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1  Executive Summary 

This D5.4 report is a report on the technologies and methods that are being developed in the 

"COGNITWIN Hybrid and Cognitive Twin Toolbox" and which were applied in the developments for the 

COGNITWIN industrial pilots. The information provided in the report will further be useful for aligning 

the concepts and available tools among the COGNITWIN partners but should also give external readers 

ideas about new Industry 4.0 possibilities.   

The COGNITWIN projects aims toward supporting the digitalization of the European heavy industries. 

A main ambition of the COGNITWIN project is to develop cognitive digital twins that can support a 

significant improvement in industrial operation. To do so, COGNITWIN is working with combining data, 

physics-based models, machine learning (ML), and Artificial Intelligence (AI) in the best possible 

manner to solve the industrial challenges. Cognition is introduced into the models through self-

learning and AI. In COGNITWIN WP5, where this report belongs, the aim is to identify which ML/AI 

methods are suited for such problems and extend and/or develop new algorithms to further improve 

performances of the control systems. By developing a Cognitive Twin Toolbox, comprising methods to 

analyse data, exploit the information from physics-based models, combine information from data and 

numerical models, and demonstrating applications to process control, this can be applied more 

generally to support many different process industries. A Cognitive Twin Toolbox was built out from 

the needs of 6 different industrial pilots, all with their specific and different challenges. 

This deliverable is the final report on technologies and methods that were developed for the Hybrid 

AI/Analytics and Cognitive Toolbox. It includes the refinements and final results on hybrid twin 

development and the results of the development of cognitive twins. Most of the toolbox elements 

have been applied to the pilots, while other elements have a great potential for future application.   

This deliverable refines and extends the D5.1, D5.2 and D5.3 deliverables by providing more technical 

details especially on new features. In particular it extends the description of already provided 

functionalities with new one developed during the last reporting period.  

The D5.4 deliverable is accompanied with demonstrators that show how a subset of components play 

together. The demonstrators that show reusable patterns which can be replicated and adapted also in 

future industrial process industry settings. 

The new contributions in the D5.4 update from D5.3 in particular includes the following; 

- SINTEF – The PPBM methodology, and model developments for ladle lining erosion, has been 

completed, resulting in two papers and one submission to github.com. SINDIT1 was extended 

to meet the cognition needs for the Sidenor pilot. 

- Sidenor- The PPBM based model was integrated into StreamPipes, reading "near online" data 

pushed by Sidenor, using secure ftp. The data and model results were made available through 

a FA3ST service, and also explored and made available to users via a knowledge graph based 

solution for cognition (SINDIT). 

- Cybernetica - The model component for the Hydro GTC pilot has been extended to provide 

nonlinear model predictive control of the plant, and closed loop operation has been tested. 

Cybernetica Viewer has been extended with a REST interface such that it can present a user 

interface in a web viewer. Both process data and calculated data from Cybernetica CENIT can 

be displayed. Two-way communication is also possible. This has been applied in the Hydro GTC 

 
1 https://cognitwin.github.io/toolbox/tools/dt-graph.html 
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pilot. The Cybernetica CENIT API for error detection and handling routines has been further 

refined. 

- Nst – Focus on the Cognitive twins. A new method for cognition-driven unusuality detection is 

proposed and validated. It uses the analogy from the human cognition that only variation in 

the (external) signals will be registered and processed. In our case, it means that only the 

changes in the input data will be detected and trigger the cognition process for understanding 

these changes. We performed a validation based on the ladle degradation data from Sidenor 

pilot 

- Fraunhofer - The FA3ST service (Fraunhofer Advanced Asset Administration Shell (AAS) Tools 

for Digital Twins) was extended to support time series data. To do this, logic had to be added 

to a TimeSeries submodel that implements the required operations e.g. accessing data in a 

unified way. The main challenge was to implement the extension in a generic way agnostic to 

the type of underlying database so that it can potentially be used with any kind of database in 

the future. 

- Tekno - New tools were added to the Teknopar Industrial Automation (TIA) Platform: TIA 

MONITORING, TIA STATISTICS, TIA METRICS, TIA OEE, and TIA ASP. TIA MONITORING enables 

predictive maintenance using condition monitoring. TIA STATISTICS is used to perform 

statistical analysis on the data. TIA METRICS enables the users to calculate defined criteria for 

any process, production unit or product. TIA ASP is an Apache StreamPipe-based tool that 

allows users to select and run machine learning models. 

  

The overall structure of the toolbox has grown out from the pilot needs. In COGNITWIN WP4 

infrastructure for sensors, data collection and storage, as well as orchestration of models is being 

developed. The needs from WP5 are a general driver for the work in WP4. The complete COGNITWIN 

Toolbox (https://cognitwin.github.io/toolbox/) allows for orchestration of tools and methods, from 

sensors all the way to operating digital twins. The way this is done is varying between the pilots and is 

explained in more details in the specific pilot reports.  

A separate report on the "Platform, Sensor, and Data Interoperability Toolbox" (D4.4) is issued 

together with this report, giving a more complete overview on the COGNITWIN challenges and 

Toolbox. 

As technical details are best presented on a per-component-basis, and our presentation on the 

individual tasks focusses on more abstract insights. The bulk of technical details and development 

status of the individual toolbox components is additionally reported as Appendix 1 and referred to in 

this document. 
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2 Introduction 

2.1 Scope and purpose 
A purpose of the COGNITWIN Initial Hybrid AI and Cognitive Twin Toolbox is to provide the technical 

foundation for the realization of hybrid AI and cognitive twins in the process industry. This technical 

foundation takes the form of software components, methods, and processes. An important 

consideration is that while hybrid AI and cognitive twin concepts are not entirely unique to the process 

industry, certain aspects are specific to the industry. The toolbox developed in this work-package 

therefore comprises:  

1. custom software components that are developed, extended, or adapted for the specific needs 

of the Use-Cases in the process industry,  

2. existing components that are technically integrated to facilitate interoperability along 

workflows specific to the Use-Cases, and  

3. workflows that that are realized entirely by existing software, but which is combined and used 

in patterns and ways specific to the Use-Cases in the process industry.  

The toolbox started out as a collection of individiual, mostly unrelated, software tools and processes 

which were thought to be potentially applicable to the Use-Cases in the process industry. These 

unrelated components have been adapted, integrated, and combined in pipelines to support the 

specific needs of the Use-Cases. At the end of the process, the toolbox provides a technical foundation 

capable to support the requirements of the Use-Cases in known and tested usage patterns, with 

specifically adapted software components that are interoperable where required. The D5.4 deliverable 

shows the final results towards that goal and takes the form of an updated version of the previous 

WP5 deliverables.  

The deliverable D5.4 is a result of all WP5 tasks. It defines the final specification of the COGNITWIN 

Hybrid AI and Cognitive Twin toolbox.  It is accompanied with demonstrators that show how a subset 

of components play together. The demonstrators can be seen in the COGNITWIN YouTube video 

channel https://www.youtube.com/@cognitwin9786/videos and are also linked to from the digital 

twin pipelines and the various toolbox components in the COGNITWIN Toolbox portal, 

https://cognitwin.github.io/toolbox/. 

 

The deliverable serves as a common project reference across all the technical work packages (WP1-

WP5). 

2.2 Structure of the deliverable 
This deliverable is structured as follows. We will start by giving a high-level overview of the toolbox in 

its entirety, specifically design decisions and the final conceptual architecture.  

The second part will contain status descriptions on a task-level, focusing on progress, challenges, and 

deviations from original planning. These descriptions will still be kept relatively short, as the bulk of 

the technical documentation is provided on a component level.  

The third and most detailed part of this deliverable consists of detailed descriptions of the individual 

toolbox components – including detailed descriptions of progress made during the project so far – 

examples of how to use them, and their relation to the Use-Cases. We also focus on how the individual 

toolbox components are integrated in pipelines to meet the needs of the Use-Cases. 

https://www.youtube.com/@cognitwin9786/videos
https://cognitwin.github.io/toolbox/
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For the sake of completeness, this deliverable D5.4 takes the form of an updated version of deliverable 

D5.3, and thus contains not only updates on the tasks performed in the period M31-M42, but also the 

underlying work performed prior to that. 

The deliverable includes a list of the various specifications of the COGNITWIN components in Annex – 

COGNITWIN Toolbox Components. 
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3 High-level overview 

 

Figure 1: High-level overview of the COGNITWIN Toolbox 

The goal of WP5 is to provide methods and tools for Hybrid AI and Cognitive Twins. Figure 1 shows the 

structure of the COGNITWIN Toolbox as reflected in the COGNITWIN Toolbox Portal, available at 

https://cognitwin.github.io/toolbox/.  This report focuses on the areas in the red box on Digital Twin 

Analytics Models and Visualisation, while the report D4.4 introduces the areas in the Toolbox and the 

areas of to the left in the figure on Digital Twin Data Acquisition and Representation. 

In the context of the COGNITWIN project, the Hybrid AI and Cognitive Twins should not be developed 

from scratch, but rather the already existing components/systems should be considered. Additionally, 

the new services to model the behaviour of a Hybrid AI or Cognitive Twins have already been 

developed by different partners. However, the partners use different technologies, develop 

components in several programming languages, use different protocols, etc. In previous WP5 

deliverables (D5.1, D5.2 and D5.3) we have already identified a list of the components which will be 

reused or extended.  

In this final report, we are reporting progress on the extension and development of components and 

reflecting on additional requirements that emerge from applying the toolbox components to the pilots.  

 

  

https://cognitwin.github.io/toolbox/
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4 Summary of toolbox elements and their relations to the pilots  

The COGNITWIN toolbox is developed to support the pilots and enable similar projects in the future, 

but where the developments be done faster due to exploitation of toolbox elements. The 

requirements from the pilots, presented in Chapter 5, has been driving the contents of the toolbox. In 

addition, we have tools that may be significant contributors to future projects in this domain.  

In WP4 we have supplied infrastructure to provide sensors, data and methods to orchestrate this 

together with models. In the companying COGNITWIN D4.4 report2 information about these tools are 

given, such as MAI, Cybernetica OPC UA, FUSE OPC UA, Tstream, BD Pipelines DF, Honir, Lodur, 

Bedrock, Steel4 which IoTP has been renamed as TIA PLATFORM, where TIA IOT toolbox contains TIA 

SENSOR, TIA PLC and TIA CONTROL tools, and TIA DATA  toolbox of TIA PLATFORM includes TIA 

STORAGE and TIA STREAM tools, FAST, DT Graph, StreamPipes + Siddhi, CEP Editor, IDS Connectors, 

Trusted Factory Connector , COGNITWIN Toolbox Portal, Steel4 ICP, Cybernetica Viewer, Sensor 

library, and Sensor data quality framework. These elements are used as infrastructure for the model 

developments.  

 

Toolbox elements (i.e. tools) serving for the purposes of WP5 are: in TIA APPS toolbox: TIA 

MONITORING, TIA METRICS, TIA STATISTICS, TIA OEE, TIA PREMA, TIA MODEL, TIA ASP, and TIA DATA-

GEN, in TIA UX toolbox: TIA DASHBOARD. 

 

 

 

 

 

 

 

 
2 https://www.sintef.no/projectweb/cognitwin/public-reports/ 
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Table 1: The table show the toolbox elements and their uses or potential uses across the 
industrial pilots 

 
 

 

In Table 1 we see an overview of the toolbox elements and their relations to the pilots. Toolbox 

elements which are directly used in a pilot is marked with an "x", while identified toolbox elements 

that were not planned used, but had the potential to be used, are marked with "(x)". 

From the table we can get a good overview over the tools used in each of the pilots. As the resources 

for each pilot were limited, it has not possible to involve all research partners in each and all of the 

pilots. Therefore, each pilot team, being a subset of the technology partners, have worked with the 

tools that they know best, and which were the most efficient to support a given pilot. The tools with 

only "(x)" was not a preferred tool now, due to partner preferences, but may be important 

contributions in similar future projects. 

The tools provided by Scortex has unfortunately not be continued due to bankruptcy. As a result, the 

tools could not be used in the final deliverable to the Saarstahl pilot. 

Looking across the pilots we can see that we have tools related to image processing and modelling 

(largely the Saarstahl pilot), tools related to machinery optimization and maintenance (largely the 

NOKSEL pilot) and tools related to process control and optimization (largely the Hydro, Elkem, Sidenor 

and Sumitomo SHI FW pilots). Some of the tools have the potential to be used across this rough 

classification of the pilots. 
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Non-ferrous Hydro Plant Digital Twins with ML/AI (x) x (x) (x) (x) x

Multi-variate Sensor analytics,Deep Learning x x

Deep Learning Performance x x

Hybrid Digital Twins (x) (x) (x) (x) x x x (x) (x)

Cognitive Digital Twins (x) (x) x x (x) (x)

Elkem Plant Digital Twins with ML/AI (x) x (x) x (x) (x) (x) (x)

Multi-variate Sensor analytics, Deep Learning (x) (x) (x)

Deep Learning Performance (x) (x) (x)

Hybrid Digital Twins (x) (x) (x) (x) x x (x) (x)

Cognitive Digital Twins (x) (x) x x (x) (x)

Steel Saarstahl Plant Digital Twins with ML/AI x x x x x

Multi-variate Sensor analytics, Deep Learning x x x x x

Deep Learning Performance x x x x x

Hybrid Digital Twins x x

Cognitive Digital Twins x x (x)

Sidenor Plant Digital Twins with ML/AI (x) (x) (x) (x) (x) (x)

Multi-variate Sensor analytics, Deep Learning

Deep Learning Performance

Hybrid Digital Twins (x) (x) (x) x (x) (x) (x) (x)

Cognitive Digital Twins x x (x) (x) (x) (x) x

Noksel Plant Digital Twins with ML/AI (x) x (x) x (x) (x)

Multi-variate Sensor analytics, Deep Learning x x x (x) x

Deep Learning Performance          

Hybrid Digital Twins (x) x x x (x) (x) (x) (x)

Cognitive Digital Twins (x) (x) x x x (x) (x) (x) (x)

Engineering Sumitomo Plant Digital Twins with ML/AI (x) (x) (x) (x) (x) (x) (x) x x (x)  

Multi-variate Sensor analytics,  Deep Learning (x) (x) (x)

Deep Learning Performance (x) (x) (x)

Hybrid Digital Twins (x) (x) (x) (x) (x) (x) (x) (x) (x) (x) x x

Cognitive Digital Twins (x) (x) (x) (x) (x) (x) (x) (x) (x) x (x)

WP5 Toolbox COMPONENTS
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4.1 Relations to WP6 “Business impact” 

The tools provided by DKFI, Fraunhofer, Nissatech, Oulu and SINTEF are considered as open. This 

indicates that as much as possible of the tools and methods will be made publicly available and 

published. However, it is expected that the work in the COGNITWIN project has supplied these partners 

with a competitive edge that may be exploited in future similar projects for the process industries. 

The developments of Cybernetica have resulted in proprietary tools which will be protected but made 

available to the industry at any time. The developments of these tools in COGNITWIN will be a 

significant contribution to resolve similar pilot challenges in the future.  

The tools that have been developed and enhanced by TEKNOPAR are proprietary tools that will be 

made available to the industry upon request and for the specific requirements of the customers/users.  

Al the tools will be promoted through the COGNITWIN Digital Twin Toolbox. 

4.2 Relations to WP7: Communication, Dissemination, Standardisation 

The work to support the pilots has generated multiple publications, where we have explained the 

models and methods that have been developed. Such publications are not only important to market 

COGNITWIN as such but are critical to advance the use of the developed tools in future projects. The 

publications do not only market the tools, but also market the research partners and bring these into 

new projects and developments. 
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5 Requirement analysis and utilization for the pilots 

5.1 HYDRO Pilot 

5.1.1 User requirements specification and user stories 

 

Table 2: Use case Hydro-UC-1 

Use Case Template Description 

Use Case Name Optimal alumina feed to GTC 

Use Case ID Hydro-UC-1 

User story expression of use 

case 

• As a GTC process operator, I want recommendations for 

corrective action to keep the HF content of alumina as 

even as possible so that disturbances to downstream 

processes are minimized. 

• As a staff member in electrolysis process control room, I 

want alumina HF content to be as stable and predictable 

as possible so that primary alumina production proceeds 

optimally. 

Goal Achievement of even distribution of adsorbed HF in secondary 

alumina 

Measurable KPIs for the goal 

(if any) 

Reduced process disturbance 

Actors and stakeholders 

involved 

• GTC/electrolysis operation 

• GTC IT and sensor support/supplier 

• Digital service provider 

Input data • GTC operational data (Opc Ua) 

• Electrolysis operational data (Opc Ua) 

• Weather measurements and forecast (MET Norway => 

Opc Ua) 

• Alumina certificate (manual) 

Output data / actions • HF evolvement predictions (Opc Ua) 

• HF-content predictions (Opc Ua) 

• Optimised primary alumina feed rate (Opc Ua) 

• Optimised GTC recycle rate (Opc Ua) 

Summary description – Main 

success scenario 
A hybrid digital twin-based user interface for model 
insight/communication of optimisation recommendations is 
evaluated/tested by GTC operators and technical staff 

Extensions, exceptions, 

variations 
None 

Possible generalisation of use 

case 
Technical aspects (e.g.  estimation/optimisation of flow rates) 
can be applied to other cases 
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Use case analysis – related to 

which Digital Twin pipeline 

steps 

This use case will be supported through the following Digital 
Twin pipeline steps (Delete if not related):  Digital Twin Data 
Acquisition, Hybrid/Cognitive Digital Twin Generation, Digital 
Twin Visualisation and Control. 

 

 

Table 3: Use case Hydro-UC-2 

Use Case Template Description 

Use Case Name Temperature control of gas flow into GTC 

Use Case ID Hydro-UC-2 

User story expression of use 

case 

• As GTC and Electrolysis, I want the tuning of the integrated 

heat exchanger (IHEX) controllers to be set so that 

temperature targets are consistently achieved. 

Goal Maintain constant “ideal” temperature of gas entering GTC filter 

chambers, to ensure adsorption of HF to alumina 

Measurable KPIs for the goal (if 

any) 

Reduced process disturbance 

Actors and stakeholders 

involved 

• GTC operation 

• GTC IT and sensor support/supplier 

Input data • Temperature sensor measurement 

• General GTC operational data 

Output data / actions • Controller setting 

Summary description – Main 

success scenario 
Robust online control of the IHEX 

Extensions, exceptions, 

variations 
None 

Possible generalisation of use 

case 
Strategy can be applied to other temperature control needs 

 

 

Table 4: Use case Hydro-UC-3 

Use Case Template Description 

Use Case Name Control of main GTC fans 

Use Case ID Hydro-UC-3 

User story expression of use 

case 

• As GTC and electrolysis, I want the main fan operation to 

be adjusted based on mass flow from the potroom so that 

the overall suction rate is reduced. 

Goal Reduce power consumption to the GTC main fans 

Measurable KPIs for the goal (if 

any) 

Energy/emissions savings 
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Actors and stakeholders 

involved 

• GTC operation 

• GTC IT and sensor support/supplier 

Input data • Pressure sensor measurement gas flow measurement 

• Mass flow estimation 

• GTC operational data 

Output data / actions • Controller setting 

Summary description – Main 

success scenario 
Robust online control of the main fan 

Extensions, exceptions, 

variations 
None 

Possible generalisation of use 

case 
Strategy can be applied to other fan control needs 

 

5.1.2 Final status and resolved challenges 

Most of the  CogniTwin toolbox elements utilised by the Hydro pilot have been implemented online. 

The collective system formed of toolbox elements is aimed at regulating operation of the Gas 

Treatment Centre (GTC). 

A dynamic physics-based model has been developed and implemented as a Cybernetica Application 

and Model Component and was previously tuned offline using Cybernetica Modelfit. This model forms 

the backbone of the hybrid digital twin running online as a Cybernetica CENIT application. The main 

predictions of the physics-based model are 1) HF emissions levels from the pot room to the GTC, which 

can be compared to process data, and 2) the HF content of secondary alumina leaving the GTC and 

proceeding to the potroom, which cannot currently be compared to measurements. The digital twin 

uses the residuals of the HF emissions predictions to develop a data-driven model for adaption of the 

first-principles model, thus generating a hybrid digital twin. 

Input data for the hybrid digital twin is made available online using the Cybernetica OPC UA Server 

toolbox component. Amongst the online input data required for the hybrid digital twin is weather data 

– both the current weather and the weather forecast, such that the hybrid digital twin can anticipate 

future changes in HF emissions and content. The weather data is collected by the SINTEF MET-API 

Interface (MAPI) which has now been embedded into an online service where the most recent weather 

measurements and forecast are retrieved and prepared from the databases of the Norwegian 

Meteorological Institute (MET Norway). 

Hydro recently installed a new laser sensor to measure HF concentrations in the process fumes. The 

sensor is capable of measuring the passage of HF in a conduit through a glass window that provides a 

view inside the conduit to the laser. The sensor gives precise readings but is affected by several 

environmental challenges, e.g. small changes in position due to vibrations, or the layer of the glass 

window facing the inside of the conduit losing clearness due to chemical erosion by the inner fumes. 

These challenges can, if not detected, degrade the sensor’s readings to a point of rendering them 

unusable. Work has then been initiated on a framework to detect and possibly predict the status of 

the sensor’s readings. Currently, an anomaly detection framework is being put into place, based on ML 

methods such as autoencoders, that can analyze and flag a stream of data for suspected anomalies. 
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Other options are also being considered, for instance a numerical score for the trustworthiness of the 

measurements. 

A challenge to the online digital twin implementation is the strict firewall separating the process 

network from external data sources. A solution to this problem has been reached by using a virtual PC 

with a selectively opened firewall. This data retrieved by MAPI is processed by the Cybernetica OPC 

UA server (with a custom weather extension) and the data is made available on OPC UA tags to be read 

by the digital twin. 

A web-based interface using Cybernetica Web Viewer is now available for operators to access. The 

interface displays the main digital twin trends and predictions on three different time horizons: 6 

hours, 24 hours and 72 hours. In addition, the web interface allows for two-way access with the digital 

twin by giving operators the option to adjust the optimisation target value. 

The pilot challenges in the Hydro pilot which relate to WP5 are summarized in Table 5 and Table 6. 

For more in-depth description of the data acquisition / collection challenges and solutions, we refer 

to deliverable D4.4 

 

 

Table 5: Pilot challenges for Digital Hybrid and Cognitive Digital Twins for the Hydro pilot 

Analytics Models • N/A 

Physical Models • Challenge: No dynamic GTC model existed prior to pilot work 

• Requirement: Model must be realistic and accurate while also 
being able to be evaluated many times faster than real time in 
order to enable hybrid techniques (state and parameter 
estimation) and nonlinear model predictive control 

• Solution: Physical model is tested and tuned offline by Cybernetica 
Modelfit, Cybernetica RealSim and implemented online by 
Cybernetica Cenit 

Machine Learning • Challenge: Quality of vital sensor measurements (HF) is difficult to 
assess 

• Requirement: Data-driven/machine learning approaches should 
give a safe, secure result such as to ensure best online operation of 
the hybrid Digital Twin 

• Solution: Anomaly detection algorithms are carefully tested and 
validated offline 

Hybrid Digital Twins • Challenge: Combination of various data driven and Physical models 
require an approach for understanding the relationships between 
the various models 

• Requirement: Ensure consistent mapping and relationship 
between data driven and physical models. 

• Solution: Provide mappings between the data driven and physical 
models, consider the usage of the AAS Digital Twin representation 
for supporting links and relationships. 

Cognitive Digital 

Twins 

• Challenge: Self-learning, reactive/smart hybrid digital twins  - for 
cognitive plants. 
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• Requirement:  Methods for automatically identifying faults in the 
Hybrid Digital Twins should be developed. 

• Solution:  By employing fault detection methods, the system can 
let the operators know if the results should be discarded or 
trusted, and automatically suggest suitable actions for fault 
mitigation.  

 

 

Table 6: Pilot challenges for Digital Twin Visualisation and Control for the Hydro pilot 

2D visualisation • Challenge: Design of a new GUI for GTC operator support 

• Requirement: Operators need to be able follow digital twin 
solutions and adjust model behaviour (change value of 
optimisation target) 

• Solution: Interactive operator interface in Cybernetica Web Viewer 

3D/4D visualisation • N/A 

Control • Challenge: Optimal control requires characterization of a feasible 
cost function and efficient tools for finding solutions. The 
involvement of decision maker / user in the loop needs to be 
addressed. Operations can be partly automated, but only partly. 

• Requirement: Closed-loop control should minimize process 
disturbances while staying within operating constraints of GTC 
operation (silo levels, achievable feed rates, feasible recycle rates)  

• Solution: Nonlinear model predictive control is available and 
implemented as part of Cybernetica Cenit 

 

5.1.3 Utilization of toolbox components 

Four CogniTwin toolbox elements form an online data pipeline – beginning with external data retrieval, 

data being made available via an OPC UA server, processing of the data by the hybrid digital twin and 

the (planned) display of digital twin predictions for operator support. 

 

SINTEF MET-API Interface ⇨ Cybernetica OPC UA Server ⇨ Cybernetica CENIT ⇨ Cybernetica Viewer 
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Figure 2: IoT architecture for the Hydro pilot showing interconnectivity of data and 
toolbox components. 

 

Data Sources:  

• Weather data is collected from Norwegian Meteorological Institute 

• Process data from cells and GTC  

Data Processors: 

• MAPI queries and collects weather data through Python service, prepares data for OPC UA 

• Hydro OPC UA and GTC OPC UA expose process data to data processors 

• OPC UA collects data from various sources and makes it available to Cybernetica CENIT, 

Cybernetica ModelFit & Cybernetica Viewer 

• Cybernetica CENIT and Cybernetica ModelFit perform online/offline optimization, respectively 

Data Sinks:  

• Optimal control sequence as calculated by Cybernetica CENIT is implemented in control 

system 

• Data is visualized graphically to the user using Cybernetica Viewer.  

5.2 ELKEM Pilot  

5.2.1 User requirements specification and user stories 

Processing of liquid alloys require precise information about compositions, temperature and amounts, 

preferably continuous but this is difficult to achieve with conventional measurement techniques. By 

applying Infrared Cameras (IR) there is potential to measure more frequently but also enabling access 

to process parameters such as slag in the liquid metal, which traditionally has not been properly 

accounted for in the decision support model. It is expected that improvements both in yield and quality 

will be possible by adapting new measuring methods, image analysis and mass/energy balance models.  
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Table 7: Use Case Elkem-UC-1 

Use Case Template Description 

Use Case Name Temperature in tapping stream 

Use Case ID Elkem-UC-1 

User story expression of use 

case 

As process responsible for furnace operation, I want to be able to 

measure the temperature of the tapped ferrosilicon to establish 

a link between output and furnace operation and adjust 

operation as necessary when the temperature gets too low. 

