

Materials integrity in sub-sea pipelines for H_2 gas transport

Green Hydrogen Webinars 24.03.21

Vigdis Olden, SINTEF Industry

SINTEF's role in sub sea pipeline development in the North Sea

- Development of weld and weld repair procedures (hyperbaric).
 - Qualification Testing (mechanical and corrosion properties incl H2S)
- Ensuring fracture toughness and fatigue properties.
 - Evaluate the influence from plastic deformation during pipe laying.
 - Analyse the criticality of local flaws (ECA).
 - Analyse the influence of shut-downs, residual stresses, erosion ...
- Evaluate the influence of H from CP with respect to Hydrogen Induced Stress Cracking (HISC)
 - Development of test methods
- Development of Standards and Guidelines for pipeline design in close collaboration with DNV
 - DnV Guidelines for HISC & ECA of pipelines

GEOMETRY / CONSTRAINT [T,Q,M]

Hydrogen atoms enter and affect the properties of metallic materials

KPN HyLINE

2019 - 2023

() SINTEF ONTNU

"The main objective of HyLINE is to establish fundamental knowledge about the effects of hydrogen gas on pipeline steels to enable a safe and efficient use of existing and new subsea pipeline infrastructure for future large-scale transport of hydrogen gas."

THE NETHERLANDS

BELGIUM

DENMARI

UNITED KINGDOM

SHETLAND

Summary of the project

UNIVERSITY

GASSCO

SINTEF

- Type of project:
- Duration:
- Budget:
- Funding:
- Fellowship grants:
- Research partners:
- Industry partners:
- International coop.:

Competence project for the Industry 2019-2023 (4 years) equinor 34.2 mill NOK (~3.6 mill €) echnipFMC 58% Research Council of Norway, Tenaris 35% industry, 7% own funding. 3 PhDs 1 Post Doc. nel• Université SINTEF, NTNU & KU ^{de}Poitiers 6 Companies 🔍 Air Liquide

3 Universities

The work packages

Link to project description: <u>https://www.sintef.no/en/projects/hyline-safe-pipelines-for-hydrogen-transport/</u>

SINTEF ONTNU

(H₂)

WP4

WP1 Hydrogen uptake and diffusion

- Task 1.1 Absorption and concentration
 - Characterize H diffusion properties and trapping after H charging under various hydrogen charging conditions (CP and H₂).
- Task 1.2 Influence of inhibitors
 - Examine the influence of adding ppm levels of inhibiting gases in pressurized hydrogen gas on the fatigue properties.

Close collaboration with Kyushu

and Fukuoka University, Japan

WP2 Nano and micro scale effects

- Task 2.1 Small scale mechanical testing
 - In situ nano and micro-mechanical testing under different H charging conditions. Focusing on the mechanical response.
- Task 2.2: Advanced multiscale characterization
 - Material and microstructural characterization ranging from observation of single dislocations to strain localization behaviour in the microstructure under H influence.

Depth (nm)

WP2 Nano and micro scale effects

() SINTEF **()** NTNU

5000

WP3 Effects of hydrogen on mechanical performance

- Task 3.1 Material screening program
 - Mechanical testing and metallurgical characterization to give basis for choice of materials for the main study.
- Task 3.2 Fracture toughness
 - SENT testing under H2 gas and electrochemical charging conditions.
 Establish fracture toughness threshold.
- Task 3.3 Fatigue properties
 - Fatigue crack growth rate testing under various H charging conditions, including H2 gas with inhibitors.
 - Close collaboration with Kyushu University (performs testing in H2 gas)

Effect of H on macroscale

High pressure H test rigs at KU

WP4 Structural integrity

Task 4.1 Hydrogen related parameters

H₂

- Empirical models for entry, diffusion and trapping of H as a function of the charging conditions.
- Task 4.2 Hydrogen influenced Gurson model
 - Modification of the Gurson damage model to take hydrogen enhanced plasticity into account.
 - PhD3 (Prof. Zhiliang Zhang)
- Task 4.3 Cohesive zone model
 - CZM is sought extended to account for H assisted fatigue and combined with the Gurson model to capture ductile to brittle transition.
 - Collaboration with Uni Poitiers (Prof. Gilbert Hénaff, Damien Halm)

WP3 Effects of hydrogen on mechanical performance

- Task 3.1 Material screening program
 - Mechanical testing and metallurgical characterization to give basis for choice of materials for the main study.
- Task 3.2 Fracture toughness
 - SENT testing under H2 gas and electrochemical charging conditions.
 Establish fracture toughness threshold.
- Task 3.3 Fatigue properties
 - Fatigue crack growth rate testing under various H charging conditions, including H2 gas with inhibitors.
 - Close collaboration with Kyushu University (performs testing in H2 gas)

SINTEF

Strength class	OD [mm]	WT [mm]	Production
X65	770	26	LT Weld
X70	1100	41	_"_
X65	810	21	_"_
X65	321	15	Seamless

Base metal and weld simulated (CGHAZ) steels were:

- characterized with respect to microstructure and hardness
- tested for tensile properties in air and hydrogen charging conditions applying a low strain rate

() SINTEF ONTNU

Microstructure: X65 welded pipe

Base metal – longitudinal

CGHAZ- longitudinal

Slow strain rate testing - BM

H₂

Fracture morphology in air and H

Hydrogen

Air

• Two X65 pipeline steels will be subjected to:

- Fracture and fatigue testing in pressurized gaseous conditions includingas the effect of adding inhibitors to the H₂ gas
- Investigations of hydrogen uptake and trapping under various hydrogen charging conditions (electrochemical and gaseous).
- Nanomechanical testing and characterization under H influence.

Thank you!

