Anode

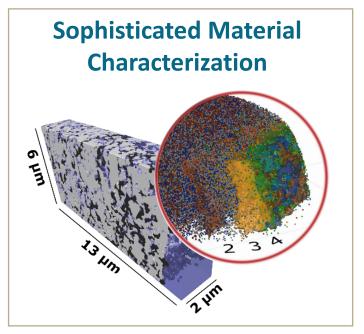
Co-free cathode materials like LNMO & LFP help achieve stable & energy-dense cells.

High-voltage electrolytes stabilize the cathode interface and avoid excess SEI formation at Si anode interface.

Stable Si-C blends increase the capacity of the electrode & energy density of the cell.

Hybridized electrode materials and novel architectures help cell designers:

- Balance the needs for energy
 & power
- Stabilize electrodes for long lifetime
- Create sustainable and affordable batteries


Model-based battery design

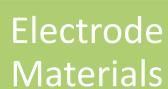
HYDRA will apply recent advances in model-based battery design to develop tools that help developers understand material performance, optimize cell performance, and predict lifetime in real operation.

R. Scipioni et al, Electrochimica Acta 284 (2018) 454-468

R. Scipioni et al, Applied Materials Today 20 (2020) 100748

Advanced Manufacturing

HYDRA has strong industry commitment across the value chain. The project will demonstrate pilot scale production, achieve TRL 6, and target a cost < 90 € kWh⁻¹



Electrolyte

Cells

Packs

Ecological and economic sustainability are important aspects of HYDRA, which will pursue a **CRM reduction of > 85%**

- CRM reduction will help the European battery industry keep up the momentum currently driving large-scale low cost electrification
- Aqueous processing of cathodes will reduce the need for organic solvents, saving cost and energy during the manufacturing process

Hybrid power-energy electrodes for next generation lithium-ion batteries (HYDRA)

Topic: Gen 3b Li-ion Batteries

Duration: 4 years (48 + 4 Months)

Budget: 9.4 million Euro

Coordinator: SINTEF

Partners: CEA, Corvus, DLR, Elkem, FAAM,

ICSI, JM, POLITO, Solvionic, UCL,

Uppsala University



Johnson Matthey Inspiring science, enhancing life

RESEARCH CENTER

UNIVERSITET

This project has received funding from the European Union's Horizon 2020 innovation programme under grant agreement number: 875527