Goal Automated temperature measurement of tapping stream 

Measurable KPIs for the goal  

(if any) 

Post-taphole yield 

Actors and stakeholders 

involved 

Furnace operators, process owners 

Input data Infrared images 

Output data / actions Temperature of tapping stream 

Summary description – Main 

success scenario 

Installation of IR camera – programming – recording of data – 

development of algorithm to determine temperature – visual 

output to operator/process owner 

Extensions, exceptions, 

variations 

  

Possible generalisation of use 

case 

Setup and methods can be applied to all plants 

Use case analysis – related to 

which Digital Twin pipeline 

steps 

This use case will be supported through the following Digital 

Twin pipeline steps:  Digital Twin Data Acquisition, Digital Twin 

Representation, Hybrid/Cognitive Digital Twin Generation, 

 

Table 8: Use Case Elkem-UC-2 

Use Case Template Description 

Use Case Name Slag in refining ladle 

Use Case ID Elkem-UC-2 

User story expression of use 

case 

As process responsible for refining and alloying, I want to know 

the amount of slag that accompanies the liquid metal at the start 

of the refining process so that proper adjustments to the 

operator decision support can be made 

Goal Quantify the amount of slag per ladle 

Measurable KPIs for the goal 

(if any) 

Product quality, post taphole yield 

Actors and stakeholders 

involved 

Refining operators, post taphole process owner 
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Input data Infrared images of liquid metal surface in refining ladle 

Output data / actions Kilogram slag per tap – modification of total metal weight 

Summary description – Main 

success scenario 

Installation of IR camera – programming – recording of data – 

development of algorithm to determine slag coverage and 

thickness – visual output to operator/process owner 

Extensions, exceptions, 

variations 

  

Possible generalisation of use 

case 

Setup and methods can be applied to all plants where slag 

amount in ladle is important for correct liquid metal processing 

Use case analysis – related to 

which Digital Twin pipeline 

steps 

This use case will be supported through the following Digital 

Twin pipeline steps:  Digital Twin Data Acquisition, Digital Twin 

Representation, Hybrid/Cognitive Digital Twin Generation, 

 

5.2.2 Final status and resolved challenges 

The Elkem pilot case has focused on online implementation of CogniTwin toolbox elements. The 

collective system formed of toolbox elements is aimed at supporting the operators of the post taphole 

process. 

A first-principles model has been developed and implemented as a Cybernetica Model and Application 

Component and has been tuned to the plant offline using Cybernetica ModelFit. The model is 

employed online using Cybernetica CENIT. Cybernetica CENIT uses the model to predict temperature 

and concentration, which in turn is used in a nonlinear model predictive control scheme to calculate 

the optimal amount of each addition.  

Not all measurements were available on OPC, therefore a bespoke Cybernetica OPC UA server was 

created to query relevant databases and publish the measurements to OPC. This server will also be 

used to connect the data from the different toolbox elements.  

Infrared cameras have been installed for the tapping station, refining station and at the casting station. 

Images were gathered for offline analysis. The offline analysis resulted in a set of machine vision 

algorithms (described in detail in D.1.4). Due to operational challenges related to the harsh operating 

conditions at the pilot it has not been possible to test these algorithms online. The initial analysis looks 

promising, with the machine vision temperature and modelled temperature in good correspondence. 

Once the operational challenges are overcome the machine vision  will provide real-time 

measurements; most importantly temperature of the metal during tapping, refining, and casting. 

Additional information may be extracted from the thermal cameras, for example ladle slag coverage, 

metal/slag ratio in tapping, and chemistry/dynamics during refining. 

In parallel a data-driven model for estimating the amount of slag tapped from the furnace was tested. 

The model used machine-learning algorithms with data from the furnace and the post taphole process. 

However, the data-driven model was not successful in giving meaningful predictions of the slag.. 

The hybrid digital twin that has been developed for this pilot combines the elements described above. 

Once the IR-cameras are reliably providing measurements online, Cybernetica CENIT will use a 

recursive estimation algorithm to correct the first-principles model in real-time.  Elkem has taken the 

following mitigation steps for the further operational deployment of the ir cameras and COGNITWIN 
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technologies:  Allocated additional internal funding from Elkem to COGNITWIN project partner 

Cybernetica evolve and continue with the deployment for one more year – until summer 2024. 

Hired a new trainee that will help out at physically at the plant from summer 2023 – in particular 

regarding IT-tasks related to the (internally extended) COGNITWIN project 

 

 

The pilot challenges in the Elkem pilot which relate to WP5 are summarized in Table 9 and Table 10. 

For more in-depth description of the data acquisition / collection challenges and solutions, we refer 

to deliverable D4.4. 

 

Table 9: Pilot challenges for Digital Hybrid and Cognitive Digital Twins for the Elkem pilot 

Analytics Models 

(Plant DT with 

ML/AI) (task 5.1) 

(by task 5.1) 

•  Challenge: Low correlation between measured variables and 

desired output.  

• Requirement: Accurate estimation of key variables used by 

physical model. 

• Solution: Utilize data from infrared cameras and physical model 

when training ML model 

Physical Models • Challenge: Adapt physical model to pilot 

• Requirement: Model must be realistic and accurate while also 

being able to be evaluated many times faster than real time in 

order to enable hybrid techniques (state and parameter 

estimation) and nonlinear model predictive control 

• Solution: Physical model is tested and tuned offline by Cybernetica 

Modelfit, Cybernetica RealSim and implemented online by 

Cybernetica Cenit 

Machine Learning – 

+  any needs for 

Deep Learning 

/imagery, 

Performance (tasks 

5.2/5.3)  

• Challenge: Machine vision algorithms are difficult to develop for 

every scenario due to moving equipment and a harsh environment 

• Requirement: Data-driven/machine learning approaches should 

give a safe, secure result such as to ensure best online operation of 

the hybrid Digital Twin 

• Solution: Automatic detection of regions of interest in images of 

moving equipment. 

Hybrid Digital Twins 

(by task 5.4) 

• Challenge: Combination of various data-driven and physical 

models require an approach for understanding the relationships 

between the various models. 

• Requirement: Integration between data-driven and physical 

models and results from machine vision algorithms 

• Solution: Cybernetica OPC UA Server to make data available 

between the different applications 

Cognitive Digital 

Twins 

(by task 5.5) 

• Challenge:  Introduce cognition through knowledge and learning 
from past data and situation in order to provide operator guidance 
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Requirement: Interact in a suitable way with operators to provide 
guidance and recommendations 
Solution:  Ensure inclusion of operators knowledge combined with 
system situation understanding. 

 

Table 10: Pilot challenges for Digital Twin Visualisation and Control for the Elkem pilot 

2D, 3D/4D  
visualisation and 
Human interaction 
(including speech) 
(by task 5.1) 

• Challenge: It is difficult for the operator to act on 
recommendations from digital twin hybrid unless it is visualized 

• Requirement: Data from the decision support system needs to be 
made available into the control room operator in an easy-to-act-
upon, visual manner 

• Solution: Use Cybernetica Viewer to visualize data 

Control – system 
interaction (related 
also to autonomous 
Cognitive Twins) 
(by task 5.5) 

• Challenge: Optimal control requires characterization of a feasible 
cost function and efficient tools for finding solutions. The 
involvement of decision maker / user in the loop needs to be 
addressed. Operations can be partly automated, but only partly. 

• Requirement: Closed-loop control should minimize process 
disturbances while staying within operating constraints  

• Solution: Nonlinear model predictive control is available and 
implemented as part of Cybernetica Cenit 

 

 

5.2.3 Utilisation of toolbox components 

Four CogniTwin toolbox elements, together with Cybernetica InSight, form an online data pipeline – 

beginning with external data retrieval, data being made available via an OPC UA server, processing of 

the data by the hybrid digital twin and the display of digital twin predictions for operator support. An 

illustration of the pipeline is shown in Figure 3. 

 

Figure 3: Pipeline for the Elkem pilot 
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5.3 SUMITOMO Pilot 

5.3.1 User requirements specification and user stories 

The Engineering pilot (Sumitomo SHI FW) in WP3 considers monitoring and control of fouling on the 

heat exchange surfaces in biofuel combustion. The fouling monitoring can be approached from various 

angles, using direct process data or model-based approaches. On-line characterization of the incoming 

fuel feed is expected to provide significant improvement to fouling monitoring. The final goal is to 

optimize the boiler maintenance, e.g., maximize profits vs. costs in soot blowing, or long-term 

maintenance. 

 

Table 11: Use Case SFW-UC-1 

Use Case Template Description 

Use Case Name Boiler fouling management 

Use Case ID SFW-UC-1 

User story expression of use 

case 

As an asset manager I want to ensure that the heat exchange 

surfaces of the energy boiler are cleaned so that the benefits-

losses are optimized, both in the short term (steam losses vs. 

improved heat transfer) and in the long term (maintenance costs 

vs. erosion of boiler parts).  As a plant operator I want a clear 

indication of when to clean heat exchange surfaces and in what 

way. 

Goal Primarily to have an indication of when to start the soot blowing 

sequence (i.e., pause time between soot blowing), secondarily to 

have the properties of soot blowing sequence optimized if 

possible (length of soot blowing sequence, indication of which 

soot blowers to run, order of running the individual soot 

blowers) and to adapt soot blowing process to the process 

operation (e.g., regarding the load levels and production 

schedule) 

Measurable KPIs for the goal  

(if any) 

An economic cost function to be optimized needs to be 

developed. It will be linked with plant KPI’s on efficiency and 

availability. 

Actors and stakeholders 

involved 

Boiler owner, boiler operator, boiler supplier, digital service 

provider 

Input data Decisions are based on on-line/historical process operation data. 

Output data / actions Output will indicate the need for cleaning the heat exchangers or 

their state of fouling, and suggest/automate management 

actions (e.g., starting a soot blowing sequence or the optimal 

pause time between soot blowing sequences) 

Summary description – Main 

success scenario 

The cleanness of surfaces is monitored on-line. The costs of soot 

blowing are continuously evaluated against the heat losses due 
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to soot covered surfaces, and control/maintenance actions are 

timed optimally and performed in an optimal way.  

Extensions, exceptions, 

variations 

There can be various alternative/supporting ways for gaining 

information on surface cleanness: using direct and indirect 

measurements from heat exchange surfaces, physical and/or 

data-driven models for phenomena, knowledge of recent plant 

operation  (e.g. on past fuel properties), specialized 

measurements, etc. 

Knowledge gained during past soot blowing sequences is used to 

improve future operation (a learning system). 

Possible generalisation of use 

case 

Fouling is a common and significant phenomenon in all 

combustion boilers. Potentially, the methodology and tools 

developed here can be expanded to any other industrial case in 

which heat exchange surfaces are regularly cleaned and in which 

basic quantities like temperatures and pressures are being 

measured or monitored. Fusion of models and on-line data 

provides a fundamental tool for solving a large variety of 

monitoring problems in the heavy industry. 

Use case analysis – related to 

which Digital Twin pipeline 

steps 

This use case will be supported through the following Digital 

Twin pipeline steps:  Digital Twin Data Acquisition, 

Hybrid/Cognitive Digital Twin Generation, Digital Twin 

Visualisation and Control 

 

 

5.3.2 Final status and resolved challenges 

In phase I, the fuel state estimation (FUSE) component was constructed for characterization of 

different fragments in the incoming fuel. FUSE consists of a physical model for the CFB furnace 

(combustion, fluidization and heat transfer), a PMFIR tool for tuning the physical model with process 

historical data, and an unscented Kalman filter (UKF) tool for on-line state estimation of the uncertain 

fragments in boiler fuel feed.  The FUSE component algorithmic/methodological development is 

complete. The component has been successfully applied to two plant cases. The tool is valid for power 

plants operating with varying fuel fractions, i.e., depending on the available set of fuels and the current 

process operating policy. 

In phase II, the work focused on the development of the fouling monitoring (FouMon) component, on 

monitoring of fouling at the heat exchange surfaces. A physical model for a heat exchanger was 

developed and tuned to pilot superheater conditions. Improved model-based state estimation was 

then sought via implementation of ensemble Kalman filtering (EnKF) tool. The FouMon approach has 

been successfully tested with pilot plant data. The development work is ongoing. 

Phase III focused on fouling management and control (FouCon). An alternative approach for fouling 

monitoring was developed based on subspace identification, enabling the application of linear state 

estimation and a highly reduced computational load in online applications. In addition, tools for 

ensuring better data quality for data-driven modeling were implemented (see D4.4). . An optimization 
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scheme making use of the model has been developed, and applied for solving the sootblowing timing 

problem. The FouCon approach has been successfully tested with pilot plant data.  

It is expected that the cognitive features of a digital twin supporting integration and decision making 

will play an important role when deriving approaches for the management of the fouling phenomena. 

The research work eventually expects to look at improvements to automatic control and/or 

prescriptive maintenance procedures. 

The challenges in the Sumitomo SHI FW pilot which relate to WP5 are summarized in Table 12 and 

Table 13. For more in-depth description of the data acquisition / collection challenges and solutions, 

we refer to deliverable D4.4. 

 

 

Table 12: Pilot challenges for Digital Hybrid and Cognitive Digital Twins for SUMITOMO 
SHI FW pilot 

Analytics Models • Challenge: Optimization tools require proper formulation and are 
highly dependent on the type of the problem.  

• Requirement: High robustness of solutions is required, especially 
with automated actions without human decision-making. 
Obtaining of solutions (even suboptimal) should be ensured. 

• Solution: Careful selection of cost function vs. solvers. 

• Toolbox components: FouCon is to include optimization 

Physical Models • Challenge: Physical models for boilers are highly complicated to 
build and maintain. Tuning of physical models is laborious and may 
lack data. Physical models for heat exchangers are complicated 
and require maintenance. 

• Requirement: Model must provide realistic and accurate enough 
estimates/predictions. 

• Solution: Modelling is based on laws of physics and validated 
model structures. 

• Toolbox components: FUSE including PMFIR, FouMon 

Machine Learning • Challenge: Fusion of physical models and process measurement 
data is complicated as data may be very sparse and models not 
accurate/detailed enough. 

• Requirement: Algorithms must survive with sparse data, and 
iterative computations cannot be excessive. 

• Solution: Solutions will be sought by using up-to-date model-based 
state estimation techniques. 

• Toolbox components: FUSE including UKF, FouMon including EnKF 

Cognitive Twin Cognitive DT requires abilities in human-in-the-loop considerations and 

feedback of HDT outcomes to the plant/KPI. The challenges are in 

extending from monitoring to prediction, and establishing feasible 

approaches in optimization. These are developed in FouCon.  
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Table 13: Pilot challenges for Digital Twin Visualisation and Control for SUMITOMO SHI 
FW pilot 

2D visualisation N/A 

3D/4D visualisation N/A 

Control • Challenge: Optimal control requires characterization of a feasible 
cost function and efficient tools for finding solutions. The 
involvement of decision maker / user in the loop needs to be 
addressed. Operations can be partly automated, but only partly. 

• Requirement: Solutions must be robust in the industrial 
environment. 

• Solution: Suitable solutions will be selected by focusing on 
formulation of the cost function and feasible optimization 
techniques. 

• Toolbox components: FouCon 

 

5.3.3 Utilisation of toolbox components 

The estimator in FUSE was based on applying a detailed circulating fluidized bed (CFB) furnace model 

in conjunction with nonlinear Bayesian state estimation tool, both implemented in Matlab. A 

generalized version of the fuel characterization UKF tool – enabling application of other prediction 

models and setups of plant measurements – was provided for the COGNITWIN toolbox as a set of 

Matlab code. An example of a setup of data communication was demonstrated via an OPC-UA tool, 

consisting of free software (Prosys) and existing properties of Matlab (MathWorks) and StreamPipes 

(Apache). The included PMFIR provides a tool for tuning the physical model with historical process 

operation data; the UKF tool implements Bayesian model-based state estimation able to exploit a 

physical process model.  

The FouMon component contains the EnKF-tool as an alternative Bayesian state estimation algorithm, 

applied for the fouling monitoring problem. A physical model for heat transfer in the heat exchanger 

surfaces was constructed and tuned for pilot site conditions. The model was used in the model-based 

fouling monitoring. The PMFIR and UKF/EnKF are general purpose tools which can be applied to solve 

various tuning and state estimation problems in process engineering.  

The FouCon contains a futher development of the SubFUSE subspace identification tool, implementing 

the Prony approach. The FouCon optimization is problem dependent, developed for solving the 

sootblowing timing problem for the pilot case. The tools are described in more detail in the Appendices 

of component descriptions and past deliverables.  

The components use the same data pipeline structure, in that the model and estimators are built in 

Matlab, and a connection to StreamPipes and plant data is made possible via OPC-UA. 
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Figure 4: Pipeline for the Sumitomo SHI FW pilot 

 

5.4 NOKSEL Pilot 

5.4.1 User requirements specification and user stories 

 

Table 14: Use Case NOKSEL-UC-1 

Use Case Template Description 

Use Case Name Industrial Big Data Processing 

Use Case ID NOKSEL-UC-1 

User story expression of use 

case 

As a user, I want conduct data pre-processing so that the data set 

becomes ready to be used for ML/DL model training.  

Goal To prepare data for ML/DL training 

Measurable KPIs for the goal 

(if any) 

There will be no empty cell in the data set 

All data fields in the data set will be labelled 

Actors and stakeholders 

involved 

Maintenance operator or maintenance manager 

Input data Sensor data, and data from the PLC (alarm and status data) used 

for remaining useful life estimation and type of ML/DL algorithm 

to be trained 

Output data / actions Quality data that is cleaned, scaled, filled in, analysed, 

normalized, and pre-processed and get ready to be used for 

ML/DL model training 

Summary description – Main 

success scenario 

1. Data set is selected and uploaded. 

2. Rules to fill in empty data is selected by the user. 

3. Data is normalized. 

4. Mean, median and variation of the data set is calculated. 
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5. Processed data is stored. 

Extensions, exceptions, 

variations 

None 

Possible generalisation of use 

case 

The objective function of the ML/DL models to be trained may be 

functions other than predictive maintenance. 

Use case analysis – related to 

which Digital Twin pipeline 

steps 

This use case has been supported through the following Digital 

Twin pipeline steps (Delete if not related):  Digital Twin Data 

Acquisition, Digital Twin Representation 

  

   

Table 15: Use Case NOKSEL-UC-2 

Use Case Template Description 

Use Case Name Real time anomaly detection using pretrained ML/DL models 

Use Case ID NOKSEL-UC-2 

User story expression of use 

case 

As a user, I want to execute selected ML/DL models so that I 

detect anomalies in real time.  

Goal To estimate anomalies on stream data.  

Measurable KPIs for the goal 

(if any) 

None  

Actors and stakeholders 

involved 

Maintenance operator and/or maintenance manager 

Input data Sensor data, PLC data, alarm and status data 

Output data / actions Anomalies will be detected by the selected ML/DL models and 

the results will be graphically displayed 

Summary description – Main 

success scenario 

1. The users select the pre-trained ML/DL model set to be 

executed on the stream data. 

2. The selected models are executed on the stream data. 

3. The results of the selected ML/DL models are calculated 

and displayed to the user 

Extensions, exceptions, 

variations 

If the user does not select any ML/DL model a warning message 

is displayed to the user in order to state that at least one model 

must be selected. 

Possible generalisation of use 

case 

The pretrained ML/DL models can be generated for purposes 

other than predictive maintenance and anomaly detection 

Use case analysis – related to 

which Digital Twin pipeline 

steps 

This use case has been supported through the following Digital 

Twin pipeline steps (Delete if not related): Hybrid/Cognitive 

Digital Twin Generation, Digital Twin Visualisation and Control 
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Table 16: Use Case NOKSEL-UC-3 

Use Case Template Description 

Use Case Name Big Data Visualization 

Use Case ID NOKSEL-UC-3 

User story expression of use 

case 

As a user, I want to visualize past sensor data so that I see the 

data trend of sensors.  

Goal To display collected past sensor data in graphs. 

Measurable KPIs for the goal 

(if any) 

The zoom in and zoom out of displayed data should be <200ms. 

Actors and stakeholders 

involved 

Maintenance operator, maintenance manager 

Input data Past sensor data collected 

Output data / actions Sensor data displayed in graphics with respect to time  

Summary description – Main 

success scenario 

1. The user wants to visualize past sensor data in graphs 

2. The data is displayed to the user 

Extensions, exceptions, 

variations 

When the user zooms in and/or zooms out the time scale of the 

x-axis changes, and the data is displayed in the graphs 

accordingly 

Possible generalisation of use 

case 

The visualized big data does not need to belong to the sensors in 

the NOKSEL pilot, any time series big data can be graphically 

visualized. 

Use case analysis – related to 

which Digital Twin pipeline 

steps 

This use case has been supported through the following Digital 

Twin pipeline steps (Delete if not related):  Digital Twin 

Representation, Digital Twin Visualisation and Control 

 

  

   

Table 17: Use Case NOKSEL-UC-4 

Use Case Template Description 

Use Case Name Operational Data Visualization 

Use Case ID NOKSEL-UC-4 

User story expression of use 

case 

As a user, I want to visualize operational data so that monitor the 

real-time condition of the SWP machinery.  

Goal To monitor operational data regarding the SWP components 

Measurable KPIs for the goal 

(if any) 

Latency in visualization > 200ms 

Actors and stakeholders 

involved 

Maintenance operator, maintenance manager 

Input data Sensors and PLC 

Output data / actions Graphical representation of operational data 
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Summary description – Main 

success scenario 

1. The user selects the component of the SWP machine for 

which the condition is to be monitored. 

2. The system displays the 3D model of the component and 

graphics associated to the hotspots on the component. 

3. The user selects the hotspot. 

4. The system displays the values of the sensors associated 

with the selected hotspot in suitable graphics. 

Extensions, exceptions, 

variations 

None 

Possible generalisation of use 

case 

The component visualized may belong to a different machine 

other than SWP, and the sensor set installed on the component 

may be different. 

Use case analysis – related to 

which Digital Twin pipeline 

steps 

This use case has been supported through the following Digital 

Twin pipeline steps (Delete if not related):  Digital Twin 

Visualisation and Control 

 

  

  

Table 18: Use Case NOKSEL-UC-5 

Use Case Template Description 

Use Case Name New trained ML/DL model inclusion  

Use Case ID NOKSEL-UC-5 

User story expression of use 

case 

As a user, I want to add a new pre-trained ML/DL model so that it 

can be used for anomaly detection in real-time on stream data  

Goal To include a new ML/DL model in the list of the models to be 

executed without updating the source code  

Measurable KPIs for the goal 

(if any) 

None  

Actors and stakeholders 

involved 

System Administrator, maintenance manager 

Input data Pre-trained ML/DL models 

Output data / actions Updated list of ML/DL model 

Summary description – Main 

success scenario 

1. The user selects the new model to be added to the list of 

pretrained ML/DL models 

2. The system displays the list of files to be selected. 

3. The user selects the model to be included in the model 

set. 

4. The selected model is added to the list of pre-trained 

ML/DL models. 

Extensions, exceptions, 

variations 

If the file selected by the user is not a model, the system displays 

a warning message to the user. 
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Possible generalisation of use 

case 

The pre-trained model can be for a different purpose other than 

anomaly detection. 

Any process can be called and added to a multi selection list. 

Use case analysis – related to 

which Digital Twin pipeline 

steps 

This use case has been supported through the following Digital 

Twin pipeline steps (Delete if not related):  Hybrid/Cognitive 

Digital Twin Generation, Digital Twin Visualisation and Control 

 

  

  

Table 19: Use Case NOKSEL-UC-6 

Use Case Template Description 

Use Case Name Synthetic data generation for generic electromechanical 

components 

Use Case ID NOKSEL-UC-6 

User story expression of use 

case 

As a user, I want to generate synthetic data for electro-

mechanical components so that I create machine break down 

and/or faulty cases. 

Goal To generate synthetic data needed for the ML/DL training 

Measurable KPIs for the goal 

(if any) 

None 

Actors and stakeholders 

involved 

Maintenance Manager 

Input data Matlab model for the electro-mechanical components, 

parameters, real-data, limits 

Output data / actions .mat file including the faulty data generated 

Summary description – Main 

success scenario 

1. The user selects the Matlab model for the electro-

mechanical component. 

2. The system loads the model. 

3. The user installs the virtual sensors. 

4. The system generates data including faulty cases. 

5. The system saves the data in .mat file. 

Extensions, exceptions, 

variations 

None 

Possible generalisation of use 

case 

Different model files and sensor types can be used to generate 

synthetic data 

Use case analysis – related to 

which Digital Twin pipeline 

steps 

This use case has been supported through the following Digital 

Twin pipeline steps (Delete if not related):  Hybrid/Cognitive 

Digital Twin Generation 

 

 

Table 20: Use Case NOKSEL-UC-7 
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Use Case Template Description 

Use Case Name Predictive Maintenance 

Use Case ID NOKSEL-UC-7 

User story expression of use 

case 

As a Maintenance Operator, I want to be notified about the 

anomalies detected so that I take actions in advance before 

machine breakdowns occur.  

As a Maintenance Manager, I want to be able to perform 

predictive management so that the cost of maintenance is 

decreased. 

Goal To conduct predictive maintenance 

Measurable KPIs for the goal 

(if any) 

All anomalies detected will be accurate, and that there will be no 

anomaly that is left undetected. Thus, False Positive, and False 

Negative values of the defect detection algorithms used for 

remaining useful time estimation will both be zero. 

Actors and stakeholders 

involved 

Actors: Maintenance operators and/or maintenance managers 

Input data Data that is stored by TIA STORAGE and streamed by TIA STREAM 

Output data / actions Based on anomalies detected, remaining useful time estimation 

is displayed 

Summary description – Main 

success scenario 

1. The detected anomalies are sent to related actors 

(Maintenance operator) in the form of selected 

notification 

2. The operator evaluates the case 

3. The operator takes necessary actions to overcome the 

anomaly  

Extensions, exceptions, 

variations 

In some cases, despite the determined anomaly, the reason for 

the anomaly is not associated with the common cause of the 

failure, ie. wire-cut, but with a reason other than wire-cut. 

Possible generalisation of use 

case 

The use case is applicable to similar SWP machines that are used 

in the steel pipe production process industry 

Use case analysis – related to 

which Digital Twin pipeline 

steps 

This use case has been supported through the following Digital 

Twin pipeline steps (Delete if not related):  Digital Twin 

Representation, Digital Twin Hybrid Analytics Models, Digital 

Twin Visualisation and Control 

 

 

Table 21: Use Case NOKSEL-UC-8 

 

Use Case Template Description 

Use Case Name Preventive Maintenance 

Use Case ID NOKSEL-UC-8 

User story expression of use 

case 

As a Maintenance Manager, I want the system to be able to 

control welding cell temperature so that the system acts 
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proactively and eliminates human-in-the-loop for climate control 

operation. 

Goal To conduct preventive maintenance 

Measurable KPIs for the goal 

(if any) 

Energy consumption reduced by at least 10% 

Actors and stakeholders 

involved 

Actor: TIA CONTROL 

Stakeholders: Maintenance operators, Maintenance managers, 

Air Conditioner in the Welding Cell 

Input data Indoor environment, Welding Machine Generators 

temperatures, and Welding Machine Generators current value 

Output data / actions The command to manipulate air conditioner in the welding cell 

Summary description – Main 

success scenario 

1. For each welding machine generators current (voltage) 

are measured. If any of these values is greater than 0.1 

amper, air conditioners are turned on.   

2. Temperature in the welding cell and welding machine 

generator are measured. If for more than one hour 

welding cell temperature is in between 20-25 Celsius or if 

environment temperature is less than 20 Celsius then, 

the air conditioner status is set to close.  

Extensions, exceptions, 

variations 

 

The cause of machine breakdown may stem from a reason that is 

not associated with welding wire cut 

Possible generalisation of use 

case 

The use case is applicable to similar SWP machines that are used 

in the steel pipe production process industry 

Use case analysis – related to 

which Digital Twin pipeline 

steps 

This use case has been supported through the following Digital 

Twin pipeline steps (Delete if not related):  Digital Twin 

Acquisition, Digital Twin Representation, Digital Twin Hybrid 

Analytics Models, Digital Twin Visualisation and Control 

 

5.4.2 Final status and resolved challenges 

The most important challenges determined so far are related to the data set: 1) not sufficient data has 

gathered on system break downs, 2) some conflict has been determined in between the data set 

provided by the experts, and the system collected data.  

The collected data does not have many machine breakdowns, in order to cope with the first challenge, 

synthetic data has been created to align the data set. While the machine is working, data is collected. 

Missing failure related real data has been solved partially by means of a tool used to generate synthetic 

data as close as possible to the real cases. 

Labelling a dataset for failed data is a challenge, not only does it require real data for machine failures, 

but also should expert knowledge be inserted into the models. To cope with the second challenge, 

several online and face to face meetings with the domain experts have been conducted, and thorough 

analysis of collected data has been performed. Data labelling took many of the effort spend for TMML 

related studies. 
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Multiple methods have been used for feature selection. Feature importance method is applied until 

the cumulative sum reached to 0.99, Pearson correlation, was utilized.  Analysis of variance was 

performed to determine the distribution of the sensors and data diversity. 

Based on the real data collected, followings were determined: Electric current and vibration values of 

the SWP machine components should be checked in order to detect the mechanical failures. The most 

common unplanned machine downtime is related to Wire Cut, and the most important feature for the 

detection of Wire Cut is the electric current values coming from the Welding Machine. The components 

that affect the machine downtimes and the sensors that can impact the machine downtimes have 

been determined. Pandas profiling library was used, which allows us to to analyze the attributes on 

the entire data set one by one. to analyze the attributes on the entire data set one by one. As a 

different method, a size reduction study was carried out by determining the qualities that cover each 

other. With the determination of the qualifications, machine learning and deep learning studies 

started. Depending on the type of algorithm, standard or 0-1 (min-max) scaling was performed on the 

features. 

Seven different algorithms were used. Classification and regression studies were performed with SVM, 

RF, GBT, LSTM, KNN, LGBM and MLP algorithms. During the classification algorithms, it was made with 

a different label before the failure in order to ensure the pre-detection of the data 

(MultiClassClassification). This label has the quality of a failure. In another scenario, the data before 

the failure is labelled and the information about the time of failure and the moment of stopping is not 

added to the data. In this way, it is aimed that the algorithms capture a pattern here by labelling only 

the data before the failure. In the regression studies, the dependent variable RUL was added to the 

studies. 

High accuracy results were obtained during the analysis of energy data. It is possible to predict the 

energy that the factory will consume in the coming months. Energy efficiency is achieved with the 

prevention of downtimes. Future energy consumption data is provided by the regression module of 

the LGBM algorithm. The correlations of energy consumption with all other qualities were calculated 

and reported. Meanwhile, it has been observed that the 'HGÜ-2 Pressure Line Filter' attribute has a 

high correlation with the SWP Energy analyzer. These correlation values were examined during the 

meetings with the experts in the field. The conclusion that the contamination of the filter would 

increase the current of the motor and increase the power consumption was confirmed by the expert 

engineers in the field, and the filter was changed. 

The pilot challenges in the Noksel pilot which relate to WP5 are summarized in Table 20 and Table 

21. For more in-depth description of the data acquisition / collection challenges and solutions, we 

refer to deliverable D4.4 
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Table 20: Pilot challenges for Digital Hybrid and Cognitive Digital Twins for NOKSEL pilot 

Analytics Models Challenge: Data cleaning and labelling 
Requirement: Pre-processing for ML/DL for predictive maintenance 
Solution: Industrial Big Data Processing implementation 
 
Challenge: The number of features is high 
Requirement: Efficient ML models generation 
Solution: PCA on data 
 
Challenge: Difficulty in analysis due to high volume of data 
Requirement: Efficiency and performance 
Solution: Pandas Profiling is used  
 
Challenge: SWP is a heavy energy consumer, and reduction on energy 

consumption is required. 

Requirement: Energy efficient system 

Solution: Applied data analytics using correlation to suggest changing 

hydraulic power unit pressure filters 

 

Physical Models Challenge: Missing models 
Requirement: 1st order model generation  
Solution: Models are generated in Matlab Simulink 
 

Machine Learning Challenge: Algorithms did not learn very well on the collected data set 
Requirement: Quality ML models trained 
Solution: A thorough analysis was conducted, and feature selection is 
applied 
 
Challenge: Missing data 
Requirement: ML/DL model training for predictive maintenance 
Solution: Synthetic data generation and data balanced sampling 
 

Cognitive Digital 

Twins 

Challenge:  To ensure that the predictive maintenance takes operators' 
knowledge and experiences into account, and enable preventive 
maintenance for one of the most common factors of machine unplanned 
breakdowns 
Requirement: Combine the Digital Twin based recommendations with the 
inclusion of operators’ knowledge 
Solution: Extract the tacit knowledge from experts as a basis for 
developing the cognition.  Partially by applying unusuality detection on 
past data, ontology development and storing ontology in relational 
databases, and design an autonomous system that is self-learning and 
proactive. (ON2RDB) 
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Table 21: Pilot challenges for Digital Twin Visualisation and Control for NOKSEL pilot 

2D visualisation Challenge: Slowness in big data visualization 
Requirement: Latency < 200ms 
Solution: View creations for zoom in and zoom outs 

3D/4D visualisation Challenge: Custom 3D visualizations 
Requirement: none 
Solution: User preferred visual elements adjustments (i.e., colour, light, 
etc.) 

Control  Challenge: To prevent machine failure due to increases in welding 

temperature 

Requirement: Set the temperature of the welding cell to the state that 

enables the machine to work properly without break 

Solution: TI: Performed data analytics and TIA CONTROL (a control system 

to control temperature) 

 
 

 

In the beginning of the project, no control has been planned for the NOKSEL pilot. However, after 

TEKNOPAR’s analysis of the collected big data, a common reason for SWP machine’s failures has been 

detected. The reason has been associated with increased temperature in the closed environment 

where the welding machines are located. A control system has been designed and implemented by 

TEKNOPAR to control the air conditioner in the welding room, and one of the major reasons. As a 

result, TEKNOPAR’s solution at NOKSEL facility not only predicted the failures due to high temperature, 

but also by controlling the temperature value prevented that failure to happen (Temel, et. Al. IEEE Big 

Data 2022). 

5.4.3 Utilisation of toolbox components 

 The toolbox component set utilized for the NOKSEL pilot contains the followings:  TEKNOPAR Industrial 

Big Data Analytics (IDBA) renamed as TIA DATA, TIA APPS composed of multiple tools/applications 

namely TIA MODEL, TIA PREMA, TIA OEE, TIA METRICS, TIA STATISTICS, TIA ASP and TIA DATA-GEN, 

and TIA UX previously named as TEKNOPAR Industrial Control Panel and Visualisation (ICPV). The 

TEKNOPAR StreamPipes (TStreamPipes ML) tool renamed as TIA ASP, and a synthetic data generator 

named as TEKNOPAR TMat-SynDat renamed as TIA DATA-GEN. 

 

 

 

Table 21 maps the Use Cases, and their associated requirements to the components developed by 

TEKNOPAR: 

Table 21: NOKSEL Use Cases and TEKNOPAR Components Mappings 

Use Case No Realizing Component Name 

NOKSEL-UC-1 TIA STREAM, TIA STORAGE of TIA DATA  

NOKSEL-UC-2 TIA MONITORING, TIA PREMA, TIA MODEL, TIA DATA-GEN, TIA ASP of TIA APPS  

NOKSEL-UC-3 TIA DASHBOARD, TIA 3D of TIA UX 

NOKSEL-UC-4 TIA MONITORING of TIA APPS and TIA DASHBOARD and TIA 3D of TIA UX  
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NOKSEL-UC-5 TIA MODEL of TIA APPS 

NOKSEL-UC-6 TIA DATA-GEN of TIA APPS 

NOKSEL-UC-7 TIA PREMA of TIA APPS 

NOKSEL-UC-8 TIA CONTROL of TIA IOT and TIA STATISTICS of TIA APPS 

 

 

 

 The components are all used together in a pipeline. Big Data acquired and analyzed by TIA DATA is 

processed by the TIA APPS toolbox tools. Outputs of TIA DATA, TIA ASP and TIA PREMA are visualized 

by TIA UX. Data generated by TIA DATA-GEN can be used by different tools within the TIA APPS 

toolbox.Error! Reference source not found. 

 

 

 

Figure 5: Pipeline for the NOKSEL pilot 

6 

5.5 SAARSTAHL Pilot  

5.5.1 User requirements specification and user stories 

 

Table 22: Use Case SAG-UC-1 

Use Case Template Description 

Use Case Name (Rolling Mill) Tracking System 

Use Case ID SAG-UC-1 

User story expression of use 

case 

As a SAG Data Scientist, I want a seamless tracking such that 

process data throughout the entire production process can be 

linked to the respective billet. This closes the missing link in the 

digital twin representation of individual billets and lays the 
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groundwork for the usage of innovative AI tools spanning the 

production process, aiding in optimizing production routines and 

reducing environmental impact. 

As a rolling mill technician, I want a linkage of blooming train 

rolling parameters with finished goods & surveillance of 

blooming train, e.g. for predictive maintenance/root cause. 

Goal A seamless (near) real-time tracking of billets in the rolling mill 

Measurable KPIs for the goal  

(if any) 

Tracking system performance, i.e. ratio of correctly tracked 

billets, inference speed of tracking system.  

Actors and stakeholders 

involved 

Rolling mill personnel, works council, IT integration, technical 

development of system, maintenance of system. 

Input data Video data from (rtsp) camera stream, tabular data (datetime, 

character string, numerical) provided in JSON format 

Output data / actions Tabular data (datetime, character string, numerical) provided in 

JSON format; optional: video stream output.  

With sufficient inference speed, resulting action could be 

blooming train operator interfering to prevent deviation before it 

occurs if system triggers a warning with sufficient lead time. 

Summary description – Main 

success scenario 
- Identify/Assess (investment) requirements based on local 

site characteristics  
- Set up necessary infrastructure 
- Collect/Generate training data for Deep Learning 

network 
- Develop DL model for localization of to-be-tracked goods 
- Develop tracking system  
- Integrate tracking system into ambient infrastructure 

Extensions, exceptions, 

variations 
None  

Possible generalisation of use 

case 
Tracking of miscellaneous goods in a large variety of possibly 
demanding environments, especially also over large scales. 
Current implementation is for moderate velocity of to-be-tracked 
goods, but could be adapted for high speed settings. 

Use case analysis – related to 

which Digital Twin pipeline 

steps 

This use case will be supported through the following Digital 
Twin pipeline steps: Digital Twin Data Acquisition, Digital Twin 
Representation, Hybrid/Cognitive Digital Twin Generation, Digital 
Twin Visualisation and Control 

 

5.5.2 Final status and resolved challenges 

 

The pilot challenges in the Saarstahl pilot which relate to WP5 are summarized in Table 23 and Table 

24. For more in-depth description of the data acquisition / collection challenges and solutions, we 

refer to deliverable D4.4 
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Table 23: Pilot challenges for Digital Hybrid and Cognitive Digital Twins for SAARSTAHL 
pilot 

Analytics Models Analytical modelling for matching DL detections over consecutive frames 
and different camera viewpoints 

Physical Models • Challenge: Billet location needs to be known accurately for ML 
algorithms to be able to optimize the process 

• Requirement: Seamless billet tracking movement, constrained by 
physical environment 

• Solution: Instance segmentation technology is used to track the 
billets 

Machine Learning • Challenge: Need to analyse video imagery in order to understand 
the movement of billets 

• Requirement: Need to have effective training and use of Image 
analytics including aerial photogrammetry including use  Deep 
Learning Neural Network. Analytical modelling for matching DL 
detections over consecutive frames and different camera 
viewpoints. 

• Solution: A visual debugger for neural networks Neuroscope with 
use of  aerial photogrammetry. 

Cognitive Digital 
Twins 

• Challenge:  Support self-learning of the system also after initial 
machine learning.  

• Requirement: The system should provide alerts and 
recommendations for operators and be able to learn continuously 

• Solution:  Provide interactive operator guidance 

 

Table 24: Pilot challenges for Digital Twin Visualisation and Control for SAARSTAHL pilot 

2D visualisation • Challenge: Suitable visualization for operators. 

• Requirement: tracking of billets must be accurate and in real-time 

• Solution: User preferred visual presentations in Neuroscope tool 

3D/4D visualisation N/A 

Control • Challenge: interfere in real time if critical situation is detected to 
prevent damage to billet or the roll stand 

• Requirement: sufficiently short inference time of model and 
suitable visualization for operator 

• Possible Solution: alert operator with sufficient lead time and 
provide suggestion for action 

 

5.5.3 Utilisation of toolbox components 

There has been substantial progress in the Saarstahl use case related to the installation of optical 

tracking sensory hardware onsite at the Saarstahl production facility, the implementation of 

integrational components that allow the interoperability of the optical tracking system described in 

the Use-Case with Saarstahl production planning systems, and the photogrammetric capturing of the 

Saarstahl production plant to form a generative 3D model allowing the creation of training data for a 

tracking system.  
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A technical issue for the Use-Case is that from the realizable camera angles, the rolled bars cannot be 

separated optically. This means that rolled bars overlap in the image. A consequence is that the 

envisioned software architecture consisting of a neural network for the semantic segmentation (i.e. 

pixel-wise labelling) of rolled bars, followed by a manually programmed component for the linking of 

bars to sequences, will not work. The reason is that for overlapping bars, a semantic segmentation will 

lose the information that the two objects are separate bars – information that cannot be retrieved 

later. Rather than using this two-component approach, we will need to shift more responsibility to the 

machine learning system by using either a network from the class of multi-object detection and 

localization networks, or instance segmentation networks. Multi-object detection and localization 

networks means that the output of the network is a list of objects, each specified by a label and a 

bounding box. The technology is well understood and mature, but is likely to encounter problems with 

the very elongated shape of the rolled bars, which will lead to a very high degree of overlap between 

the bounding boxes. Instance segmentation means that the output of the network is a label per pixel 

(as for semantic segmentation), but different instances of the same object class are recognized and 

receive separate labels. The technology is more promising for very elongated objects, but in general is 

less mature and less understood, leading to a higher development risk and effort. A consequence for 

the toolbox components is that Neuroscope will be extended for support of the respective network 

types.  By the end of the project Saarstahl has taken over the results for the further customisation and 

deployment of this through an internally funded project for the fall of 2023 and spring of 2024. 

 

Figure 7: Illustration of the Saarstahl pilot pipeline 
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5.6 SIDENOR Pilot 

5.6.1 User requirements specification and user stories 

5.6.1.1 Background 

The steel production in the melting shop process is based on three main steps. The first one lies in 

obtaining the liquid steel by melting iron ore (blast furnace, BF) or scrap (electrical arc furnace, EAF or 

induction furnace). The second step (Secondary Metallurgy, SM) is necessary for refining the liquid 

steel, and the last one solidifies the steel during ingot or continuous casting processes.  

The steel industry uses the ladles, which are cylindrical or tapered vessels, for processing and transport 

the liquid steel. Once the liquid steel is produced in the furnace, it has to be stored and the steel makers 

use the ladles for this purpose. Depending on the steelmaker, the ladle can contain from tens to 

hundreds of tons of liquid steel. 

Most ladles have installed a porous plug at the bottom. It is responsible of the liquid steel stirring, 

which is obtained by the injection of Ar or N2 through it. The rising flow of the liquid steel promotes 

the inclusion decantation from the steel to the slag and homogenizes the temperature and chemical 

composition.  

The main objective of the SM is to obtain the correct chemical composition and have enough 

temperature for the casting process. In addition, there are several important tasks which must be 

complete during the SM, as for example inclusion and gases removal. In order to reach these 

objectives, Sidenor has a SM mill consisting of two Ladle Furnaces (LF) and a Vacuum Degasser (VD). 

Each of the LFs have three electrodes, which are responsible of heating the slag, steel and ferro-

additions. The ladle contains the steel and the slag for all the production process from the EAF to the 

end of the casting process. The liquid steel has a temperature of around 1700 K in the ladle, and it is 

covered with slag. The slag avoids the contact between the steel and the atmosphere, has lower 

density than steel and consists basically of lime and oxide elements. The slag conditioning can be 

improved during the SM by adding slag-formers. 

In order to store the liquid steel and slag with such high temperature, the ladle is built with a strong 

outer steel shell and with an inside covered with layers of insulating materials (refractory). The 

refractory is made of ceramics and its most important properties are: 

- handle the high temperature 
- favourable thermal properties 
- high resistance against erosion when in contact with steel and slag  
 

The inner layer of refractory bricks, which are in contact with the liquid steel, are eroded by the 

interaction with the hot metal and the slag. The bricks are worn away by each heat, and after several 

heats they are so eroded that it is not safe to use the ladle one more time/heat. The refractory is 

visually checked after each heat and depending on its state, the ladle may be used one more heat, put 

aside for repair or demolished. In case of repair, the upper bricks of the ladle, which are more eroded 

will be replaced by new ones. Once the ladle is repaired, it is taken back into production. Later, based 

on continuing visual inspection, the ladle may be deemed ready for demolition. In this case the entire 

inner lining is removed and relined with new bricks.  
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One important goal for Sidenor is to reduce the refractory costs by finding new methods for extending 

the refractory life. One of the key points is to use the same ladle during more heats without 

compromising the safety, but another important issue is to understand better the mechanism that 

drives the refractory erosion, in order to avoid as much as possible the worst working practices and so 

to prolong the working life.   

5.6.1.2 Initial  status 

The ladle refractory lifetimes vary a lot depending on many production parameters. Moreover, it is 

well known that if the ladle is not cyclically working, and it is out of use for several hours or days, the 

lifetime is substantially reduced. 

In a previous stage of the project, the use of 3D camera was considered for measuring the erosion 

distribution inside the ladle, but this approach was rejected due to economical and operational costs. 

On the other hand, analyzing thermal images from outside of the ladle was considered to be a good 

solution. This latter technique is being explored by the consortium, because it can match the results 

obtained from developed models with the experience of the operators, who analyzes the refractory 

situation, and takes into account the security, productivity and process parameters when using the 

tool. 

5.6.1.3 Target for development 

The main goal is to develop a model whose results can help to decide whether the ladle could be used 

one more time safely. The model should exploit both historic and current production data. The model 

added to the knowledge of the operators could be exploited and contribute to cognitive elements of 

the model. 

In addition, the model should give information about which parameters dominates the ladle refractory 

erosion and give tips about which precautions may be taken to extend the refractory lifetime.  

5.6.1.4 User stories 

 

Table 25: Use case Sidenor-UC-1 

Use Case Description 

Use Case Name Development of a physics-based model for ladle refractory wear 

Use Case ID Sidenor-UC-1 

User story expression of use 

case 

As a user, I want the model to deliver erosion states and wall 

temperatures so that this information can be used as input to 

other models or give a direct advice about if more use of the 

refractory is safe 

Goal Predict the temperatures and erosion state of the ladle 

refractory walls after N uses  

Measurable KPIs for the goal 

(if any) 

Enable one more safe use of the refractory, compared to pure 

human assessment  

Actors and stakeholders 

involved 

Sidenor personnel: End user 

Nissatech personnel: Integrate the model into StreamPipes 

application, hybrid modelling 
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SINTEF personnel: Developers, hybrid modelling 

Input data Data provided as *.xlsx and *.csv files 

Output data / actions Output data, provided as *.xlsx and *.csv files and plots from 

Python (screen or *.png to file) 

Summary description – Main 

success scenario 
To be explained in paper on the PPBM method. 

Extensions, exceptions, 

variations 
Model has multiple simplifications, but also the potential to be 
improved where necessary. 

Possible generalisation of use 

case 
The model can be extended to any ladle process which involves 
refractory challenges and metal refining. 

Use case analysis – related to 

which Digital Twin pipeline 

steps 

This use case will be supported through the following Digital 
Twin pipeline steps: Digital Twin Data Acquisition, Digital Twin 
Representation, Hybrid/Cognitive Digital Twin Generation, Digital 
Twin Visualization and Advice 

 

5.6.2 Final status and resolved challenges 

As the model development progressed it became clear that a more direct way was needed to push 

data from Sidenor to the development team. Data was then pushed to an SFTP server, and then 

organized in a database at Nissatech. The input part of the PPBM-model was adapted to read from the 

database, such that it can operate continuously in data that is coming from the production. Measured 

temperatures from the upstream Electric Arc Furnace (EAF) was provided due to needs for having 

initial data for the PPBM model and was clarified earlier.  The model is now using an optimization 

scheme to find the initial steel temperature if reliable data is not available. The result is satisfactory 

predictions of the steel temperature evolution during the heats. 

During the COGNITWIN consortium M36 meeting in Bilbao in October 2021 it was noticed that the 

agitation in the steel is extremely powerful during simultaneous gas purging and vacuum treatment. 

Consequently, CFD calculations were performed that incorporates the physical effects of vacuum 

treatment. This effect was previously deemed less important. The result is that the model now predicts 

considerably larger erosion rates during times with vacuum treatment.  

The data that was provided on detailed erosion distribution, at time of repair and at time of demolition, 

has now been red and used to tune the model and for model validation.  

The model has been applied to simulate the entire lifespan all  ladles and heats operated in 2019. The 

PPBM-model is now simulating the temperature evolution in metal, slag and refractory, during time 

with metal, and then simulating the temperature in the refractory during waiting time for the next use. 

During time with metal the erosion is simulated. The erosion from the previous heat is input to the 

next heat. The model was slightly tuned to reproduce the erosion at the time of repair. At repair, the 

model is repaired in the same manner as the physical ladle.  The mayor tuning constants now are the 

intergrain diffusion lengths for dissolution of carbon into the steel and the thermal conductivity of the 

MgOC lining bricks. 

A general tuning strategy was developed, but it was not applied in its general form. The challenge here 

may be quite typical for this type of industrial application: 
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i) A very important input to the model is the steel mass in the ladle. The steel mass is not 

feasible to measure directly but is done downstream, by measuring the mass of steel that 

was casted through the casting machine.  In cases with operational trouble the cast mass 

may deviate considerably from real mass of steel in the ladle. As a result, all steel mass 

below 110 tons was assumed to 110 tons. 

ii) The measurements of ladle corrosion-erosion are picking the most worn bricks at each 

height in the ladle. The variations along the ladle perimeter is therefore unknown. This 

knowledge would be crucial for detailed tuning of the model and for assessing the 

probabilistic accuracy of predictions. 

The work has demonstrated the importance of the project development team having a very good 

understanding of the process. This is a prerequisite for building the best possible model. The Sidenor 

data is typical for this type of heavy industry and cannot be used directly without qualified pre-

processing. It is therefore critical to have a close interaction with the pilot owner. 

The Sidenor pilot case has been progressing as planned and model predictions underline the 

importance of operational parameters, such as duration of metal treatment, duration of vacuum 

application, gas injection and injection gas flow rate. The development team has built one physics-

based model of the erosion process. The thermal part of this model indicated earlier that it might be 

possible to obtain a mapping of the internal erosion state of the ladle by combining a physics based 

model and thermal images of the outside wall of the ladle. Interesting, the physics-based model 

indicates that the steel is penetrating in-between refractory bricks and thereby increased the effective 

thermal conductivity of the refractory. This seems to be the only way to explain the thermal data. In 

addition, this is consistent with early ThermCam images that show that the ladle outside is hotter in 

the lower part where erosion, at least at the beginning heats, is less pronounced. 

We have combined the methods mentioned above, to arrive at a hybrid twin that exploits the best of 

the different approaches. Hybridization methods, based on StreamPipes, are developed to 

orchestrate the hybridization and the cognitive twin. 

The pilot challenges in the Sidenor pilot which relate to WP5 are summarized in Table 26 and Table 

27. For more in-depth description of the data acquisition / collection challenges and solutions, we 

refer to deliverable D4.4 

 

Table 26: Pilot challenges for Digital Hybrid and Cognitive Digital Twins for the Sidenor 
pilot 

Analytics Models 
(Plant DT with 
ML/AI) (task 5.1) 
(by task 5.1) 

• Challenge: Predict the maximum number of heats before 
demolition 

• Requirement: Exploit all the data that can be provided by Sidenor. 
Data quality must be assessed. The model must provide an answer, 
at the end of each heat: Is one more heat safe? 

• Solution:  Arrive at the best ML/AI model that may explain the 
data, after normal cleaning. 

Physical Models • Challenge: Predict the thermal evolution and the degradation of 
the refractory and based on that, predict the maximum number of 
heats before demolition 
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• Requirement: Model must be fast and tuneable to the available 
data. The model should qualitatively explain the relations that has 
been observed by operators. 

• Solution: Develop a python-based numerical model, based on all 
possible simplifications (PPBM method) 

Machine Learning – 
+  any needs for 
Deep Learning 
/imagery, 
Performance (tasks 
5.2/5.3)  

• Challenge: Interpret thermal images taken of the outside of the 
ladle 

• Requirement: Based on the images, tell if the ladle refractory on 
the inside have problems.  

• Solution: Combine predictions by the physics model with image 
analysis. This may indicate another special application, based on 
the PPBM-based model. 

•  

Hybrid Digital Twins 
(by task 5.4) 

• Challenge: Exploit the physics-based model and the data, to arrive 
at an improved model with improved prediction power. 

• Requirement: Model should be able to incorporate the physical 
elements that has not been considered by the physics-based 
model.  

• Solution: The ML/AI model may use the predictions from 
the physics-based model, together with other data that 
was not directly explored and arrive at an improved 
prediction. 

Cognitive Digital 
Twins 
(by task 5.5) 

• Challenge: Involve cognition into the pilot - self learning and 
reactivity with operator interaction 

• Requirement: The knowledge of operators must be acknowledged 

• Solution: Train the operators to work with the model and build 
confidence that the operators, based on model predictions, may 
make a correct decision. 

 

Table 27: Pilot challenges for Digital Twin Visualisation and Control for the Sidenor pilot 

2D, 3D/4D  
visualisation and 
Human interaction 
(including speech) 
(by task 5.1) 

• Challenge: Visualization of the thermal and erosion state of the 
refractory 

• Requirement: Fast and simple 

• Solution: Combination of Paraview-based visualization and simple 
line plots to show the current refractory state, according to the 
model. This will be assessed by the operators 

Control – system 
interaction (related 
also to autonomous 
Cognitive Twins) 
(by task 5.5) 

 
No interaction with control system is planned 

 

 

5.6.3 Utilisation of toolbox components 

The toolbox elements, being developed and used in the pilot, are "Pragmatism in physics-based 

modelling" (PPBM), the " Hybrid model Designer for StreamPipes-based Toolbox ", " Set of adapters 

for StreamPipes-based Toolbox " and " Services for resolving tool wear / equipment degradation 
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problems in process industry". In addition, several classical machine-learning methods (Python 

libraries) have been applied.  

An illustration of the Sidenor pilot hybrid digital twin pipeline is shown in Figure 8. 

 

Figure 8: Utilisation of the toolbox components in the Sidenor pilot 
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6 Plant Digital Twins with ML/AI  

A plant digital twin is a digital replica of the real plant. A modern digital twin gets is essential 

behavioural contents from a plant model, linking simulations with on-line data and various services 

such as data visualization and analytics, what-if analyses, or 3D plant animations. Currently, the huge 

potential of the digital twin technology is reflected in a better design of an asset, based on extensive 

simulations in various conditions. A model can be used for improving system dynamic behaviour, 

designing a model-based controller, or a state-estimator. Model-based fault detection and isolation, 

operator training simulators, or plant analysis as well as integrated plant and control design are other 

examples of applications requiring a proper dynamic process model. 

The models can be very detailed and enable powerful simulations. In the heavy process industry, the 

models are often built based on physical considerations, tuned and complemented in various ways by 

data from experimental tests or normal operation. Task 5.1 aims to promote use of ML/AI methods 

suited for such problems and extend and/or develop new algorithms to further improve the 

performance of the control, monitoring, and maintenance systems. 

6.1 Objectives, challenges, and components 

Task 5.1 (T5.1) examines the role of simulation models and data to effectively model real-world assets. 

T5.1 identifies, selects, and extends/develops further ML/AI methods particularly suited to challenges 

of the process industry. Eventually, it will provide help and assistance for selection and 

parameterization of ML methods, as justified and illustrated by pilot case experimentation.  

The state-of-the-art of the T5.1 methodology was described in the COGNITWIN WP5 M6 deliverable 

(D5.1) Sec. 4.2. The methods of analytics are developing in a fast pace, and much of the required 

infrastructure for sensor, data, and automation exists. However, due to the nature of the heavy 

process industry, the changes in the industrial practice can be slow. Discussion of these topics is 

emerging in the scientific community. 

The heart of most ML/AI approaches is in learning from data. This poses serious challenges in the heavy 

process industry, which is typically characterized by slow processes, large size and complexity of plant 

installations, and heavy safety requirements, which prohibit approaches based heavily on exploratory 

data generation and testing. Plants are typically operated in production mode, which leads to the 

operation data not being rich in information. Therefore, the role of physical models is particularly 

pronounced. A significant challenge is to assess the feasibility of various proposed ML/AI approaches 

in the process engineering context. 

T5.1 participates in providing components to the COGNITWIN toolbox, focusing on the full exploitation 

of physical plant models and ML/AI approaches in data-analytics and data-driven model tuning. The 

work in COGNITWIN associated with T5.1 largely originates from the development of solutions to pilot 

case problems. The case pilot problems were briefly described in Sec. 5, more extensive descriptions 

are given in the pilot work package deliverables (D1.4, D2.4 and D3.4). The role of T5.1 is to focus on 

the exploitation of physical modelling aspects on one side, and on data-driven techniques – such as 

ML/AI – on the other. The fusion of data and physical knowledge (hybridization) aspects are partially 

considered in T5.4 on hybrid digital twins and extended to human and cognitive aspects in T5.5. The 

work in T5.1 has been pilot-driven, in that the methods have been examined in solving the COGNITWIN 
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pilot case problems, and promising solutions have been generalized for extended use via the T5.1, to 

be cross-utilized in other COGNITWIN pilot cases or future process industry applications. 

Table 28 and Table 29 summarize the challenges, requirements and solutions related to analytics 

models and machine learning models, respectively, for the six pilots. As this is a fundamental issue for 

all the pilots, several different challenges have been identified.  A common thread for all the pilots is 

that large amounts of data are available, that can be utilized to develop models to aid operation. 

Visualisation of the data is another important aspect, and the challenges, requirements and solutions 

pertaining to visualisation are summarized in Table 30. In Table 31, we show the mapping between the 

toolbox components and the pilots for task 5.1. 

 

Table 28: Analytics Models – challenges, requirements and solutions 

Pilots Analytics Models (Plant DT with ML/AI) (task 5.1) – Challenges, 
Requirements and Solutions 

 

Hydro  
 

• Challenge:  Sensor measurements of HF is available for analytics 

• Requirement: Data-driven/machine learning approaches should 
give a good basis for analytics 

• Solution: Predictive analytics based on collected sensor data. 

Elkem • Challenge: Low correlation between measured variables and 
desired output.  

• Requirement: Accurate estimation of key variables used by 
physical model. 

• Solution: Utilize data from infrared cameras and physical model 
when training ML model 

Saarstahl • Challenge:  

• Requirement: Analytical modelling for matching DL detections 
over consecutive frames and different camera viewpoints. 

• Solution:  
 

Noksel • Challenge: Data cleaning and labelling 

• Requirement: Pre-processing for ML/DL for predictive 
maintenance 

• Solution: Industrial Big Data Processing implementation 
 

• Challenge: The number of features is high 

• Requirement: Efficient ML models generation 

• Solution: PCA on data 
 

• Challenge: Difficulty in analysis due to high volume of data 

• Requirement: Efficiency and performance 

• Solution: Pandas Profiling is used  

Sidenor • Challenge: Predict the maximum number of heats before 
demolition 



 DT-SPIRE-06-2019 (870130) Deliverable D5.4  

Classification Public Page 54 of 175 

• Requirement: Exploit all the data that can be provided by Sidenor. 
Data quality must be assessed. The model must provide an answer, 
at the end of each heat: Is one more heat safe? 

• Solution:  Arrive at the best ML/AI model that may explain the 
data, after normal cleaning. 

Sumitomo SHI FW • Challenge: Physical models can be slow to evaluate for on-line use. 

• Requirement: Means for model simplification and tuning are 
needed. 

• Solution: Development of suitable tools. Toolbox components: 
FUSE/PMFIR, FouMon/HX model. 

 

 

Table 29: Machine learning – challenges, requirements and solutions 

Pilots Machine Learning – +  any needs for Deep Learning /imagery, 
Performance (tasks 5.2/5.3) – Challenges, Requirements and Solutions 

Hydro  • Challenge: Quality of vital sensor measurements (HF) is difficult to 
assess 

• Requirement: Data-driven/machine learning approaches should 
give a safe, secure result such as to ensure best online operation of 
the hybrid Digital Twin 

• Solution: Anomaly detection algorithms are carefully tested and 
validated offline 

Elkem • Challenge: Machine vision algorithms are difficult to develop for 
every scenario due to moving equipment and a harsh environment 

• Requirement: Data-driven/machine learning approaches should 
give a safe, secure result such as to ensure best online operation of 
the hybrid Digital Twin 

• Solution: Automatic detection of regions of interest in images of 
moving equipment. 

Saarstahl  • Challenge: Need to analyse video imagery in order to understand 
the movement of billets 

• Requirement: Need to generate training data for Deep Learning 
Neural Networks in specified quality and composition using aerial 
photogrammetry . 

• Solution: A visual debugger for neural networks Neuroscope with 
use of aerial photogrammetry 

Noksel   • Challenge: Algorithms did not learn very well on the collected data 
set 

• Requirement: Quality ML models trained 

• Solution: A thorough analysis was conducted and feature selection 
is applied 

 

• Challenge: Missing data 

• Requirement: ML/DL model training for predictive maintenance 

• Solution: Synthetic data generation and data balanced sampling 
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Sidenor • Challenge: Interpret thermal images taken of the outside of the 
ladle 

• Requirement: Based on the images, tell if the ladle refractory on 
the inside have problems.  

• Solution: Combine predictions by the physics model with image 
analysis. This may indicate another special application, based on 
the PPBM-based model. 

Sumitomo SHI FW • Challenge: Fusion of physical models and process measurement 
data is complicated as data may be very sparse and models not 
accurate/detailed enough. 

• Requirement: Algorithms must survive with sparse data, and 
iterative computations can not be excessive. 

• Solution: Solutions will be sought by using up-to-date model-based 
state estimation techniques. Toolbox components: FUSE/UKF, 
FouMon/EnKF., SubFUSE, FouCon/Prony 

 

Table 30: Visualisation and Human Interaction – challenges, requirements and solutions 

Pilots 2D, 3D/4D  visualisation and Human interaction  (by task 5.1) 

 
 

Hydro • Challenge: Design of a new GUI for GTC operator support 

• Requirement: Operators need to be able to evaluate the reliability 
of digital twin solutions and read recommendations for optimal 
alumina flow control 

• Solution: Custom user interface to meet operator needs in 
Cybernetica Viewer 

Elkem • Challenge: It is difficult for the operator to act on 
recommendations from digital twin hybrid unless it is visualized 

• Requirement: Data from the decision support system needs to be 
made available in to the control room operator in an easy-to-act-
upon, visual manner 

• Solution: Use Cybernetica Viewer to visualize data 

Saarstahl • Challenge: Suitable visualization for operators. 

• Requirement: tracking of billets must be accurate and in real-time 

• Solution: User preferred visual presentations in Neuroscope tool 

Noksel • Challenge: Slowness in big data visualization 

• Requirement: Latency < 200ms 

• Solution: View creations for zoom in and zoom outs,  User 
preferred visual elements adjustments (i.e. color, light, etc.) 

Sidenor • Challenge: Visualization of the thermal and erosion state of the 
refractory 

• Requirement: Fast and simple 

• Solution: Combination of Paraview-based visualization and simple 
line plots to show the current refractory state, according to the 
model. This will be assessed by the operators 

Sumitomo SHI FW • Challenge: Suitable visualization for operators. 

• Requirement: Simple and illustrative 
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• Solution: Use technology developed by Sumitomo SHI FW  

• Challenge: Optimization tools require proper formulation and are 
highly dependent on the type of the problem.  

• Requirement: Automatic updating by pre-determined interval. 
High robustness of solutions is required, especially with automated 
actions without human decision-making. Obtaining of solutions 
(even suboptimal) should be ensured. 

• Solution: Careful selection of cost function vs. Solvers. 

• Toolbox components: FouCon is to include optimization 

 

 

 

Table 31: Toolbox components per pilot used by task 5.1 Plant digital twins with ML/AI 

 

 

 

6.2 Detailed description of activities performed 

The progress in task T5.1 on plant digital twins with machine learning and artificial intelligence until 

M18 was reported in the deliverable D5.2 and M19-M30 in D5.3. Here, a summary of all contributions 

up to M42 is provided. 

6.2.1 Monitoring of fuel characteristics and fouling 

The UOULU (University of Oulu, Intelligent Machines and Systems research unit) has largely focused 

on the Sumitomo SHI FW power plant pilot case problem (WP3). This case considers the monitoring 

and control/maintenance of heat exchange surface fouling.  

As a component for solving the problem, a fuel characteristic estimator has been developed (the FUSE 

component), as well as a tool for tuning physical models (the PMFIR tool). The work then considered 

tools for on-line monitoring of fouling (FouMon component, including the physical modelling of a heat 

exchanger and it’s use in model-based state estimation), to be followed by development of 

optimization tools (FouCon component). The tools emerge from solving the WP3 pilot case problem, 

but are intended and applicable for a much wider set of problems in the heavy process industry.  

The development of the approach and methodology of FUSE (fuel state estimation) and PMFIR 

(physical model finite impulse response) tools were covered in deliverable D5.2. The main suggestion 

in PMFIR is to use dynamic tuning elements at the outputs of a physical model, which enables both the 
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application of robust parameter estimation ML techniques and availability of the original physical 

model results (see Fig. 9Error! Reference source not found.). The FUSE component then implements 

estimation of uncertain inputs via unscented Kalman filter, an implementation of Bayesian state 

estimation using simulations from the tuned physical model. 

The PMFIR methodological outputs have been published in journal paper (Ikonen & Selek, 2021). The 

paper provides a more thorough examination of the capabilities of the PMFIR approach, and also 

extends comparison of the approach from finite state Markov chains to multilayer sigmoid neural 

networks time series. An application to state estimation using UKF (unscented Kalman filtering) is also 

provided.  

 

 

Figure 9: The PMFIR approach 

 

The PMFIR principle of tuning physical model outputs was applied for the WP3 pilot problem. In the 

considered case (at pilot sister plant), the fuel feed consisted of fractions of demolition wood, peat 

and woodchips. Using the tuned model, the fractions were estimated on-line using the FUSE-tool 

(described in more detail in D3.2). The FUSE method was then applied to the actual WP3 pilot plant. 

However, the operation mode of the WP3 pilot was different from that of the sister plant and the 

validation of the estimation of fuel characteristics was left incomplete. In conclusion, the FUSE 

approach was judged as successful, though potentially not feasible with the pilot due to the current 

operating practices of the pilot plant.  

The FUSE-component and the examined method/procedure is expected to be applicable for other 

input/parameter/state estimation problems as well. A generalized FUSE UKF-tool has been provided 

for the COGNITWIN toolbox, providing a flexible implementation for the UKF state estimation using a 

physical plant model. An alternative EnKF state estimation tool is also provided. The PMFIR tool 

algorithms have been published in detail, and a Matlab tool is available for download. 

A parallel SubFUSE component has been developed in view of the WP3 pilot problem. The SubFUSE 

focuses on data-driven process identification using subspace techniques, as an alternative to physical 

modeling. The solution for the state estimation problem is then simple and computationally much 

more affordable. The SubFUSE approach was published in a meeting paper in 2021 (Neuvonen, Selek, 

& Ikonen, 2021)￼ 
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The model-based state estimation requires a physical model of the plant. In order to solve the fouling 

monitoring and control problem, a physical model of a heat exchanger was constructed, considering 

the main phenomena between flue gas and the water-steam system. The heat exchanger model can 

be used for simulation of other heat exchangers as well, given proper dimension, medium, and 

material data.  

 

Figure 10. A heat exchanger model. 

 

The methodology using nonlinear Bayesian state estimation tools as well as subspace identification 

and associated observer design tools, has been further developed and used to solve the WP3 pilot 

problem in fouling monitoring. The model-based tool palette is extended with ensemble Kalman 

filtering. This part of the work by UOULU is reported in task T5.4 (hybrid digital twins), as it involves 

more heavily also data-driven tools in addition to physical model-based. The further developments 

towards cognitive aspects are reported in task T5.5 (cognitive digital twins). 

6.2.2 TEKNOPAR TIA PREMA 

TEKNOPAR has focused on the NOKSEL pilot case of a metal sheet roller system of spiral welded pipes 

(SWP). The goal is to monitor the production process machine malfunctioning and enable predictive 

maintenance.  

STEEL 4.0 Teknopar Machine Learning Library (TMLL) was renamed as TIA PREMA. TIA PREMA is being 

continuously developed for Task 5.1 and T5.2. A library of ML/DL (machine learning/ deep learning) 

algorithms has been created and tested. In TIA PREMA different machine learning algorithms are 

applied through the incremental PCA stage to detect anomalies. Prediction results are produced using 

different machine learning libraries. Both Spark MLlib and Keras were used. Spark MLlib is produced 

entirely by Spark, and uses Spark’s engine optimized for largescale data processing. Keras library, that 

uses TensorFlow, is used for deep learning purposes. The Long Short-Term Memory (LSTM) algorithm 

of this library is utilized. This open-source neural network library makes it simpler to work with artificial 

neural networks through its user interface facilities and modular structure. The Scikit-Learn library is 

another open-source machine learning library that contains several algorithms for regression, 

classification, and clustering. We used algorithms like RF, GBT, LSTM, SVM, KNN, and multi-layer 

perceptron (MLP) from the Scikit-Learn library for data modelling and prediction. The trained 

algorithms have been compared in predictive maintenance.   

The TIA PREMA and TIA UX tools are described in the component/tool template in the Appendix. 
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6.2.3 Predicting the Slag Generated in the Furnace and Measured After Tapping 

SINTEF Digital used machine learning models for predicting the slag generated in the furnace and 

measured after tapping, in the Elkem pilot in WP1. The input time series data are measurements from 

the furnace, materials added, and post tap hole measurements from previous tappings. Several 

machine learning models were evaluated and compared, including support vector machines, a k-

nearest neighbour algorithm, and ensembles of decision trees. The results from testing these methods 

have proved useful in getting a better understanding of the underlying process, e.g. with respect to 

parameter importance. Still, neural network-based models outperformed the other models. The best 

results have been obtained from models which take sequences of data as input. A model consisting of 

one convolution layer followed by three LSTM layers have been trained on filtered data to predict the 

trend in slag measurements. Many sequence models have been tested, but all give similar or worse 

results compared to LSTM models. Even if the current models show some predictive abilities, their 

results are still quite unreliable. This makes it difficult to tune models and compare similar results. 

Further development on the model is on hold, awaiting data from the tap camera recently installed in 

Bremanger. This will be analyzed and implemented into the model. The new model will then be 

evaluated, and further improvements rely on a cooperative and iterative process; by analyzing and 

discussing the results of the current best models, more insight into the process might help in the tuning 

of the models.  

The status of BedRock tool is given in Chapter 9.2.2.2, and is explained in the Appendix of COGNITWIN 

report "D5.1 Baseline Hybrid AI and Cognitive Twin Toolbox3". 

6.2.4 Estimation Technique for Parameters of the First-Principles Models 

Cybernetica is applying a recursive estimation techniques to estimate parameters and states of the 

first-principles models of the Elkem ferrosilicon refining pilot and the Hydro Gas Treatment Centre 

(GTC) pilot. The physical models are formulated as a nonlinear state-space model, which typically 

includes an integration from one sample time to the next. Some of the parameters are quite uncertain 

and vary with time in a manner that is difficult to model. The interfacial area between slag and metal 

is one such parameter in the Elkem model, as it varies due to complex fluid dynamics which is 

unsuitable for modelling in a real-time application. This parameter is important for calculating the rate 

of the reactions taking place at the slag metal interface and thus affects the composition of the metal. 

In order to estimate this parameter using the available measurements online, the state vector is 

augmented with the parameter vector and the model is extended with a data-driven noise model. 

Applying a recursive estimation algorithm to this extended model, such as a Kalman Filter or a Moving 

Horizon Estimator, allows us to estimate uncertain parameters online. Great care has to be taken when 

choosing which parameters to estimate online, and combining the knowledge of which parameters are 

uncertain from a physical point of view, together with the knowledge of which parameters the model 

is most sensitive to has proven powerful in previous applications. 

6.3 Progress beyond State of the Art or State of the Practice 

A number of physical models and ML/AI methods have been developed/applied in solving the 

COGNITWIN pilot case problems. The LSTM recurrent neural network approach has been found 

applicable in several pilots. The novel methods of model-based state estimation have been considered 

 
3 Public reports (sintef.no) 

https://www.sintef.no/projectweb/cognitwin/public-reports/
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as very promising and feasible approaches in the fusion of physical models with plant data in solving 

the pilot case problems. 

Development and execution of detailed physical models require a specialized software. Typical data 

storage/communication platforms do not support established ways of representing and solving 

standard physical model forms, such as ordinary/partial differential equations. Highly sophisticated 

physical modelling tools do exist, however, such as Matlab (including Simulink and Simscape), CENIT, 

and others, used in the COGNITWIN. A digital twin requires a means for connecting to external tools. 

Following the basic principle of WP4 interoperating toolbox, this connection has been developed using 

e.g. OPC-UA and MQTT services for data transfer. 

The significant lesson learned from the applied work is the importance of fusing physical modelling 

with plant data. This has been experienced in several (if not all) pilots, where it has been observed that 

the operation data history is of limited range. In the development of plant operation optimization and 

control, the models need to cover areas not typically visited by the plant (as the optimization is likely 

to change the operation point). A similar problem appears in maintenance/fault detection and 

isolation in data-driven modelling of rare events. Therefore, data-driven approaches alone are not 

sufficient. Digital twin provides a tool for a fusion of data and models. A general approach for physical 

process model tuning based on plant data has been proposed. In an alternative approach, the physical 

model has been used to generate complementing data for ML/AI learning. 

6.4 Summary of the key achievements 

Since M30, much of the work has already moved from plant digital twins with ML/AI (T5.1) to hybrid 

digital twins (T5.4) and towards cognitive digital twins (T5.5).  

Papers on the COGNITWIN T5.1 outcomes were published in a scientific journal and in a scientific 

conferences. 

• Ikonen, E. and I. Selek (2021) Fusing Physical Process Models with Measurement Data Using 

FIR Calibration. Control Engineering and Applied Informatics, 23 (2), 67-76. 

• Ikonen, E., M. Neuvonen, I. Selek, M. Salo and M. Liukkonen (2022). On-line estimation of 

circulating fluidized bed boiler fuel composition. 13th UK Automatic Control Council (UKACC) 

International Conference (CONTROL2022), 22–24 April 2022, Plymouth, UK. DOI: 

10.1109/Control55989.2022.9781460 

• Neuvonen, M., I. Selek and E. Ikonen (2021) Estimating Fuel Characteristics from Simulated 

Circulating Fluidized Bed Furnace Data. Int. Conf. on Systems and Control (ICSC’21), 24–26 Nov 

2021, Caen, France, 2021, pp. 107–112. 

• Ikonen. E and I. Selek (2020) Calibration of physical models with process data using FIR filtering. 

The 2020 Australian and New Zealand Control Conference (ANZCC 2020), 26-27 Nov 2020, Gold 

Coast, Australia. 

•   (Neuvonen, Selek, & Ikonen, 2021) (Ikonen & Selek, 2021) 

TEKNOPAR’s publication which is a result of its WP5 related work, have been accepted for publication 

and presentation 
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• Seyithan Temel, Emre Ummak, Abdülkadir Tokgöz, Furkan Işık, Özlem Albayrak, Perin Ünal, 

and Murat Özbayoğlu (2022) Control System Design and Implementation Based on Big Data 

and Ontology, IEEE BigData 2022.  

 

TEKNOPAR’s publications which are associated with WP5 related work, are as follows: 

 

• Selçuk, Ş. Y., Ünal, P., Albayrak, Ö., & Jomaa, M. (2021). A Workflow for Synthetic Data 

Generation and Predictive Maintenance for Vibration Data. Multidisciplinary Digital Publishing 

Institute. 

• Temel, S., Ummak, E., Tokgöz, A., Işık, F., Albayrak, Ö., Ünal, P., & Özbayoğlu, M. (2022). 

Control System Design and Implementation Based on Big Data and Ontology. Osaka, Japan. 

• Ünal, A. F., Kaleli, A. Y., Ummak, E., & Albayrak, Ö. (2021). A Comparison of State-of-the-Art 

MAchine Learning Algorithms on Fault Indication and Remaining Useful Life Determination 

by Yelemetry Data. The 8th Interhational Conference on Future Internet of Things and Cloud 

(FiCloud 2021).  

• Ünal, P., Albayrak, Ö., Jomaa, M., & Berre, A. J. (2022). Data-Driven Artificial Intelligece and 

Predicitve Analytics for the Maintenance of Industrial Machinery with Hybrid and Cognitive 

Digital Twins. In Technologies and Applicatipns for Big Data Values (pp. 299-320). Springer. 

• Deveci, B. U., Çeltikoğlu, M., Albayrak, Ö., Ünal, P., & Kırcı, P. (2023). Transfer Learning 

Enabled Bearing Fault Detection Methods Based on Image Representaions. Information 

Systems Frontiers. 

• Deveci, B. U., Çeltikoğlu, M., Alp, T., Albayrak, Ö., Ünal, P., & Kırcı, P. (2021). A Comparison of 

Deep Transfer Learning Methods on Bearing Fault Detection., (p. The 8th International 

Conference on Future Internet of Things and Cloud (FiCloud 2021)). 

• Kaleli, A. Y., Ünal, A. F., & Özer, S. (2022). Simultaneous Prediction of Remaining-Usedul-Life 

and Failute-Likelihood with GRU based Deep Netwroks fpr Predictive Maintenance. The 44th 

International Conference onf Telecommunications and Signal Processing (pp. 301-304). IEEE. 

 

 

The following components tools in the COGNITWIN toolbox, were developed:  

• FUSE-component (Fuel state estimation), with PMFIR and UKF tools. 

• TIA MODEL machine learning library, 

• TIA APPS (TIA STATISTICS, TIA METRICS, 

• TIA UX industrial control panel and visualization (3D modelling and digital twin), 

• Bedrock tool. 

• FouMon (Fouling monitoring) /Heat exchanger model tool. 

These tools/methods have been validated in at least one COGNITWIN pilot and are available for the 

development of applications in other pilots in the COGNITWIN toolbox. Video demonstrations are 

available, the tools are described in more detail in the appendix. Their applications are described in 

the associated pilot cases (D1.4-D3.4).    
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6.5 Conclusion 

Task 5.1 focused on the use of physical modelling, visualization, and ML/AI related tools for solving 

problems in the heavy process industry. Some main conclusions can be drawn.  (i) The computation 

times associated with solving physical models still remain an obstacle for fluent use for on-line 

monitoring and control. Modern methods of nonlinear model-based state estimation provide 

implementations requiring more economical amounts of simulations for the fusion of physical models 

with plant data. (ii) In many cases, the performance of physical models can be further improved by 

methods relying on external tuning based on data, not requiring excessive simulations. (iii) In many 

cases, the operational history data is limited. Good experiences were obtained from synthetic data 

generation for application of ML/AI learning techniques.  
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7 Multi-variate Sensor analytics with Deep Learning on Imagery 

7.1 Objectives, challenges and components  

The possibility to process multi-variate sensor data using Deep Learning will be crucial for the 

realization of hybrid AI and cognitive twins. While the extraordinary performance of Deep Learning 

systems to many classification and regression problems has been demonstrated in many contexts, key 

challenges remain. Their challenges are generally recognized to be: (1) high demand in compute 

power, (2) high demand in training data, and (3) difficulties in obtaining trustworthy results or even 

finding good technical explanations in cases when unintended system behaviour occurs. The generally 

high demand in compute power is less problematic for many applications in the process industry as 

high-performance hardware is readily available. For situations where latency is critical, we dedicate a 

specific task (Deep Learning Performance) to finding solutions. This task will therefore focus in the two 

remaining core problems of Deep Learning: the availability of training data and trustworthiness 

concerning explainability. 

For the availability of training data, we will focus on the generation of training data using parametric 

models and sensor simulations, specifically on capturing of 3D information using photogrammetry. For 

improved explainability, we will adapt a visual debugger for neural networks called Neuroscope for 

the specific needs of the Use-Cases.  

Table 32 summarizes the challenges, requirements and solutions related to machine learning for the 

six pilots. Common challenges for the pilots are the difficulty in analysing images, and the lack of good 

datasets. In Table 33, we show the mapping between the toolbox components and the pilots for task 

5.2. 

Table 32: Machine learning – challenges, requirements and solutions 

Pilots Machine Learning – +  any needs for Deep Learning /imagery, 
Performance (tasks 5.2/5.3) – Challenges, Requirements and Solutions 

Saarstahl • Challenge: Need to analyse video imagery in order to understand 
the movement of billets 

• Requirement: Need to have effective training and use of Image 
analytics including aerial photogrammetry including use  Deep 
Learning Neural Network. Analytical modelling for matching DL 
detections over consecutive frames and different camera 
viewpoints. 

• Solution: A visual debugger for neural networks Neuroscope with 
use of  aerial photogrammetry 

Noksel • Challenge: Algorithms did not learn very well on the collected data 
set 

• Requirement: Quality ML models trained 

• Solution: A thorough analysis was conducted and feature selection 
is applied 

 

• Challenge: Missing data 

• Requirement: ML/DL model training for predictive maintenance 

• Solution: Synthetic data generation and data balanced sampling 
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Sidenor • Challenge: Interpret thermal images taken of the outside of the 
ladle 

• Requirement: Based on the images, tell if the ladle refractory on 
the inside have problems.  

• Solution: Combine predictions by the physics model with image 
analysis. This may indicate another special application, based on 
the PPBM-based model. 

 

Table 33: Toolbox components per pilot used by task 5.2 Multi-variate Sensor analytics 
with Deep Learning on Imagery 

 

 

 

7.2 Detailed description of the activities performed  

7.2.1 Neuroscope & Aerial Photogrammetric 

DFKI have worked in improving two key components: a visual debugger for neural networks called 

Neuroscope and a process for the photogrammetric capturing of plant sites using aerial 

photogrammetry. A planned improvement for Neuroscope (integration of Explain-to-fix) was cancelled 

for technical reasons. The photogrammetric workflow was consolidated technically.  

A detailed description of the activities can be found in the component descriptions for the toolbox 

components photogrammetry and Neuroscope, which are detailed in the Appendix.  

Working closely with DFKI, Scortex has prepared an evaluation of the synthetic data processing 

approach using photogrammetry under high performance conditions using our technology. 

7.2.2 LSTM deep learning algorithm 

Focused on NOKSEL pilot, TEKNOPAR has conducted a LSTM deep learning algorithm. Multiple sources 

of sensor data (vibration, temperature, pressure, etc.) have been used and DL (deep learning) models 

have been applied. The Keras library, that uses TensorFlow, is used for deep learning purposes. The 

LSTM algorithm of this library is utilized. This open-source neural network library makes it simpler to 

work with artificial neural networks through its user interface facilities and modular structure. 

TIA MODEL of TEKNOPAR is detailed in the Appendix. 
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7.3 Progress beyond State of the Art or State of the Practice  

For Neuroscope, we have  initially assumed our Use-Case would require semantic segmentation 

networks (i.e., output of the network is a class label per pixel). We have therefore adapted the methods 

for applicability to semantic segmentation problems (see last progress report).  

 

From working with the Use-Case it became clear that semantic segmentation (label per pixel) output 

is insufficient, but instance segmentation output (multiple bounding boxes plus labels per pixel inside 

the bounding box) will be required. We have started to extend Neuroscope for the support of instance 

segmentation networks. The most relevant instance segmentation architectures consist of two stages. 

The first stage is a conventional multi object detection architecture that generates bounding boxes. 

The second stage extracts sub-images per bounding box and assigns labels. We have therefore started 

to implement object detection support first with the plan to extend this to instance segmentation later. 

One promising method for visual decision explanations in object detection networks is called Explain-

to-fix. We started to integrate explain-to-fix in Neuroscope. The attempt to integrate the method failed 

for technical reasons, though. As we found out during the development, Explain-to-fix heavily relies on 

modifications of the network under investigation, i.e. in order to perform the visualization, the 

investigated network needs to adapted. This collides with the basic idea of Neuroscope to load 

arbitrary networks (from a certain class of network architectures) and debug them. We investigated 

the possibility to automate the required modifications of the network but found that currently, the 

scientific understanding of the method is insufficient to facilitate such automation. We are in contact 

with the authors of Explain-to-fix and currently consider writing a joint proposal for basic research on 

the topic. However, for the purpose of COGNITWIN, this endeavor is out of scope. See the following 

references for further information on the subject (Gudovskiy, Hodgkinson, Yamaguchi, Ishii, & 

Tsukizawa, 2018) (Petsiuk, et al., 2020) 

 

7.4 Summary of the key achievements  
 

We have published a useable version of the software Neuroscope in version 1.0, available at: 

https://github.com/c3di/neuroscope. 

We have published a manuscript describing the Neuroscope software (Schorr, Godarzi, Chen, & 

Dahmen, 2021) 

We have also prepared and submitted a manuscript detailing the application of Photogrammetry in 

the context of the Saarstahl Use-Case (Schorr, Luschkova, & Dahmen, 2021) 

We published the following journal article: Bilgin U. Deveci, Mert Çeltikoğlu, Özlem Albayrak, Perin 

Ünal and Pınar Kırcı, Transfer Learning Enabled Bearing Fault Detection Methods Based on Image 

Representations of Single‑Dimensional Signals, Information Systems Frontiers, 

https://doi.org/10.1007/s10796-023-10371-z. 

 

https://github.com/c3di/neuroscope
https://doi.org/10.1007/s10796-023-10371-z
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7.5 Conclusion 

As a route forward, we have cancelled the work of integrating Explain-to-fix in Neurosope and started 

reviewing alternative techniques. The technique CRP derives from Explain-to-fix and inherits the 

problems with integration. The recently published method D-RISE [PET+20], however, seems 

promising. We investigated the integration of D-RISE into Neuroscope in order to achieve support for 

object detection networks, then instance segmentation networks. 
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8 Deep Learning Performance  

8.1 Objectives, challenges, and components  

The previous tasks “Multi-variate sensors analytics with deep learning”' is about the ability to train 

deep learning algorithms and achieve a good enough accuracy for a task. In order to be able to deploy 

such models in production, a specific focus has to be set on the pipeline performance in terms of 

inference time, memory used, compute resources needed, etc. This is especially true when it comes 

to Industry 4.0, where systems are deployed in the 3D world and have real time. For example, in the 

field of quality inspection, dozens of images of high resolution may be used to take a decision in real 

time. This means that standard architectures from the literature designed on the ImageNet dataset 

may be too slow to be used in practice. This task is about finding solutions which allow engineers to 

deploy state of the art deep learning algorithms in practice, in factories. 

Table 34 shows the mapping between the toolbox components and the pilots for task 5.3. 

 

Table 34: Toolbox components per pilot used by task 5.3 Deep Learning Performance 

 

 

8.2 Detailed description of the activities performed  

The work in the area of Deep Learning Performance was performed by COGNITWIN partner Scortex 

until month 30 in the project. Sadly the financial crisis related to COVID led to challenges and 

bankruptcy for Scortex and they ceased to continue their work in the project after that.  See more in 

section 8.5 Conclusion.   

The Keras2HLS tool that is responsible of converting a machine learning model into an FPGA 

compatible bitstream was improved to better allocate resources. Each machine learning layer can be 

understood as a step in a pipelined architecture. In a pipelined architecture, improving one step can't 

guarantee an improvement of the overall performances since each step occur once the previous one 

is done. 

Considering a 3 steps pipeline with 50 ms of execution of each step, improving only the second step to 

allow it to run at 1 ms doesn't improve the overall throughput since the step 2 will wait the step 1 to 

be done, before being able to compute net data. In a general manner, a simple pipeline throughput is 

computed by the number of step * the slower step time to execute. 
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The improvement in progress on Keras2HLS allows to better analyse each machine learning model 

layer to dedicate the amount of FPGA resources needed to allow computing in a coherent speed 

considering the other steps of the pipeline. 

In a machine learning model based on convolution, the first layers are dense and require a lot of 

computing capabilities compared to the latest layers. Then, the idea is to consumes more FPGA 

resources to compute the first layers and making them more parallelised and using less resources on 

latest layers while keeping an homogeneous computation time. 

Scortex has experimented on several ways to solve the deployment issues. Because Scortex is a quality 

inspection company, it encounters the issue more often than other companies. Indeed, high resolution 

images are often required to detect very small defects. 

The work in the second period follow up on the following work that was done in the first period: 

Network architecture design: Architectures were specially designed to enable inference on high 

resolution images (from 1000x1000 pixels up to 2000x2500 pixels) using only one GPU or FPGA. These 

networks were trained and evaluated on Scortex datasets. The tasks of interest were supervised 

semantic segmentation / detection as well as anomaly detection. 

Pruning of the network: Pruning strategies were implemented. Though this method helps lowering 

disk space and RAM/GPU memory constraints, it does not provide faster inference. We believe this 

will be the case as long as TensorFlow/Keras does not provide a better sparse tensor support. 

Distillation:  We successfully managed to transfer knowledge from a large network to a smaller one. 

The performance is not as good as the large model, but better than the performance of the smaller 

model trained on its own.  

Inference graph optimization: We investigated “folding” Batch Normalization which provided 30% 

speed in inference time. Details can be found in Scortex blog: 

https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/ 

Quantization of networks:  This is a necessary step in order to deploy networks on FPGA hardware 

(see task 4.4). We also work on a Keras2RTL component which enables converting a Keras model into 

something usable by the FPGA platform (see Honir, task 4.4) 

Efficient inference pipeline: Scortex is currently working on an end-to-end library called “sensei” to 

acquire images, apply preprocessing and deep learning networks as well as post processing on top of 

them. This library supports asynchronous and parallel inference on GPU so that real time capabilities 

can be achieved in a robust fashion. 

Scortex now uses its “bonzai” library to train models and its “sensei” library to deploy such models at 

its customers. Scortex is ready to scale the methodology to the use case partners who have need for 

fast deep learning technology. 

TIA MODEL is used by TEKNOPAR for comparing the different machine learning models. While setting 

up a machine learning model, it is difficult to predict which model architecture will provide the best 

result. The parameters which affect the model architecture are called hyper-parameters. For each 

machine learning algorithm utilized, hyper-parameter tuning has been performed by first comparing 

the previously determined success criteria, and then selecting the best result combination by 

examining the results obtained through testing possible combinations of the hyper-parameters' values 

https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/
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in a certain range. For each ML algorithm used, additionally, various parameters - such as precision, 

recall, F1 score, error detection rate, total training time, total test time, average training time, Type 1 

error, Type II error - were calculated and displayed to the user. 

The user is offered a voting option to decide on the algorithm to use. The application enables users to 

select the machine learning model for a given set of data, and then compares the output using 

graphical elements. For developing and testing purposes, the AML Workshop dataset from Microsoft 

(AML data set) is used in TIA MODEL module. The Scikit-learn library has been used for Random Forest, 

Gradient Boosted Tree, MultiLayer Perceptron, Support Vector Machine, and K-Nearest Neighbors. For 

the LSTM, Keras has been used. 

 TIA MODEL of TEKNOPAR is briefed in Appendix. 

8.3 Progress beyond State of the Art or State of the Practice  

The work done in period 1 by by Scortex on “Batch Norm Folding” has been published on its blog:  

https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/  

 

 

Figure 10: Tech blog entry of Scortex 

 

It is now one of the most read articles on the subject. As of 2021/01/19, it has been read by 1683 

different people according to Scortex website statistics. Readers came from recognized industry 

companies such as: Sony, Nokia, Daimler, AMD, Intel, Thales, Huawai, Zoom, ETH Zurich, Panasonic, 

etc. 

By combining several ideas described above, Scortex managed to deploy a station able to perform a 

complex inspection of rotating parts. The Scortex box handles the inspection of 3 parts per second 

which requires inference of 300 (3 x 100) 1280x640 grayscale images per second. To the best of our 

knowledge, Scortex is the only company able to achieve such performances in a real-life deployment. 

8.4 Summary of the key achievements  

In the first period - Using Batch Norm Folding, we were able to reduce the inference time of light 

architectures by 30%. The work is summed up on Scortex blog: 

https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/. 

https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/
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We managed to design and quantize efficient architectures. Once deployed on FPGA, we can achieve 

120 FPS (frames per second) on 1920x1200 RGB images. Deployed on 2 GPUS, we achieved 300 FPS on 

1280x640 grayscale images. 

In the second period there was a focus on  continued development of the FPGA library to make it more 

versatile and more robust so that it could be easily used internally and externally. This work is mostly 

related to task 4.4 but does need some inputs from the task 5.3. The automatization of the conversion 

process of a topology and the weights from a neural network into a hardware designed platform will 

be done in the next steps (improvement of the Keras2RTL component). This will ease the use to the 

process and reduce the time needed to transition from a functional neural network design on 

computer to one running on an FPGA.  Furhter work started to follow up on the use of very light 

architectures. Which can be an issue because of the lack of expressiveness and capacity they lead to. 

This is something that we have observed in practice. It is suggested to rework the architectures, 

typically using recent architecture blocks from the literature such as Efficient Net / efficient det 

MBconv, SE and SK blocks, or more generally the mechanism of attention (since we now have seen 

some transformers breakthrough for computer vision in 2021). Packaging and standardization work 

will be necessary to make the methods more “production-ready”. Finally, these methods have been 

proven on internal datasets and could be tested and benchmarked on the pilot data, deep learning 

tasks, and network architectures.  

 

 

8.5 Conclusion 

The work in the area of Deep Learning Performance was performed by COGNITWIN partner Scortex 

until month 30 in the project. Sadly the financial crisis related to COVID led to challenges and 

bankruptcy for Scortex and they ceased to continue their work in the project after that.  The results are 

still described here, as they are interesting as a conceptual basis for how deep learning performance 

might be enchanced through hardware support in the future. This is relevant for organisations that will 

consider high performance image processing.  
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9 Hybrid Digital Twins 

9.1 Objectives, challenges and components  

A Hybrid Digital Twin is an extension to the plant Digital Twin where the physics-based model is 

combined with data from the real process and one or more data driven models that adapts and 

corrects the Digital Twin such that it better represents its real-world counterpart. 

A definition for a Hybrid Digital Twin as the second layer in a three-layered twin definition was given 

in (Abburu, et al., 2020): 

“An extension of Digital Twin in which the isolated Digital Twin models are intertwined to recognize, 

forecast and communicate less optimal (but predictable) behaviour of the physical counterpart well 

before such behaviour occurs. A Hybrid Digital Twin integrates data from various sources (e.g., sensors, 

databases, simulations etc.) with the Digital Twin models, and applies AI analytics techniques to 

achieve higher predictive capabilities, while at the same time optimizing, monitoring, and controlling 

the behaviour of the physical asset. A Hybrid Digital Twin is typically materialized as a set of 

interconnected models, achieving symbiosis among the Digital Twin models.” 

The main goal of Task 5.4 has been to contribute to the CogniTwin toolbox with tools which support 

the creation, use, and exploitation of Hybrid Digital Twins. The tools originate from the development 

of twins in the pilots. Suitable elements have been identified and extracted from the pilot twins, 

generalized, and made available as components in the toolbox. Thereby they are available for later use 

in other processes.  

The focus of the task has been on the following aspects: 

- Enhancement of the digital twin technology by combining physics-based models with data 

driven models, including AI and machine learning functionality 

- Development of soft sensing applications based on digital twins 

- Development of advanced, predictive, and self-learning control applications based on digital 

twins 

We have summarized the challenges, requirements and proposed solutions relating to hybrid digital 

twins in Table 35. In Table 36, we show the mapping between the toolbox components and the pilots 

for task 5.4.  

Table 35: Hybrid Digital Twins – challenges, requirements and solutions 

PIlots Hybrid Digital Twins (by task 5.4) – Challenges, Requirements and 

Solutions 

Hydro 
 

• Challenge: Combination of various data driven and Physical models 
require an approach for understanding the relationships between 
the various models 

• Requirement: Ensure consistent mapping and relationship 
between data driven and physical models. 

• Solution: Provide mappings between the data driven and physical 
models. 
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Elkem • Challenge: Combination of various data-driven and physical 
models require an approach for understanding the relationships 
between the various models. 

• Requirement: Integration between data-driven and physical 
models and results from machine vision algorithms 

• Solution: Cybernetica OPC UA Server to make data available 
between the different applications 

Saarstahl • Challenge: Billet location needs to be known accurately for ML 
algorithms to be able to optimize the process 

• Requirement: Seamless billet tracking movement, constrained by 
physical environment 

• Solution: Instance segmentation technology is used to track the 

billets  

Noksel • Challenge: Missing models to be related to collected data 

• Requirement: 1st order model generation with data correlation 

• Solution: Models are generated in Matlab Simulink + data 
 

• Challenge: Big data set and complex data to train the model 

• Requirement: ML models quality need to be above a certain value 

• Solution:Undersampling has been applied to eliminate low quality 
data and increase model quality 

 

Sidenor • Challenge: Exploit the physics-based model and the data, to arrive 
at an improved model with improved prediction power. 

• Requirement: Model should be able to incorporate the physical 
elements that has not been considered by the physics-based 
model.  

• Solution: The ML/AI model may use the predictions from the 
physics-based model, together with other data that was not 
directly explored and arrive at an improved prediction. 

Sumitomo SHI FW • Challenge: Exploit physics-based models and plant data to arrive at 
an on-line model for fuel characterization and fouling monitoring. 

• Requirement: Need to combine physics-based model with online 
plant data in order to optimize boiler efficiency 

• Solution: FUSE: Apply a physical model for the CFB furnace 
(combustion, fluidization and heat transfer), a PMFIR tool for 
tuning the physical model with process historical data, and an 
unscented Kalman filter (UKF) tool for on-line state estimation of 
the uncertain input fuel fragments in the fuel. FouMon: Apply a 
heat exchanger model and an ensemble Kalman filter (EnKF) for 
online estimation of heat transfer coefficients. 
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Table 36: Toolbox components per pilot used by task 5.4 Hybrid Digital Twins 

 

 

9.2 Detailed description of the activities performed 

9.2.1 Methodological development 

In the different pilots, hybrid digital twins have been built by combining physics-based models with 

data driven models in different ways. Different tools and different types of data driven models have 

been applied in the various pilots. 

In several of the pilots, dynamical physics-based models have been developed. Such a model is, in 

principle, capable of tracking the behavior of the process in real-time given that it is correctly initialized 

and completely models the process. Neither of these conditions are normally fulfilled, so the models 

are combined with data driven models that reduce the uncertainty and improve the overall behavior 

of the model. An example of such a data driven model is an Extended Kalman Filter, which is an 

algorithm that use the difference between process measurements and estimated measurements from 

the physics-based model to update one or more parametric values that is used in the physics-based 

model, as shown in Figure 11:. This method is used by the Hydro, Elkem, Sumitomo SHI FW and Sidenor 

pilots. 

 

Figure 11: Creating a hybrid digital twin by combining a physics-based model with a data 
driven parametric model updated by an Extended Kalman Filter. 
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Other pilots combine a physics-based model with a data driven model that is updated using machine 

learning or artificial intelligence. Calculation results from either model can then be used by the other 

model. This is used in the Sidenor, NOKSEL and Saarstahl pilots. 

 

Figure 12: Creating a hybrid digital twin by combining a physics-based model with a data 
driven model updated by ML/AI methods. 

In some of the pilots, both methods are planned to be used in combination (Figure 12:). This is the case 

in the Elkem, Hydro, Sidenor and Sumitomo SHI FW pilots. 

The tools that support the different hybrid digital twins and are described in the next section. 

9.2.2 Tools supporting hybrid digital twins 

9.2.2.1  Cybernetica CENIT 

Cybernetica’s work has been focusing on the Elkem and Hydro pilot cases. A large part of the work 

effort has gone into building physics-based models for these two processes and to tune the model 

parameters such that the models replicate the physical processes as correctly as possible. The physics-

based models for both pilots have been implemented as extensions to the tools Cybernetica CENIT, 

Modelfit, and RealSim. The extensions are in the form of application-specific modules and have been 

implemented in C/ C++ using a pre-made application component template. Cybernetica Modelfit has 

been used together with logged data from the processes for offline tuning of the model parameters, 

and the models now represent the processes quite well.  

Cybernetica CENIT currently runs the models online for both the Elkem and Hydro pilots.  

In the Hydro pilot the online model has been extended with a data-driven model that continuously 

adapts the physical model to the real process. Data is fed from the process via an OPC UA server, and 

in addition weather data is fetched from a public API by a specific component developed by SINTEF 

(described in deliverable D4.2). The implementation of the data-driven model enables both soft-

sensing of unmeasurable variables in the process, as well as model predictive control. The models are 

currently running online, and model predictive control is ready to be tested. Currently the solution is 
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being tested with a “man-in-the-loop”, where an operator manually transfers the advised controller 

action to the process once or twice per day. 

For the Elkem model, there are so few online measurements that the data driven model could not be 

sufficiently updated from them. However, the process model is currently running online. It is used to 

produce advisory control using model predictive control, such that the product is within the 

specifications while at the same time maximizing the recycling of metal. 

During the development phase, Cybernetica RealSim has been used as a plant replacement simulator 

for testing different scenarios with the twins.  

The generic part of Cybernetica CENIT was extended with functionality for evaluation of the quality of 

both the input signals and its own calculation results. This functionality has been further refined and 

improved. In the case that invalid input or calculation results are detected, the application will send a 

notification of this via an OPC connection. Thus, the plant operators can be notified, and a proper 

fallback solution can automatically be activated. This extension forms an important foundation for 

adding more sophisticated error detection and self-examination algorithms, like the Cognitive CENIT 

extension. 

9.2.2.2 Bedrock Toolbox 

The Bedrock Toolbox by SINTEF has been developed to allow for fast configuration, scaling and 

orchestration of running applications. Installation, updates and monitoring of deployed docker 

container bundles are orchestrated from a central git repository using Ansible. This enables 

simultaneous remote orchestration of several instances on different servers, which is useful in several 

aspects, e.g. during implementation of updates on system prototypes operating on several plants at 

the same time.  

Development activities regarding SINTEF in-house software modules in the framework, has since 2021 

focused on further development of data workflow functionalities applying the OPC UA protocol. Figure 

13: shows an example architecture for implementation of a digital twin with a process plant OPC 

server. 
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Figure 13: Data workflow architecture of BEDROCK application using the OPC UA protocol 
for implementation of a digital twin in a process plant control system. 

In Figure 13:, the process plant OPC UA server is applied as message broker allowing for bidirectional 

communication of data between the process plant and the digital twin. All compute modules apply an 

OPC UA client submodule in order to read and write tag data in the central OPC UA server. This allows 

for flexibility and a modularized digital twin framework with all the modules able to read and write 

data and having access to both process plant data and data produced by different compute modules. 

New compute modules can easily be added to the framework in order to modularize different tasks 

and compute features.  

The architecture above requires the establishment of new writable tags in the process plant OPC server 

for writing of simulated/calculated values or messages from the compute modules of the digital twin. 

During the development and testing phase, this can represent system administration and a potential 

challenge to the plant owners, and can worst-case introduce risk to the plant operation. Therefore, a 

further extension to the architecture has been developed in order to allow for deployments of digital 

twins that does not write setpoints or data to the plant OPC server. This solution applies 'read-only' 

functionality between the digital twin and process plant and does not write setpoints back to the plant 

control system. In this case, the digital twin framework has its own internal OPC UA server and OPC 

Historian database, allowing writing of calculated data, setpoints and messages from the compute 

modules into the framework dataflow while reading tags from the plant OPC UA server. This solution 

has allowed for quicker access to testing of frameworks on industrial plants in SINTEFs projects. 
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Figure 14: Data workflow architecture of BEDROCK application using the OPC UA protocol 
for implementation of a digital twin in a process control system with read-only permission 

from the plant OPC UA server. 

This setup can be applied for process decision support, data analytics or predictions without writing 

setpoints back to the control system. Since it only requires permission to read data from the process 

plant OPC UA server, it does not risk interfering with the operating plant. This allows for easy testing 

and development of digital twins based on access to real data. The first step of implementing advanced 

process control with process setpoints written from a digital twin, can often be to start out with the 

implementation of a digital twin for decision support. Over time, decision support functionalities are 

validated based on experiences done with the system, the next step of implementation can then be to 

also allow for writing of setpoints to the plant control system, or implementing the architecture shown 

in Figure . 

The OPC UA data workflow modules in BEDROCK are developed at SINTEF, and allow for flexibility due 

to no 'black-boxes' in the software. This is beneficial in the development and testing phase, but lacks 

industrial robustness. Since the OPC UA modules are based on a standard protocol (OPC UA), they can 

easily be replaced by commercial industrial OPC UA software upon final implementation. 

These OPC UA data workflow modules of the framework can also be replaced or combined by other 

form of communication protocols, f.ex. MQTT or Kafka, depending on the data workflow needs and 

the data source applied. In this case, the modular approach of the BEDROCK toolbox allows for 

flexibility in the replacement or addition of new modules in the framework. 

Data from the Sidenor pilot, currently present as Excel export files from the plant, will be imported and 

structured in a relational time series database. This will enable easy structuring of the data set for 

application in hybridization between physics-based models and machine learning. Implementing the 
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developed models in the above framework is possible but will not be done now as we will do this with 

StreamPipes. 

9.2.2.3 Pragmatism in physics-based modelling  

Pragmatism in physics-based modelling (PPBM) has been applied and further developed in the Sidenor 

pilot case. The industrial task is related to the lifetime of a ladle in the steel industry. A ladle is a 

container for liquid steel, typically filled with 100 – 180 tons of liquid steel. For each use of a ladle the 

refractory will be eroded and after N uses the ladle must be taken out of use in order to avoid serious 

accidents (more than 100 tons of extremely hot liquid steel, flowing out and onto the floor in the plant). 

The task is to find a method to extend the number N, without compromising with safety. 

The PPBM process was applied to the above-mentioned industrial case. Based on access to offline data 

from the plant and multiple discussions with the pilot owner, a quite clear picture of the challenge 

could be formed. A physics-based model was proposed and implemented. The numerical 

implementation, written from scratch, has been done using Python 3. The model is aiming to predict 

the temperature evolution in the system (steel, slag, refractory) and the erosion evolution of the wear 

bricks of the refractory. A number of challenges have been faced due to the complexity of this task: 

i) The model must be fast. Therefore, it is designed locally (at each height) to be one-dimensional 

through the refractory. Conservation equations for energy of metal, slag, and refractory (quasi 2D) are 

included, ii) A ladle is going through multiple operations for each use. This requires specific model 

boundary conditions for each part of the sequence, iii) The boundary conditions (energy and 

composition of dissolved species) are complex due to applications of gas-induced stirring, natural 

convection, radiation (only heat), and use of submerged electrodes in the slag, iv) The addition of 

alloying material and slag formers consume considerable heat. This necessitates an enthalpy-based 

description of the slag and metal that can handle heats of phase transition. Thermodynamic data is 

not readily available for such systems, v) The erosion of the refractory is driven by thermal shocks and 

dissolution of refractory when contacted by slag and metal. The solubility of refractory components 

into the slag and metal can only be obtained from thermodynamics software, built on lab experiments, 

vi) The mass transfer is depending on natural convection and forced convection due to application of 

gas (bubble) stirring. Both this and the additional impact of surface waves must be represented, and 

vii) In addition, there are processes that must be considered (waiting times between uses, use of 

burners and lids) and mistakes in the data input given by operators. 

The model was demonstrated to be sufficiently fast, predicting the thermal evolution and erosion 

losses during the lifetime of the ladle, for all Sidenor ladles, during one complete year, to be finished 

in less than approximately one day.  From the learnings, indicated by i) to vii) above, several general 

recommendations for improvements of the PPBM is extracted and documented for future application.  

It was found that some transient data that is logged may not be relevant. By running the physics-based 

model the first temperature recorded for each ladle heat was deemed incorrect. It was later verified 

that this was true as this was a temperature that was sitting in the system from the previous heat. This 

would not be possible to detect with a pure ML/AI-approach. In addition, it was found that some heats 

with low reported tonnage was resulting in unreasonably large, predicted steel temperatures. It was 

then clarified that the steel mass data, as reported, could not be used as the reported mass was the 

tonnage of steel passed through the casting machines. Sometimes that cast was interrupted due to 

casting problems and non-cast steel was saved for later casting.   
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The model is currently predicting temperature evolution and refractory erosion due to mass transfer. 

During first tuning of the model against data, it was found that data could only be explained if the 

thermal conductivities in the wear bricks are significantly tuned. This indicates that steel is penetrating 

in between the bricks due to the large hydrostatic head of steel. This is further supported by thermal 

images which show that the higher outer steel shell temperatures are found at the lower part of the 

ladle where erosion during the first heats are low. This is in itself a significant contribution to the 

understanding of the phenomena the controls refractory behaviour and safe operations. 

A strategy was developed to exploit all the available data and tune the model such that both 

temperature evolutions and refractory erosion can be exploited. The strategy involves several steps. 

This is one level of hybridization. In the second step, contributions to ladle life, which have not been 

explained by the physics-based model, is subject to direct ML modelling.  

Due to the complexity of the modelling tasks, still significant simplifications were introduced. As we 

have been going through this process the learning were generalized and included into the PPBM tool. 

Publication of results. The details of the learnings and recommendations for an improved PPBM tool 

will be published in a paper, dealing mainly with the methodology and the process for developing 

pragmatism-based physics models. In a second paper we will describe the physics-based model in full 

detail and show validation of the model against data. Details about these papers are found in Chapter 

14.11 Pragmatism in physics-based modelling (PPBM). 

The results from the model are shared at github.com (https://github.com/SINTEF/refractorywear). 

This includes source code and documentation. This code is available under the MIT open-source licence 

and can be reused for similar projects in the metals industry and other related industries. 

9.2.2.4 FUSE and FouMon  monitoring tools 

The UOULU (University of Oulu, Intelligent Machines and Systems research unit) work has focused on 

the development of tools for modelling, monitoring, and control, driven by solving the Sumitomo SHI 

FW pilot problem in Work Package 3. The work involves physical modeling and model tuning (see WP5 

task 1 on plant digital twins with ML/AI, reported in Section 6); model-based bayesian state estimation 

(task 4 on hybrid digital twins); and model reduction, on-line learning, optimization and descision 

making support based on these tools (task 5 on cognitive digital twins, Sec. 10). Model-based state 

estimation is an efficient means to hybridize the physical knowledge of process phenomena and 

measured data from the plant, to gain interpretable information from uncertain process quantities. 

 

The FUSE component looks at solving the fuel state estimation problem, fusing a physics-based model 

for the boiler furnace with process data in stochastic nonlinear state estimation. The component is 

developed for the Sumitomo SHI FW pilot (see D3.2), using a dynamic physical model for a boiler 

furnace and data from the Sumitomo SHI FW pilot. Unscented Kalman filtering (UKF) is used for state 

estimation. The FUSE component contains an open access generalized UKF tool for the Matlab 

environment, providing an implementation of UKF with a possibility to flexibly use a physical model, 

select input/measurement signals, and pick states to estimate.  

 

The FouMon component looks at solving the fouling monitoring state estimation problem, fusing a 

physics-based model for a heat exchanger (HX) with process data. The component is developed for the 

Sumitomo SHI FW pilot (see D3.3), using a dynamic physical model for a heat exchanger and data from 

the pilot. Ensemble Kalman filtering is used for state estimation. The FouMon component includes an 

https://github.com/SINTEF/refractorywear
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open access general-purpose implementation of the ensemble Kalman filter (EnKF) algorithm for the 

Matlab environment. 

State estimation is model-based, it provides a means to fuse both model predictions and on-line 

process data. Figure 15 illustrates the concept used in both FUSE/UKF and FouMon/ENKF bayesian 

state estimation. A process model is run in parallel with the real plant. The information from the two 

sources is compared and used to adjust the estimates of the uncertain quantities. In fuel 

characterization, the mass flows of the input feed fuel fractions are unknown. In fouling management, 

the state of accumulation of deposits to heat exchange surfaces is uncertain, an estimate of heat 

transfer coefficient can be used as an indicator of the degree of fouling. In both cases, the process 

models are inaccurate and on-line data contains noise and errors, making fusion of information a 

tempting goal. In solving the fouling monitoring problem, the physical process knowledge was also 

used in the calculation of indexes, by refinement of process data information with known energy 

balances.  

 
 

Figure 15: State estimation fuses information from process model and data. 

 

A major problem in using physics-based models in state estimation is the computational effort required 

by solving the physical model equations and balances. Therefore, approaches that provide feasible 

estimation results with less simulations are valuable. Based on the pilot problem experiences, UKF and 

EnKF are implementations of bayesian state estimation that can provide reasonably accurate 

estimates, with a feasible number of simulations, in view of on-line applications. The computations 

remain resource consuming, though.  

 

The considered state estimation algorithms are general-purpose in that they can be applied for solving 

many types of estimation problems. The construction of a process model can be time- and resource-

consuming, however. Process identification approaches the problem from the perspective of data-

driven construction of a plant model. Subspace identification looks for linear time-invariant (state-

space) descriptions, for which computationally very efficient estimators can be developed, in the 

bayesian or non-bayesian context. These developments (SubFuse, FouCon/Prony) are discussed more 

in the context of cognitive DT. 

 

Several papers reporting work on state estimation have been published from the work in COGNITWIN:  

• Ikonen, E. and I. Selek (2021) Fusing Physical Process Models with Measurement Data Using 

FIR Calibration, Control Engineering and Applied Informatics, vol 23, nro 2, pp. 67-76. 
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• Ikonen, E. M. Neuvonen, I. Selek, M. Salo, M. Liukkonen (2022) On-line estimation of circulating 

fluidized bed boiler fuel composition. 2022 UKACC 13th International Conference on Control 

(CONTROL 2022), 20-22 April 2022, Plymouth, UK. 

• Liukkonen, M., A. Kettunen, J. Miettinen, E. Ikonen, I. Selek, M. Neuvonen, A. Hansen and M. 

Edelborg (2022). Hybrid Modelling Approach to Optimize Fouling Management in a Circulating 

Fluidized Bed Boiler. Fluidized bed conversion conference 2022 (FBC24), 8–11 May 2022, 

Gothenburg. 

 

Video demonstrations are available on the fuel characterization and fouling monitoring  

• Estimation of power plant fuel characteristics. Estimation of power plant fuel characteristics - 

YouTube 

• Fouling monitoring demo. Fouling monitor demo - YouTube 

• Fouling management demonstration. SUMITOMO Pilot (Final COGNITWIN Demonstrator - 

D3.4) - YouTube as well as a video on the UOULU COGNITWIN tools, including FUSE/UKF and 

FouMon/EnKF. UOULU Toolbox components (Final COGNITWIN Demonstrator - D4.4 and D5.4) 

- YouTube 

9.2.2.5 Hybrid model designer for StreamPipes 

One of the most challenging tasks in the hybrid modelling is enabling an efficient creation of hybrid 

models, since it requires an efficient orchestration. We argue that StreamPipes is a very suitable 

framework for such a hybridization due to its pipeline-oriented nature. 

This component uses these functionalities to support the creation of hybrid models. 

In the following figure we illustrate the integration of two data-driven models (developed for the 

Sidenor pilot), whereas the output of one model is used as an input for the other model. 

 

Figure 16: Integration of two data-driven models. 

As shown in Figure 16:, the output of one model is used as an input for another model. There can be 

different ways of connecting and StreamPipes orchestration seems to be suitable for any meaningful 

combination of models. 

https://www.youtube.com/watch?v=fgZBryVu_7g
https://www.youtube.com/watch?v=fgZBryVu_7g
https://www.youtube.com/watch?v=BnaNwiNQI2s
https://www.youtube.com/watch?v=SgH2UcdoImY
https://www.youtube.com/watch?v=SgH2UcdoImY
https://www.youtube.com/watch?v=PsgNr7kGcGw
https://www.youtube.com/watch?v=PsgNr7kGcGw
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9.2.2.6 TIA DATA-GEN 

By combining two related models - a data driven-model and a (physics)-driven 1st order principal model 

- a hybrid digital twin has been generated. 1st order physics-driven models can be beneficial to the 

data-driven ones in many ways including but not limited to: 

- Synthetic data generation in case of poor data: An example is training a machine learning pipeline for 

the predictive maintenance. Generally, when a machine is new, it does not have historical sensor data 

that can be used to train a data-driven approach. When carefully designed, the virtual physics-based 

twin can generate the needed supervised training dataset. 

- Data-Driven Digital Twin quality control: When operating a critical infrastructure or asset, it is seen 

as a risky approach to fully rely on data-driven approaches in taking real-time decisions. To mitigate 

these risks, it is possible to build a control pipeline in which the physics-based model will be used as a 

controller to the data-driven predictor. A broker needs to be designed to integrate the two approaches 

in a seamless way. 

Data-driven models can be used to continuously calibrate physics-based models. Machine 

degradation, wearing of parts, environment, and other factors impacts the overall process 

performance over time. The state of the practice is that an operator will manually recalibrate the 

control system when a deviation is identified. Such manual operation can be replaced by setting a data-

driven model to identify and calibrate critical process variables that will be fed into a physics-based 

model, which in turn will optimize the control system of the process. 

A hybrid digital twin for predictive maintenance of a component which is composed of electrical and 

mechanical elements has been generated. The hybrid twin includes the sensor installed on the 

machinery. 

TIA DATA-GEN generates synthetic data from the 1st order model elements for common electro-

mechanical parts, including an electric DC motor, a gearbox and a hydraulic press. TIA DATA-GEN works 

with MATLAB Simulink. Random realistic error sources are generated such as degradation of the 

components and measurement errors. The output of TIA DATA-GEN is a supervised and annotated 

dataset in .mat format . 
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Figure 17: TIA DATA-GEN previously named as TMat-SynDat  to generate synthetic data 

9.2.2.7 Hydraulic/Motor/Gearbox Models  

Physical hydraulic/motor/gearbox models for the plant have been developed. The models are 

developed/implemented using Matlab SimScape with the aim of predictive maintenance purposes. 

Model parameters have been calibrated and simulated. Potential failure scenarios have been 

identified and used in generation of synthetic data, used by ML/AI algorithms for predictive 

maintenance. The model is enriched with data retrieved from the experts. 

Since the last milestone, sensors have been added to the 1st order principal models. Current and 

temperature sensors have been added to the motor and gearbox model, while a hydraulic press sensor 

has been added to the previously developed hydraulic press model.  

Following the sensor implementations for the models, model parameters have been calibrated and 

the random error sources have been introduced to the model. Thus, the model has been updated to 

be ready for predictive maintenance algorithms by introducing sources of random errors to be used in 

predictive maintenance, adding appropriate sensors to observe the effect of these error sources on 

important variables of the models and calibrating the geometrical, electrical, and hydraulic parameters 

of components to make the model as applicable and as realistic as possible. 

The TIA DATA-GEN, TIA MODEL, TIA PREMA AND TIA ASP are described in the component/tool 

template in Appendix. 

9.3 Progress beyond State of the Art or State of the Practice 

Several physical and data-driven models have been developed for the pilot cases. 

UOULU has developed state estimation tools for fuel characterization and fouling monitoring 

(FUSE/UKF, FouMon/EnKF) 
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TEKNOPAR has created a hybrid digital twin for predictive maintenance, combining a physical model 

of the process with sensor data and ML/AI algorithms. 

Nissatech has developed a hybrid model designer for StreamPipes. It has been applied in the Sidenor 

pilot to combine two data-driven models. The study have been published in the following journal 

article: Selcuk, ŞY, Unal, P., Albayrak, Ö, Jomâa, Moez., " A Workflow for Synthetic Data Generation 

and Predictive Maintenance for Vibration Data", MDPI21. 

Important extensions and modifications for the SINTEF Bedrock, SINTEF Pragmatism, and Cybernetica 

CENIT tools/ platforms have been made that will be used later in the project. 

9.4 Summary of the key achievements 

Task 5.4 has been involved in the development or extension of the following tools: 

• several physics-based process models for the pilots 

• improvements to the Bedrock platform 

• improvements to the Pragmatism methodology 

• input signal and calculation results validation (Cybernetica CENIT extension) 

• development of FouMon component tools 

• Hybrid model designer for StreamPipes 

• Synthetic data generator for DC motor and hydraulic shaft 

• Improvements to TIA APPS 

9.5 Conclusion 

Task 5.4 has focused on creating and improving tools that support the creation, use and exploitation 

of Hybrid Digital Twins. Early in the project, much work was done on building physics-based models for 

the various pilots. Later these models were extended with data driven models, thus forming hybrid 

twins. Several of these twins run in parallel with the process, continuously updating themselves. 

Finally, generic elements in the twins that are suitable for reuse, have been extracted and made 

available as tools in the toolbox. All tools have been used in at least one pilot project. 
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10 Cognitive Digital Twins 

10.1 Objectives, challenges and components   

The main objective of this task is to design the cognition process as a part of industrial decision making 

and its realization in Cognitive Twins. 

During the 1st year of the project, we reviewed the relevant definitions in the literature and 

documented the results of this analysis in our paper “Cognitive Digital Twins for the Process Industry” 

accepted for the Twelfth International Conference on Advanced Cognitive Technologies and 

Applications (COGNITIVE 2020). We defined the cognitive digital twins as an extension of digital twins 

with cognitive capabilities in the context of the process industry.  

For realizing cognitive digital twins in the process industry, an essential aspect is to devise the 

architectural building blocks that can serve as a foundation for cognitive systems in this domain. We 

provided our architectural perspective on the type of cognitive services needed for Cognitive Twins in 

the context of process industry. The proposed architecture provides a blueprint, supporting a wide 

range of abilities similarly to human capabilities. In Figure 18: we illustrate the role of knowledge in 

the Cognitive Twin (Layer in the Toolbox).   

 

Figure 18: The role of Knowledge in the Cognitive Twin 

There are many definitions of the cognition, but for this paper we focus on that derived from the 

cognitive computing domain, which are related to reasoning and understanding at a higher level, in a 

manner that is analogous to human cognition. We specialize this view for the complex cases where 

there is a lot of uncertainties inherent in the available data and models. We expect that a human-

cognition-like approach will enable a broader, as well as a more connected view on the data and 
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models. The key advantage is the introduction of new knowledge that should provide missing insights 

for resolving original cases, as illustrated in Figure 19:Figure . 

 

Figure 19: Cognition extending Hybrid Twin solution 

As presented in the figure, we assume that “intelligent methods”, which can be a part of Hybrid Twin, 

support the development of a solution that “maps” inputs into outputs. However, the solution might 

be missing a high accuracy, due to not having enough data in the training set. As illustrated, cognition 

supports augmenting the input data, as well as intelligent methods with new knowledge (gathered 

directly from the expert or some other sources), with the goal to generate new outputs (with a higher 

accuracy). Therefore, we argue that the uncertainty inherited in the problem (e.g., missing data, 

models) can be resolved by augmenting data and intelligent methods to compensate missing 

information. Notice that this process is not about getting new data, but rather new insights about 

existing data (through cognition). 

Therefore, the main role of cognition services is to enable understanding the monitored system’s 

behavior under various types of uncertainties/unknowns, to support reliable decision making (by 

human experts) or control (in autonomous systems). Uncertainties can be of different types, but we 

focus on the two most important types from the DT point of view: lack of data and unavailability of 

models regarding the current system behavior. It means that the current system behavior cannot be 

understood neither a) by analyzing past data, since the relevant data is missing nor b) by the 

simulations of numerical models, since these do not exist (or are not accurate enough). In such cases, 

it is important to compensate these unknowns by introducing new processing steps that will gradually 

improve the understanding of the system behavior, until this understanding is enough for the 

desired/requested action. This process we consider as cognition, where the processing steps are part 

of cognition services.  

The main challenge is that the real time data is not enough for understanding the current situation 

(regarding the underlying problem). The main goal of the cognition service is to enable resolution of 

the original problem by introducing new knowledge which provides new insights for the model 

learning/creation processes, e.g. introduction of some constraints in the interpretation of originally 

collected data. Therefore, cognition is working on top of existing models, which can be derived using 

AI methods, extending the intelligence with the with the deep understanding, and reasoning 

strategies.  

We can materialize this general process by following four steps (cf. Figure ): (1) Inserting new 

knowledge (relevant for the problem) (2) Learning more accurate models, by applying new knowledge 

(3) Better situational understanding (e.g. lower interpretation uncertainty), by applying new models 

(4) Planning actions for resolving the problem, based on improved situational understanding.  

We describe these steps in the following: Firstly, by knowledge extraction and knowledge acquisition, 

for gathering knowledge from the existing data sources (e.g. unstructured and semi-structured 

content) and from experts, respectively. The goal is to collect knowledge related to the uncertainties 
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in data and models. Since the process is related to supporting human-like understanding, it is 

important that the process is driven by the well-defined knowledge structures (like knowledge graphs) 

which provide a general description of the domain.  Indeed, one of the main characteristics of the 

human cognition is a very fast discovery of hidden connections between arbitrary information items, 

which is based on large memory maps. Secondly, by learning, which encompasses applying new 

knowledge to the existing data, models, and methods, with the goal of learning more accurate models 

(from existing datasets). There are three main activities: transforming existing datasets in the anomaly-

free ones, which can be used for learning more accurate models, improving used learning methods by 

introducing some knowledge-driven constraints in the learning process, and adding new methods 

which can complement existing ones in the context of the above-mentioned uncertainties.  Thirdly, 

understanding, which is related to applying new models on real-time data to get a better interpretation 

of the situations of interest (e.g. problem/anomaly detection). We assume that, as in the human-like 

cognition, this process can be iterative, i.e. understanding processes can generate data which can be 

used for improving the learning process. Finally, planning, for defining optimal actions based on system 

behavior understanding. 

There are many challenges to be addressed to realize the vision of the cognitive digital twins. The most 

important ones are discussed below:  

Knowledge representation challenge.  The first question to be clarified is how knowledge can be 

formally represented to enable a digital twin to learn from experience and behave intelligently like a 

human. All cognitive services mentioned above are heavily dependent on this decision.  

The more complex the representation of knowledge is, the more difficult it is to acquire this knowledge 

automatically. However, more advanced reasoning services can be offered. Our goal is not only to 

support the decision-making process, but also to increase its accuracy and human-acceptance. Thus, 

both declarative and procedural knowledge is needed, as questions like ‘what?’, ‘how?’, ‘when?’, ‘in 

what context?’, ‘what-if?’ etc. should be answered. 

Several knowledge representation formalisms seem to be suitable for cognitive digital twins. To clearly 

separate the general knowledge from the specific knowledge, it makes sense to structure the 

knowledge into two parts: ontologies for representing the domain knowledge and rules for 

representing the problem-solving knowledge.  

To better understand a current situation (i.e. the asset itself, the context in which it is used, its 

environment, etc.), we consider using ontologies. They are a knowledge representation method that 

is on one hand expressive enough and on the other hand extensible. They could be used: 

• to represent the domain knowledge which includes the vocabulary domain-experts apply 

(e.g. brick wall: types of bricks - e.g. red shale, clay bricks, etc. - the features of bricks - 

thermal shock resistance, mechanical strength, etc. - and so on) as well as the constraints 

(e.g. temperature threshold at which the stone is unusable)  

• to take into account existing standards for the domain  

• to support collaboration between digital twins, e.g. for cooperative execution of complex 

tasks.  

Although simple constraints (e.g. temperature of a ladle must not exceed a certain threshold) can be 

modeled by using ontologies, there are many scenarios where complex (functional or behavioral) 
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constraints should be considered (e.g. calculations including results of different physics-based, AI, 

statistic-based, etc. models). To mimic the reasoning of a human expert in solving knowledge intensive 

problems, there is a need to use rules (e.g. event condition action rules). Rules should be used even in 

the presence of incomplete and/or uncertain information to  

(i) focus the attention to the most important aspects and  

(ii) collect additional, goal-oriented information relevant for a given context. This can be done 

by mapping raw sensor data and/or outputs of different digital twin models into actions 

(such as control decisions or recommendations for human operators).  

Knowledge acquisition challenge. The second challenge is to collect knowledge which is not only 

spread in different documents (e.g. excel tables) and software systems (e.g. error reports in MES 

systems), but could be also implicit as it is based on personal experience which is even more difficult 

to express. To make the tacit knowledge explicit and machine-understandable as well as -processable, 

different cognitive technologies could be used, such as NLP, speech recognition, etc. For example, one 

possibility is to apply a speech-to-knowledge approach, as speech is relevant for the shop floor workers 

for short information interchange allowing hands-free conversations. Since the multilingual speech 

functionality in recent years became a commodity available on smart speakers, mobile phones, and 

computers, the pre-existing solutions could be reused and added to the cognitive digital twin to enable 

speech communication channels with human operators. Ontologies can help achieving higher accuracy 

of resulting rules, as synonyms, multilingual aspects, context, etc. can be taken into account. In this 

way, the domain and problem-solving knowledge will be connected. 

Knowledge update challenge. In addition to collecting knowledge, the ability to learn, to unlearn, and 

to continuously update knowledge is crucial for cognitive digital twins to create competitive 

advantage. Knowledge update is however a complex process, which includes knowledge extension 

(e.g. adding a new entity in the ontology for new types of bricks), knowledge forgetting (removing an 

ontology entity representing material not used anymore for bricks), and knowledge evolution (e.g. 

changing the maximum temperature of a ladle). Similar strategies can be applied to the problem-

solving rules. The challenge lies not only in ensuring the consistency after applying a change, but more 

importantly in discovering the need for a change. This can be done by applying usage-driven strategies 

(e.g. by monitoring whether the proposed decisions were accepted by domain experts) or by using 

structure-driven methods (e.g. by using ontology-based reasoning to discover conflicting rules or 

generalized/specialized rules). 

Table 37 summarizes the challenges, requirements and solutions related to the development of 

cognitive digital twins for the six pilots. As this is the final goal of the COGNITWIN project, the 

challenges, requirements and solutions are more individual to each pilot. Since most pilots will utilise 

some sort of automatic control, the tasks pertaining to that are summarized in Table 38. In Table 39, 

we show the mapping between the toolbox components and the pilots for task 5.5. 

 

Table 37: Cognitive Digital Twins – challenges, requirements and solutions 

Pilots Cognitive Digital Twins (by task 5.5) – Challenges, Requirements and 

Solutions 
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Hydro   
 

• Challenge: Self-learning, reactive/smart hybrid digital twins  - for 
cognitive plants. 

• Requirement:  Methods for automatically identifying faults in the 
Hybrid Digital Twins should be developed. 

• Solution:  By employing fault detection methods, the system can 
let the operators know if the results should be discarded or 
trusted, and automatically suggest suitable actions for fault 
mitigation.  

Elkem • Challenge:  Introduce cognition through knowledge and learning 
from past data and situation in order to provide operator guidance 

• Requirement: Interact in a suitable way with operators to provide 
guidance and recommendations 

• Solution: Ensure inclusion of operators knowledge combined with 
system situation understanding. 

Saarstahl • Challenge:  Support self-learning of the system also after initial 
machine learning.  

• Requirement: The system should provide alerts and 
recommendations for operators and be able to learn continuously 

• Solution:  Provide interactive operator guidance 

Noksel •   

• Challenge: Ensure that the predictive maintenance also takes into 
account operators’ knowledge and experiences 

• Requirement: Combine the Digital Twin based recommendations 
with the inclusion of operators knowledge. 

• Solution: Extract the tacit knowledge from experts as a basis for 
developing the cognition.  Partially by applying unusuality 
detection on past data. These are developed in TIA CONTROL 

Sidenor • Challenge: Involve cognition into the pilot  - self learning and 
reactivity with operator interaction 

• Requirement: The knowledge of operators must be acknowledged 

• Solution: Train the operators to work with the model and build 
confidence that the operators, based on model predictions, may 
make a correct decision. 

Sumitomo SHI FW • Challenge: The challenges are in extending from monitoring to 
prediction, and establishing feasible approaches in optimization 

• Requirement: Cognitive DT requires abilities in human-in-the-loop 
considerations and feedback of HDT outcomes to the plant/KPI 

• Solution:  These are developed in FouCon. 

 

 

Table 38: Control System Interaction – challenges, requirements and solutions 

Pilots Control – system interaction (related also to autonomous Cognitive 

Twins)  (by task 5.5) – Challenges, Requirements and Solutions 

Hydro  
 

• Challenge: Optimal control requires characterization of a feasible 
cost function and efficient tools for finding solutions. The 
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involvement of decision maker / user in the loop needs to be 
addressed. Operations can be partly automated, but only partly. 

• Requirement: Closed-loop control should minimize process 
disturbances while staying within operating constraints of GTC 
operation (silo levels, achievable feed rates, feasible recycle rates)  

• Solution: Nonlinear model predictive control is available and 
implemented as part of Cybernetica Cenit 

Elkem • Challenge: Optimal control requires characterization of a feasible 
cost function and efficient tools for finding solutions. The 
involvement of decision maker / user in the loop needs to be 
addressed. Operations can be partly automated, but only partly. 

• Requirement: Closed-loop control should minimize process 
disturbances while staying within operating constraints  

• Solution: Nonlinear model predictive control is available and 
implemented as part of Cybernetica Cenit. 

Saarstahl • Challenge: interfere in real time if critical situation is detected to 
prevent damage to billet or the roll stand 

• Requirement: sufficiently short inference time of model and 
suitable visualization for operator 

• Possible Solution: alert operator with sufficient lead time and 
provide suggestion for action 

NOKSEL  

 
 
 

• Challenge: Performance of search query s low 

• Requirement: Efficient and fast ontology query result  

• Possible Solution: Save ontology in relational database by means 
of ON2RDB script. 

Sidenor • Challenge: Develop decision support, such that both model 
predictions and operator's experience can be exploited  

• Requirement: Model predictions must be available at the time 
when the operator must decide if the ladle must be taken out of 
production or not 

• Solution: Combine the operator's assessment and the model 
prediction, to arrive at a safe decision, supervised by the operator. 

Sumitomo SHI FW • Ch: Optimal control requires characterization of a feasible cost 
function and efficient tools for finding solutions. The involvement 
of decision maker / user in the loop needs to be addressed. 
Operations can be partly automated, but only partly. 

• Req: Solutions must be robust in the industrial environment. 

• Sol: Suitable solutions will be selected by focusing on formulation 
of the cost function and feasible optimization techniques. 

• Toolbox components: FouCon 
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Table 39: Toolbox components per pilot used by task 5.5 Cognitive Digital Twins 

 

 

10.2 Detailed description of the activities performed 

10.2.1  Cognition-driven Unusuality detection 

As we already described in the previous deliverable, cognition is related to the expert knowledge used 

in (non-trivial) decision making processes. One such a process is the tool/equipment degradation. In 

the process industry it is especially important since the equipment is used in a very harsh environment 

(e.g. high temperature) and even more difficult, data related to the condition of the equipment cannot 

be regularly collected. 

We briefly describe the process how the decision about the usage of ladle (equipment) in the steel 

production (Sidenor pilot). 

At the moment, a human expert is in charge of inspecting the state of bricks after every heat process 

and deciding whether they need to be repaired/replaced. He performs visual inspection of the bricks 

(since he does not have access to them, unless when being repaired/replaced) and checks specific 

parameters related to a current heat process, as well as several previous ones (5 - 10). If bricks pass 

visual inspection and parameters have appropriate values current set of bricks is used in the next heat. 

Otherwise, bricks must be repaired or replaced. Additionally, human expert can see whether he made 

optimal decision or not, during repairment/replacement when bricks can be closely inspected 

(whether he made optimal decision is based on the thickness of the bricks during 

repairment/replacement). An optimal decision to stop further heats is the one when no further heats 

are possible. Contrariwise, a suboptimal decision to stop further heats is the one when further heats 

could be done before repairment/replacement. 

Based on this discussion we provide a set of constraints which the human decision-making process is 

exposed to 

1 Human decision-making is based on his experience and implicit rules which he cannot make 

formal. Decision-making process is not well defined. 

2 Human decision-making process is based on univariate analysis. Expert checks parameter 

values for last N heats individually, which means that he does not take into consideration 

possible relation between different parameters - it is possible that, when individually checked, 

parameters have appropriate values, but if jointly analyzed, they can indicate that there is a 

problem, and that repairment/replacement is needed. 

3 Human expert uses a subset of all parameters during his decision-making process. It is possible 

that analysis of more parameters would result in better decisions. 
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As a direct result of the previous problems, human decision-making is prone to mistakes. These 

mistakes refer to situations in which it is decided that the bricks need repairment/replacement, when 

in fact, those bricks could be used for several more heat processes. This problem leads to suboptimal 

use of said bricks. 

However, such mistakes happen very seldom, which indicates that a human operator uses a very 

efficient mechanism for this type of judgment. Indeed, human are precise in detecting small changes 

in the known environment, based on the so-called Fast thinking process. In other words, an unusuality 

will be discovered precisely. We assume that this capability is activated/used when making also a 

decision in the above-described process. 

Therefore, we propose to use unusuality detection methods for simulating the decision-making 

process of the human operator, i.e., his cognition process 

Experimentation is conducted on following parameters from Sidenor data set – S vacio, Kwh_rr, Cal 

total, Tiempo_llena, Alumina_rr, S al vuelco_rr, Tiempo_vacio, Gases, Caf total, Acero_liquido, 

V_desulfuracion, T_calentando, Escoria_land and Mn_vuelco. 

Experimentation is performed on each ladle separately, as well as on joined ladle data. 

 

Even though we are getting strange training loss output (Image 5.3.3.1.), the results are quite good – 

Depending on the unusuality zone, we get from 15% up to nearly 100% of matching between our model 

and MEWMA. This result stands both for individual ladle and joined ladle data. 

 

 
 

Figure 20: trange zig-zag pattern of training loss (usually indicates that the learning rate 
is too high, but we did not manage to get appropriate results even with really low values of 

learning rate)   

An example of error curve and unusuality zones (10, 5, 2.5 and 1 percent of the greatest errors) for one 

of the validation parts of data set is presented in Figure 21 



 DT-SPIRE-06-2019 (870130) Deliverable D5.4  

Classification Public Page 93 of 175 

 
 

Figure 21: Validation results 

10.2.2 Cognitive CENIT 

Cybernetica has started the development of an extension to its software product Cybernetica CENIT 

called Cognitive CENIT, which enables self-diagnosing. A framework for self-monitoring of the model 

predictive control application via stage cost monitoring has been developed and is currently being 

evaluated on a simplified and simulated test process. The framework consists of the following steps:  

• Estimate the measurement error distribution  

• Propagate that noise distribution through the closed-loop model predictive controller via 

Monte Carlo simulations  

• Compare the resulting distribution of the average stage cost from the actual plant. If the 

average stage cost is significantly off from the theoretical distribution, this indicates an error 

in the closed-loop model. This is illustrated in Figure 22:: 

 

Figure 22: Cognitive CENIT 

As shown in Figure 22:, analyzing the average stage cost distribution in closed loop applications can 

detect anomalies like component failure or model mismatch 

10.2.3  FouCon Plant Monitoring and Control 

 

The UOULU (University of Oulu, Intelligent Machines and Systems research unit) work has focused on 

the development of tools for modelling, monitoring, and control. The work involves modeling and 

tuning (see WP5 task 1 on plant digital twins with ML/AI, reported in Section 6); state estimation (task 
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4 on hybrid digital twins, Sec. 9); and extending the hybrid model with adaptive and optimization 

abilities (task 5 on cognitive digital twins). The driving components towards cognitive digital twins are 

in exploiting the hybrid model ability to predict to the future, to learn on-line in an automated fashion, 

to provide optimal solutions to well defined problems, and – with all these – to assist the operator in 

his/her every day decision making.  

 

The work was driven by the needs for solving the Sumitomo SHI FW pilot problem in Work Package 3. 

The need for fouling management is due to accumulation of deposit to heat exchanger surfaces at the 

flue gas path of a combustion plant. To clean the surfaces, the pipes are cleaned by blowing steam at 

high pressure to detach residues. Typically, this is done at regular intervals. The focus of fouling 

management was targeted to the soot blowing timing optimization problem, i.e., to finding the optimal 

start time (and potentially some other adjustable parameters) of a soot blowing sequence.  

 

The FouCon component consists of two main elements: a general-purpose tool for identification, and 

a specialized optimization and user interface for decision making. A tool that uses subspace 

identification to extract light-weight approximations of subprocess behaviour, SubFUSE, was originally 

examined for the fuel characterization problem. As it became apparent that the state estimation (of 

heat transfer coefficient) relying on physics-based models was reliable but relatively heavy to compute, 

a light-weight solution was sought when extending from monitoring to on-line optimization. The 

SubFUSE tool was then further developed for the fouling management problem, by implementation of 

the Prony method. Subspace identification is a group of modelling methods providing linear state-

space approximations from a set of input—output data. It provides means to easily control the 

dynamic modes of the outcome, the linearity of the model improves the robustness of identification. 

For the soot blowing problem, the models are repeatedly re-identified after each sootblowing 

sequence. This helps to keep the models up to date between full maintenances, typically conducted 

yearly. 

 

The existence of a dynamic model provides means for generating predictions to the future. Given a 

proper cost function, the predictions can be used to find the decision parameters which minimize the 

cost / maximize the profits. The optimization problem is highly nontrivial to solve, due to the properties 

of the problem. In the soot blowing case the problem is mixed-integer, constrained, and nonlinear. It 

is important to note that the ‘optimality’ of the solution is only in terms of considered cost function 

and limited models. In the engineering reality, this optimal solution is entwined with other real-world 

requirements. The decision maker, the plant operator, is aware of much more details, conditions, and 

constraints than the automated optimization routine. What the optimization can provide, is a 

suggestion for a decision. It can also support the decision making by illustrating the impact of 

alternative decisions to the operator. The conceptual solution to the sootblowing problem of three 

first superheaters was developed and demonstrated using data from the pilot plant.  

  

  

Several papers reporting work on subspace identification have been published from the work in 

COGNITWIN:  

• Neuvonen, M., I. Selek and E. Ikonen (2021) Estimating Fuel Characteristics from Simulated 

Circulating Fluidized Bed Furnace Data. Int. Conf. on Systems and Control (ICSC’21), 24-26 Nov 

2021, Caen, France, 2021. 

• Neuvonen, M., I. Selek, E. Ikonen and L. Aho (2022) Heat exchanger fouling estimation for 

combustion–thermal power plants including load level dynamics. IEEE SMC 2022 Prague 
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A M42 video demonstration is available on fouling management 

• Fouling management demonstration. Available at COGNITWIN YouTube channel: SUMITOMO 

Pilot (Final COGNITWIN Demonstrator - D3.4) - YouTube 

 

A video on the UOULU COGNITWIN tools, including SubFUSE/MOESP and FouCon/Prony. 

• UOULU Guide to COGNITWIN toolbox tools. Available at COGNITWIN YouTube channel: 

UOULU Toolbox components (Final COGNITWIN Demonstrator - D4.4 and D5.4) - YouTube 

10.2.4 TIA PREMA Predictive Maintenance 

Focused on the NOKSEL pilot case of a metal sheet roller system of spiral welded pipes (SWP), 

TEKNOPAR has worked on related to T5.5. TStreamPipes-ML is developed by TEKNOPAR to apply ML 

algorithms on the stream and to compare the results of the algorithms. The developed data processor 

enables users to select the algorithms to be used/compared and the output is displayed on a 

dashboard.  

TEKNOPAR’s TMat-PdM component renamed as TIA PREMA, which is under continuous development, 

can be used for predictive maintenance of the DC motor, gearbox, and hydraulic press. Different ML 

models have been used by TIA PREMA. TIA PREMA uses MATLAB’s Predictive Maintenance toolbox 

and Classification Learner app. TIA  PREMA enables visualization of a confusion matrix for the selected 

algorithms to present the difference between simulation outputs.  

In the related pilot case (the NOKSEL pilot), the cognitive twin will introduce improved decision making 

by integrating human knowledge into the decision-making process. The anomalies, alarms, and early 

warnings of machine and system problems will be tackled by the cognitive twin. The decision-making 

process will emulate the experienced human operator with embedded knowledge base. The cognitive 

twin will augment expert knowledge for unpredictable cases on the digital and hybrid twins. The 

human operator’s knowledge is reflected to process knowledge and physics-based models with 

parametric values as well as thresholds and causality relations. Expert knowledge on the causes of 

breakdowns is collected with the series of the problematic operations and the initial causes which 

trigger the successive reactions. Cognition will be further integrated by making use of the machine 

learning algorithms, ontologies, and knowledge graphs to capture background knowledge, entities, 

and their relationships. Reacting to early warnings, cognitive twins will bring life cycle optimization, 

and suggesting optimized predictive actions will improve operational performance by optimized 

operational parameters and it will also decrease energy usage (Figure 23:Figure ).  

TEKNOPAR’s following journal article related to predictive maintenance has been accepted for 

publication: 

Deveci, B.U., Çeltikoğlu, M., Alp, T., Albayrak, Ö., Unal, P., Kırcı, P., (2022), "Transfer Learning Enabled 

Bearing Fault Detection Methods Based on Image Representations of Single Dimensional Signals" 

(Information Systems Frontiers). 

 

  

   

https://www.youtube.com/watch?v=SgH2UcdoImY&list=PLQuRxzrykUXRVk7QCn-DJ6r3_aqdMdk7X&index=7
https://www.youtube.com/watch?v=SgH2UcdoImY&list=PLQuRxzrykUXRVk7QCn-DJ6r3_aqdMdk7X&index=7
https://www.youtube.com/watch?v=PsgNr7kGcGw&list=PLQuRxzrykUXRVk7QCn-DJ6r3_aqdMdk7X&index=6
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Figure 23: Cognition using StreamPipes Toolbox 

10.2.5 Cognition using StreamPipes Toolbox.  

StreamPipes Siddhi-Processor (SP). Siddhi-Processor's purpose is to extract information and identify 

meaningful events (opportunities and threats), such as patterns, relationship between events, etc. It 

would receive its input from SP element(s), execute written query on received data, and forward 

execution result to other SP element(s). 

 

Figure 24: Complex Event Processing (CEP) 

The role of Complex Event Processing (CEP) in codifying expert knowledge. Siddhi CEP performs 

Complex Event Processing using the Siddhi engine. It provides application of complex logic to the 

“main” outputs of this pipeline (results of various analytical methods). In addition, this element 

provides points of connection for this and previous pipelines – CEP can be applied on outputs of 

multiple pipelines connecting them into one complex pipeline (Figure ).  
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Knowledge/Patterns.  Regarding outputs from data-driven models, MEWMA, and KNN elements, we 

singled out the following queries (patterns) that can be applied:  

• Test whether there were more than M anomalies in a single heat during a time window of 

length N. For example, if there were more than 10 anomalies in a time window of 5 

minutes, raise a warning. (uses output from MEWMA element)  

• Test whether there were too many anomalies in single heat with the same root-cause. For 

example, if there were more than 100 anomalies with the same root-cause parameter, this 

can indicate some sensor or part of a machine is faulty and should be checked. (uses output 

from MEWMA element)  

• Test whether during last N heats, a cycle is classified as 1 (indicating that the degradation is 

greater than given threshold) with an increasing probability (certainty). This can indicate that 

the ladle will soon be unusable and should be monitored closely or even 

repaired/replaced. (uses output from KNN element)  

• Test whether during the last N heats there were more than M anomalies and that 

cycle was classified as 1 (indicating that the degradation is greater than given 

threshold) - extension to the implemented query in pipeline #2.  

• Test whether during the last N heats there were more than M anomalies and that cycle was 

classified as 0 (indicating that the degradation is lesser than given threshold) - extension to the 

implemented query in pipeline #2.  

10.2.6 Digital Twin extension for time-series data 

 

As Digital Twins (DTs) are a digital representation of a physical (or virtual) asset their primary task is to 

provide a uniform and standardized way to access all information related to the asset they represent. 

However, they do not necessarily store all the information itself but rather act as a proxy to existing 

systems containing the actual information. This includes not only static metadata or simple properties 

describing the state of the asset/DT but also time series data to keep track of the history of a DT and 

its state over time.  

Unfortunately, current DT standards and specifications do not (yet) properly address the issue of 

representing time series data within a DT. For the AAS specification, an extension is currently in 

development that aims to provide a standardized metamodel and API for modelling time series data 

in the AAS called “SubmodelTemplate Time Series Data” (referred to as SMT Time Series Data in this 

document)[1].  

Our objective was to implement an early version of this specification in the context of our DT 

implementation FA³ST Service. Besides the fact that the specification is not finished yet and may 

contain errors and inconsistencies, our main challenge was to implement it in a generic way agnostic 

to the type of underlying database so that it can potentially be used with any kind of database in the 

future. 

Figure 25 shows a UML class diagram of the SMT Time Series Data metamodel. The general concept of 

how to model and access time series data in an AAS is as follows: A time series is represented by an 

AAS submodel which may contain some metadata of the time series as well as a set of so-called 

segments. Segments can be of one of three types: (1) internal, meaning that all the data is actually 

contained in the AAS itself, (2) linked, meaning that the data does reside in a database outside the AAS, 

and (3) external, meaning that the data resides in a file which can be either hosted inside or outside 

https://word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=de&rs=nb%2DNO&wopisrc=https%3A%2F%2Fsintef.sharepoint.com%2Fteams%2Fwork-8364%2F_vti_bin%2Fwopi.ashx%2Ffiles%2Fd7d684b2025e47bf896c3a419d2fa722&sc=https%3A%2F%2Fsintef%2Esharepoint%2Ecom%2Fteams%2Fwork%2D8364%2FSitePages%2FHome%2Easpx%3FRootFolder%3D%252Fteams%252Fwork%252D8364%252FShared%2520Documents%252FWork%2520Packages%252FWP5%252FDeliverable%25205%252E4%26FolderCTID%3D0x012000C9B23AE2C634174C9DE139B12A459B4B%26View%3D%257B9AF831D5%252D0280%252D4ADB%252DB7D4%252DA07CDB20A22C%257D&wdenableroaming=1&mscc=1&hid=6B5991A0-A0F8-6000-1B8F-10C113B6CA0F&wdorigin=DocLibClassicUI&wdhostclicktime=1675094517301&jsapi=1&jsapiver=v1&newsession=1&corrid=207d4649-8a1d-44c1-a00d-7bf7e1ed449c&usid=207d4649-8a1d-44c1-a00d-7bf7e1ed449c&sftc=1&cac=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&rct=Normal&ctp=LeastProtected#_ftn1
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the AAS. To access the data from different types of segments in a unified way, the time series submodel 

does offer multiple operations such as readRecords(…) or readSegments(…).  

 

Figure 25: UML class diagram of the SubmodelTemplate Time Series Data metamodel 

 

Extending FA³ST Service to support SMT Time Series Data is tricky, as this requires adding logic to a 

TimeSeries submodel implementing the required operations like readSegments(…). Figure 2 shows 

how we extended the architecture to achieve this. First, we introduced the 

SubmodelTemplateProcessor interface, which allows to integrate custom processors for certain kinds 

of submodel templates which again can alter the processed submodel by e.g. adding operations and 

underlying logic like needed for SMT Time Series Data. Then we implemented this interface for the 

Time Series Data submodel template. This implementation again defines an interface called 

SegmentProvider which abstracts from the concrete type of database used to store the data. For this 

interface we developed an implementation supporting InfluxDB databases as data source.  

 

Figure 26: Updated FA³ST Service architecture with SMT Time Series Data support 
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The implementation is open source and available on Github[2]. When started with a submodel with its 

semanticId pointing to the SMT Time Series Data it automatically generates the operation to access 

data in a unified way. However, this currently only works for internal segments and linked segments 

pointing to InfluxDB databases; external segments are not supported at this point of time. However, 

to support additional database types besides InfluxDB requires only to implement the 

SegmentProvider interface and can be done with minimum effort.  

 
[1] https://industrialdigitaltwin.org/en/content-hub/submodels 
[2] https://github.com/FraunhoferIOSB/FAAAST-Service/pull/256 

 

10.3 Progress beyond State of the Art or State of the Practice   

Most related work is dealing with the self-awareness of digital twins. There are several systems which 

we briefly analyze in the following text. 

In (Kapteyn, Knezevic, & Willcox, 2020) a DDDAS system is extended to a self-aware digital twin to 

support real-time path planning of an unmanned aerial vehicle according to its structural integrity. In 

this work, stimulus awareness and goal awareness are implicitly involved. 

In (Chhetri & Al Faruque, 2020) a dynamic data-driven approach is applied to the digital twin model for 

3D printer products. The digital twin is a machine learning model that predicts the surface texture and 

dimension of the product to be printed by using environmental parameters from sensors as input. 

Stimulus awareness and time awareness are implicitly involved. 

In (Roßmann, et al., 2014) a 3D simulation model is used as the mental model for the path planning of 

a mobile robot. The robot simulates all the possible future paths resulting from different initial 

parameters. Stimulus- and time-awareness are implicitly involved, the latter to predict future path 

trajectories. 

In (Zhang, Bahsoon, & Theodoropoulos, 2020) twins that can exhibit a high level of intelligence are 

described. They can replicate human cognitive processes and execute conscious actions 

autonomously. The paper brings together the concepts of digital twins and self-awareness and 

discusses how the different levels of self-awareness can be harnessed for the design of cognitive digital 

twins. 

Regarding the time-series data and their integration with digital twins, our solution offers a 

standardized (although the specification is only at draft stage) to handle time series data in an AAS 

which is something that no other AAS implementation can offer so far.    

10.4 Summary of the key achievements   

There are three key achievements: (1) Initial conceptualization of the cognition, driven by the role of 

knowledge in the cognitive twin layer (Toolbox) (2) Initial realization of the cognition in two pilots and 

(3) Conceptual model for the cognition in the StreamPipes toolbox. 

Regarding time series data and their integration into digital twins, we implemented most of the SMT 

Time Series Data specification thus providing a standardized way to integrate time series data with the 

AAS. As proof-of-concept we implemented a way to connect the AAS to time series data stored in an 

external InfluxDB. We furthermore designed our solution in such a way that it is easily extendible to 

other types of databases in the future. 

https://word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=de&rs=nb%2DNO&wopisrc=https%3A%2F%2Fsintef.sharepoint.com%2Fteams%2Fwork-8364%2F_vti_bin%2Fwopi.ashx%2Ffiles%2Fd7d684b2025e47bf896c3a419d2fa722&sc=https%3A%2F%2Fsintef%2Esharepoint%2Ecom%2Fteams%2Fwork%2D8364%2FSitePages%2FHome%2Easpx%3FRootFolder%3D%252Fteams%252Fwork%252D8364%252FShared%2520Documents%252FWork%2520Packages%252FWP5%252FDeliverable%25205%252E4%26FolderCTID%3D0x012000C9B23AE2C634174C9DE139B12A459B4B%26View%3D%257B9AF831D5%252D0280%252D4ADB%252DB7D4%252DA07CDB20A22C%257D&wdenableroaming=1&mscc=1&hid=6B5991A0-A0F8-6000-1B8F-10C113B6CA0F&wdorigin=DocLibClassicUI&wdhostclicktime=1675094517301&jsapi=1&jsapiver=v1&newsession=1&corrid=207d4649-8a1d-44c1-a00d-7bf7e1ed449c&usid=207d4649-8a1d-44c1-a00d-7bf7e1ed449c&sftc=1&cac=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&rct=Normal&ctp=LeastProtected#_ftn2
https://word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=de&rs=nb%2DNO&wopisrc=https%3A%2F%2Fsintef.sharepoint.com%2Fteams%2Fwork-8364%2F_vti_bin%2Fwopi.ashx%2Ffiles%2Fd7d684b2025e47bf896c3a419d2fa722&sc=https%3A%2F%2Fsintef%2Esharepoint%2Ecom%2Fteams%2Fwork%2D8364%2FSitePages%2FHome%2Easpx%3FRootFolder%3D%252Fteams%252Fwork%252D8364%252FShared%2520Documents%252FWork%2520Packages%252FWP5%252FDeliverable%25205%252E4%26FolderCTID%3D0x012000C9B23AE2C634174C9DE139B12A459B4B%26View%3D%257B9AF831D5%252D0280%252D4ADB%252DB7D4%252DA07CDB20A22C%257D&wdenableroaming=1&mscc=1&hid=6B5991A0-A0F8-6000-1B8F-10C113B6CA0F&wdorigin=DocLibClassicUI&wdhostclicktime=1675094517301&jsapi=1&jsapiver=v1&newsession=1&corrid=207d4649-8a1d-44c1-a00d-7bf7e1ed449c&usid=207d4649-8a1d-44c1-a00d-7bf7e1ed449c&sftc=1&cac=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&rct=Normal&ctp=LeastProtected#_ftnref1
https://industrialdigitaltwin.org/en/content-hub/submodels
https://word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=de&rs=nb%2DNO&wopisrc=https%3A%2F%2Fsintef.sharepoint.com%2Fteams%2Fwork-8364%2F_vti_bin%2Fwopi.ashx%2Ffiles%2Fd7d684b2025e47bf896c3a419d2fa722&sc=https%3A%2F%2Fsintef%2Esharepoint%2Ecom%2Fteams%2Fwork%2D8364%2FSitePages%2FHome%2Easpx%3FRootFolder%3D%252Fteams%252Fwork%252D8364%252FShared%2520Documents%252FWork%2520Packages%252FWP5%252FDeliverable%25205%252E4%26FolderCTID%3D0x012000C9B23AE2C634174C9DE139B12A459B4B%26View%3D%257B9AF831D5%252D0280%252D4ADB%252DB7D4%252DA07CDB20A22C%257D&wdenableroaming=1&mscc=1&hid=6B5991A0-A0F8-6000-1B8F-10C113B6CA0F&wdorigin=DocLibClassicUI&wdhostclicktime=1675094517301&jsapi=1&jsapiver=v1&newsession=1&corrid=207d4649-8a1d-44c1-a00d-7bf7e1ed449c&usid=207d4649-8a1d-44c1-a00d-7bf7e1ed449c&sftc=1&cac=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&rct=Normal&ctp=LeastProtected#_ftnref2
https://github.com/FraunhoferIOSB/FAAAST-Service/pull/256
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10.5 Conclusion 

Since this task is responsible for the realization of the cognitive twins, which are one of the main 

outcomes of the project, there are several dependencies to other tasks, i.e. the results from these 

tasks should be fed into this one. 

In addition, initial concepts and realizations (as mentioned in previous section) will be further 

developed and validated. 

Integration of time series data in the AAS is essential, especially with the focus on DTs close to 

production modules and machines as they continuously produce streams of data that need to be 

captured and made available via DTs. Unfortunately, this aspect of DTs is not well covered by 

standardization and most of the time neglected by existing implementations. With our solution we try 

to close this gap and provide an easy-to-use and extendable open-source software addressing this 

need. 
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11 Demonstrators 

Several videos have been made to demonstrate the use of the COGNITWIN toolbox. These videos are 

available on the COGNITWIN YouTube channel:  

https://www.youtube.com/channel/UCgHunz1V68YGOxaqVkkyN1A 

 

11.1 Demonstrators for D5.4 

The following four videos demonstrate novel developments and the state-of-the-art as of this delivery, 

whereas the remaining videos were made prior and demonstrate the COGNITWIN toolbox 

components at a somewhat earlier stage.  

11.1.1 Hybrid digital twin for the Elkem pilot 

A video demonstrating the pipeline for the Elkem pilot is available. It shows how Cybernetica CENIT is 

used as a basis to build a hybrid digital twin. It shows how data flow from the process, how it is stored 

and distributed to the different tools, used in calculations and finally presented to the users (operators 

and process engineers). Name: “Hybrid digital twin for Elkem pilot” 

11.1.2 Hybrid digital twin for the Hydro pilot 

A video demonstrating the use of the model and how Cybernetica CENIT is used to build a hybrid digital 

twin in the Hydro pilot case is available: “CogniTwin Hydro”. 

11.1.3 Hybrid digital twin for the Sidenor pilot 

The Pragmatism-based model for the Sidenor pilot is predicting ladle refractory erosion. Predictions of 

steel, slag and ladle wall temperatures are an integral part of the model as temperatures control 

thermodynamics. A video demonstrating the PPBM-based development and use of the model is 

available: “Pragmatism in physics-based modelling (PPBM), applied to the COGNITWIN Sidenor use 

case on ladle erosion”.  

11.1.4 FUSE, FouMon and FouCon for Sumitomo SHI FW pilot 

Three video demonstrations on developments for solving the Sumitomo SHI FW pilot problem are 

available.  The latest (M42) demonstration video illustrates the fouling management digital twin 

service tool. In addition, a quick user’s guide on the general-purpose, application independent tools, 

derived based on the pilot-driven work, is provided in a fourth video (M42). All videos are be available 

via the YouTube COGNITWIN channel. COGNITWIN - YouTube 

11.1.5  TIA APPS 

Video demonstrations for the WP5 related tools (i.e. TIA PREMA, TIA MODEL, TIA ASP, TIA DATA-

GEN, TIA OEE, TIA STATISTICS) of TIA APPS are/will be available in the YouTube COGNITIWIN channel. 

 The link is also available on:  TIA Monitoring TEKNOPAR (Final COGNITWIN Demonstrator - D5.4) - 

YouTube 

 

11.1.6 FA3ST Demonstrator 

 

This demonstrator shows how time series data can be integrated into a digital twin. 

https://www.youtube.com/channel/UCgHunz1V68YGOxaqVkkyN1A
https://www.youtube.com/@cognitwin9786/videos
https://www.youtube.com/watch?v=PfBI_RJUEQA&list=PLQuRxzrykUXRVk7QCn-DJ6r3_aqdMdk7X&index=2
https://www.youtube.com/watch?v=PfBI_RJUEQA&list=PLQuRxzrykUXRVk7QCn-DJ6r3_aqdMdk7X&index=2
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12 Conclusion 

In this deliverable D5.4 we report the methods and technologies developed in the "COGNITWIN Hybrid 

and Cognitive Twin Toolbox", as well as how they were applied in the six industrial pilots. The report 

takes the form of an updated version of the previous deliverable D5.3, such that all the previous 

developments are included for the sake of continuity.  

The overall goal of the COGNITWIN project is to support European heavy industries through digitali-

zation, with the aim to significantly improve operation. To realize the COGNITWIN vision, various tools 

for combining data-driven, physics-based, and machine learning methods are developed.  

As of this deliverable, the toolbox consists of components developed to satisfy the specific pilot 

challenges. Since technical details are best presented on a per-component-basis, and our presentation 

on the individual tasks focuses on more abstract insights. The bulk of technical details and 

development status of the individual toolbox components is additionally reported as Appendix 1 and 

referred to in this document. 

Progress has been made since the previous deliverable, and most toolbox components have now been 

applied to the pilots. Furthermore, many of the components are interacting in a unified manner as part 

of pipelines. The components and the pipelines are a step towards full-fledged cognitive digital twins 

for the process industry.   
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14 Appendix 1.  Toolbox components 

As described in the high-level overview from deliverable D4.2, the COGNITWIN vision can only be 

achieved if interoperability between the heterogeneous components is supported. To this end, it was 

chosen to define standardized interfaces for each component and define pipelines. Figure 27:Figure  

illustrates the approach.  

 

 

Figure 27: CogniTwin approach for digital twins 

 

In this Appendix, the various toolbox components are described.   

 

  

C2 Cn
C1

Ck

Heterogeneous 
components

Integrated components 
in a Toolbox 

(engineering phase)

Integrated pipelines with DTs 
(operational phase)
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14.1 TIA UX: Industrial Control and Visualization Panel 

Component/Tool description 

Component/Tool/Method/Framework/Service  Name 

TIA UX: Industrial Control and Visualization Panel 

Defined in Task 

T5.1, T5.2 

Short Description – incl. Purpose 
TIA UX supports the digital twin by means of visual components presenting the generated data 

which is retrieved from, and processed within other STEEL4.0 components.  

The purpose of TIA UX is to visualize the digital twin. TIA UX visualizes the historical, real time data 

as trend graphs and status reports by means of different types of graphical elements. Both real-

time and processed information that are used for condition monitoring and predictive 

maintenance of SWP are visualized by  TIA UX. TIA UX contains TIA DASHBOARD and TIA 3D 

applications. TIA 3D is used for 3D visualisation of data, where TIA DASHBOARD generates and 

displayes Dashboards to the usets. 

Progress since delivery D5.1 
Visual components of all of the SWP machinery parts were prepared.  

GUI designs (including the icons, graph types, dashboard elements, etc.) for the display screens 
were updated, graphical elements to display real-time and calculated fields have been changed.  

AI/ML related elements are visualized on GUIs of TIA UX. 

Accepted Proceeding Paper including STEEL4.0 Digital Twin (related to TIA UX elements): 

Albayrak, Ö., P. Unal “Smart Steel Pipe Production Plant via Cognitive Digital Twins: A Case Study 
on Digitalization of Spiral Welded Pipe Machinery” has been accepted for publication in the 
Proceedings of the ESTEP Workshop on Impact and opportunities of AI in the Steel Industry. 

Progress since delivery D5.2 

• Customization for the visual components, such as light, background color, foreground 
color, constrast level etc. have been added. 

• Model explosion has been added.  

• Overall equipment efficiency and energy consumption is displayed 

Progress since delivery D5.3 

• Verification and validation have been completed. 

Examples of usage / illustrations 
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Figure 28: TIA UX Sample GUI for External Welding of SWP displaying Real-Time 
sensor Data. 

 

Figure 29: Real-Time ML Sample GUI visualized by TIA UX. 

 
Interfaces  (in/out) – system/user 
TIA UX uses real time sensor data and predictions as input and displays them in the forms of visual 
elements to the users. 

Subordinates and platform dependencies 
Being a web application, ICPV is platform independent, it can run on many different types of 
browsers including Google Chrome, Safari, Microsoft Edge, Mozilla, Opera, etc. 
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Licenses, etc.  (free for use in the project) 
Proprietary/ Subject to license 

TRL for overall component/tool and any parts/subordinates 
The current TRL is 7 as targeted.. 

References – incl. web etc. 
https://tia-platform.com/module/tia-ux.html  

To be considered in particular for the following COGNITWIN pilots 
NOKSEL 
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14.2 MAI - Collection of weather data 

Component/Tool description 

Component/Tool/Method/Framework/Service Name 
MAI - Collection of weather data 

Defined in Task 
Task 5.1: Plant Digital Twins with ML/AI 

Short Description – incl. Purpose 
The MET API Interface (MAI for short) is a user interface to FROST, the API developed by the 

Norwegian Meteorological Institute (MET), which enables public access to weather data. MAI is a 

software bundle written in Python and is intended to be used as a standard Python module. 

The purpose of MAI is to simplify data retrieval from FROST by providing a streamlined user 

interface. A user can select a location, a time interval, and a series of measurements, then MAI 

takes care of contacting the correct access point in FROST, submitting a properly composed 

request, as well as receiving and handling the response. MAI allows querying FROST for three main 

purposes: 1) Retrieve all available weather-station names in a given area (at municipality level); 2) 

retrieve a list of all available measurements at a selected location or municipality; 3) retrieve all 

data available for the selected measurements at a chosen location and time interval. The weather 

data is collected in a properly formatted Pandas DataFrame for ease of use. 

The modularity of MAI allows for flexible development and extension of its features. 

Progress since delivery D5.1 
N/A 

Progress since delivery D5.2 
N/A 

Examples of usage / illustrations 

To allow MAI to access FROST, a user must first register and receive its client ID. This is 
done by visiting https://frost.met.no/auth/requestCredentials.html and registering with 
an email address. MET's API terms of use as well the privacy statement hold in this step. 
After registration, weather data can be retrieved by the user in one simple call to MAI. The figure 
below illustrates a minimal usage example. 

 

Figure 30: Minimal usage example for retrieving weather data using MAI 

 

Interfaces (in/out) – system/user 
The software is intended to be run as a standard Python module, imported in a script and run 
either in terminal or in a notebook. Most functions contained in MAI accept as input location 
names, list of measurements, and time intervals (or a combination of those). The returned output 
can be either messages on the screen containing the requested information, or a Pandas 

https://frost.met.no/auth/requestCredentials.html
https://frost.met.no/termsofuse2.html
https://www.met.no/en/About-us/privacy
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DataFrame containing the weather data, formatted with timestamps in rows and the different 
measurements in columns. Errors are handled through descriptive explanations and suggestions to 
the user. 

Subordinates and platform dependencies 
MAI is available on any platform that can run Python 3.x. 

Licenses, etc.  (free for use in the project) 

none 

TRL for overall component/tool and any parts/subordinates 

none 

References – incl. web etc. 

none 

To be considered in particular for the following COGNITWIN pilots 
Hydro. 
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14.3 FUSE 

Component/Tool description 

Component/Tool/Method/Framework/Service  Name 

FUSE  

Defined in task 

5.1 (5.4) 

Short Description – incl. Purpose 

FUSE is a tool for process input and state estimation, fusing plant physical model 
predictions with process measurements. The model and measurements are fused in 
nonlinear state estimation using an unscented Kalman filtering (UKF)-based approach. 
 
In particular, the tool is developed for estimation of combustion boiler input fuel 
composition characteristics. The tool uses a physical model of the CFB boiler hotloop 
(fluidization and combustion) as well as on-line measurements from the process (flue gas, 
furnace temperatures, etc). The approach can be applied for alternative state estimation 
purposes, given that a suitable plant model and measurements are provided. A 
generalized version is under development. 
 
The UKF algorithm is well known and many implementations are available (e.g. in Matlab 
Control System Toolbox and Matlab Central open exchange). The FUSE tool focuses on 
practical aspects: enabling the selection of states/inputs to estimate, measurement 
selection, data validation and reconciliation, physical model tuning, UKF tuning, and 
reduction of computational load, so as to support exploitation of computationally heavy 
physical models in plant operation and control. 

Progress since delivery D5.1 
The tool has been developed (designed, implemented, and verified) after the last milestone in 
2/2020. A paper has been published on the physical model tuning, available in IEEE Xplore (see 
References). 

Progress since delivery D5.2 
N/A 

Examples of usage / illustrations 
The tool originates from solving the WP3 pilot problem on fuel characterization, as a part of the 
heat exchanger fouling monitoring problem. The tool was tuned and tested using real full scale 
boiler plant design and measurement data.  

Figure 1 illustrates the estimation filter outcomes during fuel test experiments.  
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Figure 31: FUSE fuel characterization during one-week CFB operation 

The top left picture shows the estimated fuel characteristics as a function of time. The coloured 
lines show the mass flow feed for pure forest wood chips, design fuel mix, and moisture. The black 
lines show the estimated and measured total fuel feed (indistinguishable). The bottom left picture 
illustrates the elementary composition of the estimated fuel feed. The right plots show the 
measured and predicted flue gas oxygen and sulfur dioxide concentrations and furnace 
temperatures during an eight-day plant operation period. The estimated fuel feeds match with the 
feeds during five known test setup periods (3 to 8 hours), also performance outside of test periods 
appears feasible. 

Interfaces  (in/out) – system/user 
The physical model and measurements are set up in the Matlab m-files. Input data 
(measurements) are provided as numerical vectors. Interactive tuning is enabled by Matlab 
interface/graphics. Estimation outcomes are provided as numerical vectors. 

A link with StreamPipes is enabled by an OPC-UA client/server component (see FUSE OPC-UA 
tool). 

Subordinates and platform dependencies 
The tool is implemented using Matlab language (m-files). Matlab from the Mathworks is required 
(FUSE has been tested on Matlab 2020b).  
 
Matlab (2020b) is available on all major operating systems, including Windows 7, Ubuntu 16, 
Debian 9, MacOS 10 and newer. No particular Matlab Toolboxes are required. Open software such 
as Octave is known to be able to interpret m-files, but FUSE-codes have not been tested with 
Octave.  

Licenses, etc.  (free for use in the project) 
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The FUSE code is free for use in the project (contact Enso.Ikonen@oulu.fi).  The CFB hotloop 
physical model is Sumitomo SHI FW Energia Oy proprietary. The plant measurement data in its 
unprocessed form is proprietary of the pilot plant. 

TRL for overall component/tool and any parts/subordinates 
Current state is TRL 5 (validated in a relevant environment) currently being raised to TRL 6 
(demonstrated in a relevant environment). 

References – incl. web etc. 
Ikonen & Selek (2020) Calibration of Physical Models with Process Data Using FIR filtering. 
Australian and New Zealand Control Conference, Gold Coast, pp-143-148. (Ikonen & Selek, 2020) 

The generalized Matlab-tool is available at http://cc.oulu.fi/~iko/COGNITWIN/  

To be considered in particular for the following COGNITWIN pilots 
Sumitomo SHI FW Energia Oy 

 

  

http://cc.oulu.fi/~iko/COGNITWIN/
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14.4 SubFUSE 

Component/Tool description 

Component/Tool/Method/Framework/Service  Name 
SubFUSE   

Defined in Task 
5.1 / 5.4  

Short Description – incl. Purpose 

SubFUSE is a state estimation (soft-sensory) tool which fuses subspace methods for system 
identification with Kalman filtering. The tool is solely data-driven, it requires IO data 
(measurements) as input. 
 
In particular, the tool is developed for the estimation of input fuel characteristics of 
combustion-thermal power plants. Relying on regular process data including flue gas 
composition measurements, an estimate of the chemical structure of the fuel fed to the 
furnace of a CFB boiler is provided. The approach can be applied for alternative state 
estimation purposes as well, given that a suitable plant model can be generated and proper 
measurements are provided.  
 
The tool has been tested in a simulated environment which aims to replicate the dynamics of 
the pilot problem. Validation of the tool using data from pilot will be conducted in 2021, a 
generalized version will be developed based on validation results. 
 
The tool has been implemented in MATLAB, and is available in script format. 
 

Progress since delivery D5.1 
The tool has been developed (designed, implemented, and verified) after the last milestone in 2/2020.  

Progress since delivery D5.2 
N/A 

Examples of usage / illustrations 
The tool target is solving the WP3 pilot problem on fuel characterization, as a part of the heat exchanger 
fouling monitoring problem. Using IO data pairs of the process of interest, the tool proceeds in two 
steps: first, a sufficient Linear Time-Invariant approximation of the governing dynamics is conducted 
utilizing subspace identification. Once the approximate dynamics is available, a standard Kalman filter 
is used for state estimation.  

For example, Figures 1 and 2 illustrate the performance of the tool in soft-sensing the chemical 
composition of the fuel fed to a CFB boiler. In the learning phase (figure 1) the tool learns to mimic the 
dynamics of combustion. 
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Figure 32: The identified Linear Time Invariant model (red) of a nonlinear 
combustion dynamic using IO measurement pairs (blue). Training data (left) are 
separated from the validation data (right) by a black line located at timestep 600. 

Based on the IO relationship identified from data, the tool estimates (soft-senses) the chemical 
composition of the fuel using standard flue gas measurement data available at the power plant of 
interest (figure 2). 

 

Figure 33: Actual (blue) and estimated (red) nitrogen content of the fuel used for 
heat generation in the combustion-thermal power plant of interest 

Interfaces (in/out) – system/user 
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The tool is implemented in MATLAB script (.m file). Input data (measurements) are provided as 
numerical vectors (matrices). Estimation outcomes are provided as numerical vectors (matrices). 

A link with StreamPipes is enabled by an OPC-UA client/server component (see FUSE OPC-UA tool). 

Subordinates and platform dependencies 

The tool is implemented in MATLAB script (.m file). MATLAB, a product Mathworks is required 
to run the application. (SubFUSE has been tested on MATLAB version 2020b).   
 
MATLAB (2020b) is available on all major operating systems, including Windows, Unix/Linux 
and MacOS. The tool uses the MATLAB core, additional toolboxes are not required. Open 
software such as Octave is known to be able to interpret m-files, but FUSE-codes have not been 
tested with Octave.  
 

Licenses, etc.  (free for use in the project) 
The SubFUSE code is free for use in the project (contact Istvan.Selek@oulu.fi). 

TRL for overall component/tool and any parts/subordinates 
Current state is TRL 4 (validated in lab) currently being raised to TRL 5 (validated in a relevant 
environment). 

References – incl. web etc. 
Istvan Selek (Istvan.Selek@oulu.fi) 
Markus Neuvonen (Markus.Neuvonen@oulu.fi) 

To be considered in particular for the following COGNITWIN pilots 
Sumitomo SHI FW Energia Oy 
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14.5 TIA MODEL 

Component/Tool description 

Component/Tool/Method/Framework/Service  Name 

TIA MODEL 

Defined in task 

T5.1, T5.2 

Short Description – incl. Purpose 
TIA AIprovides and enables the application of machine learning algorithms and needed to perform 

smart predictive maintenance for the SWP machinery. TIA MODEL utilizes supervised, 

unsupervised, multidimensional scaling, and reinforcement learning algorithms as needed. 

To compare ML models used for predictive analysis, GUIs have been developed. 

Progress since delivery D5.1 
Since the last milestone, frontend and backend software of TIA MODEL were developed. 

Multiple machine learning algorithms have been applied to the data passing through the 
incremental PCA stage to detect anomalies. RF, Gradient boosted tree, LSTM, SVM, KNN, and MLP 
algorithms have been used. 

Unal, P., et.al. (2021) “Data-driven Artificial Intelligence and Predictive Analytics for the 
Maintenance of Industrial Machinery Based on an Event Processing Platform” 

Progress since delivery D5.2 

• Data labelling and data cleaning have been performed. 

• ML/DL prototypes have been completed for LSTM, SVM, KNN and MLP. 

• Results obtained by trained and tested models have been discussed with the experts. 

• Improvements of the algorithms and features are in progress. 

Progress since delivery D5.3 

• Verification and validation have been completed. 

Examples of usage / illustrations 
For predictive maintenance purposes the tool is being utilized. 

Interfaces  (in/out) – system/user 
TIA DATA data is used by TIA MODELas input. TIA MODEL output is visualized by  TIA UX. 

Subordinates and platform dependencies 
None (platform independent web application) 

Licenses, etc.  (free for use in the project) 
Proprietary/ Subject to license 

TRL for overall component/tool and any parts/subordinates 
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The current TRL is6 as targeted. 

References – incl. web etc. 
https://tia-platform.com/module/tia-apps.html  

To be considered in particular for the following COGNITWIN pilots 
NOKSEL 
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14.6 Neuroscope 
 

Component/Tool description 

Component/Tool/Method/Framework/Service  Name 
Neuroscope 

Defined in Task 
Task 5.2: Multi-variate Sensor analytics with Deep Learning 

Short Description – incl. Purpose 
Neuroscope is a visual debugger for convolutional neural networks. The software is an interactive 

tool with a graphical user interface intended for interactive use by data scientists on the 

application level.  

The purpose of the Neuroscope software is to allow data scientists to gain insight into the inner 

workings of a neural network, in the case of a system malfunction or misbehavior. The approach 

taken by Neuroscope is a network visualization approach, which means that the weights of the 

inner layers are visualized in a human-interpretable way, which is helpful for understanding why a 

certain misbehavior occurred. In the context of COGNITWIN, the Neuroscope software will be 

useful as part of a software toolbox to make machine learning technology practically useable.  

The software supports the following major features: (1) visualization of network architectures 

loaded from PyTorch or TensorFlow files as graph representation, visualization of trained weights 

by means of (2) activation maps, (3) saliency map, (4) guided back propagation, (5) grad-CAM, (6) 

guided Grad-CAM, and (7) grad-CAM plus. 

The software supports arbitrary networks architectures for classification and semantic 

segmentation of image-like data and is currently being extended to multi-object detection and 

localization architectures. 

Neuroscope is comparable to systems like Tensorboard. The major difference is the support of 

exchangeable machine learning backends (TensorFlow and PyTorch), and the interactive use via a 

graphical user interface. 

Progress since delivery D5.1 
Since the last milestone, we added the following features to the project: (1) support for semantic 
segmentation network architectures, and (2) support for guided Grad-CAM. We are currently 
raising the technology readiness level to TL 7 by bug fixing and implementing smaller 
improvements. We are currently implementing (3) support for multi-object detection and 
localization architectures. 

We are currently writing a publication concerning the software (Schorr, Godarzi, Chen, & 
Dahmen, 2021) 

Progress since delivery D5.2 
Since the last milestone, we had to cancel a technical attempt to integrate multi object 
detection and localization architectures via the Explain-to-fix method in Neuroscope. The 
integration turned out to be technically infeasible for principal reasons. We reconsidered our 
efforts and are now starting to integrate a method called D-RISE.  We published the following 
paper (Schorr, Luschkova, & Dahmen, Automatic detection of billets in rolling mills using 
convolutional neural networks with synthetic data, 2021) 
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Examples of usage / illustrations 
The example synthetic image of billet rolling process illustrates the capability of Neuroscope to 
analyze a given neural network (top left). The task is to segment the image regarding the class 
“billet” as a component of automatic optical detection and tracking process. Using a saliency 
metric, a diffuse image of pixels sensitive to the class “billet” is computed (top right). The second 
visualization method called guided Grad-CAM shows clear regions of high activation in places of 
billets, as well as some localized areas of low activation (bottom left). The activation map 
computed by Guided Backpropagation method (bottom right) highlights pixels of high activation 
exactly at billet locations.  The analysis of these 3 types of visualization maps raises the question of 
why the activation maps do not show high activated pixels monotonously within the bounds of 
billets. This observation could be the indicator of a poorly trained deep learning model or scarce 
training data. 

  

 

Figure 34: Visualization of the class 
“billet“ using Neuroscope: top left: 
original image, top right: saliency map, 
bottom left: guided Grad-CAM, bottom 
right: guided backpropagation. 

 

 

 

Interfaces  (in/out) – system/user 
The system features a graphical user interface and is intended for interactive use only. The system 
can load network architectures and weights in TensorFlow and PyTorch format. It is able to export 
visualization results in common image formats.  

Subordinates and platform dependencies 
Neuroscope is available for Linux and Windows. It supports PyTorch and TensorFlow as backends. 

Licenses, etc.  (free for use in the project) 
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We provide a community version under GPL. For commercial licenses, contact DFKI directly 
(Tim.Dahmen@dfki.de). 

TRL for overall component/tool and any parts/subordinates 
6, currently being raised to 7 

References – incl. web etc. 
https://github.com/c3di/neuroscope 

To be considered in particular for the following COGNITWIN pilots 
Saarstahl. 

 

  

https://github.com/c3di/neuroscope
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14.7 Aerial Photogrammetry  

Component/Tool description 

Component/Tool/Method/Framework/Service  Name 
Aerial Photogrammetry 

Defined in Task 
Task 5.2: Multi-variate Sensor analytics with Deep Learning 

Short Description – incl. Purpose 
Photogrammetry is a technique for the capturing of three-dimensional (3D) models from real 

world environments. The technique works by taking images from manually selected positions and 

reconstructing a 3D model from the images. As the camera parameters (position and orientation) 

are unknown, the most important step is to computationally determine position and orientation of 

each image.  

Photogrammetry has a reduced surface precision compared to laser-based surface scanners, but 

has the immense advantage that it generates textured models in a single step, i.e. the generated 

models can immediately be used for photorealistic rendering. Another advantage is that 

photogrammetry is applicable to a wide range of length scales. If combined with macro 

photography, photogrammetry can capture details on the micrometer scale, if combined with 

handheld cameras it can produce centimeter scale objects, and combined with drones (aerial 

photogrammetry), the capture area can extend over several square kilometers. 

In the course of this project, we will provide a process for aerial photogrammetry which allows the 

capturing of entire sections of production plants, such as the Saarstahl milling plant. This workflow 

will be assembled from commercially available components but adapted to the specific needs if 

being used in a large indoor-environment with harsh production conditions. The purpose of the 

captured 3D models is the generation of training data for machine learning applications. 

Progress since delivery D5.1 
A number of datasets was captured using different flight patterns from a drone and using a 
handheld and tripod-mounted camera system. Reconstruction results were compared to 
determine the optimal capturing mode.  

A commercially available photogrammetry software (Agisoft Metashape) was purchased, installed 
on suitable server hardware, and reconstruction settings were optimized to work with the 
available datasets. 

Progress since delivery D5.2 
The pipeline for synthetic data generation was improved by increasing flexibility (exposing 
additional parameters) and by improving usability. The documentation was improved 
considerable. The technical dependencies were consolidated and documented. A controlled 
installation procedure was developed, documented and partially automated. Several instances of 
the data generation pipeline from different projects were re-integrated and consolidated on the 
source-code level, concerning data organization (folder structure) and concerning the version 
control system.  

Interfaces  (in/out) – system/user 
Agisoft Metashape software is a stand-along software that performs photogrammetric processing 
of digital photographs. It loads arbitrary number of unpreprocessed images in common formats 
and generates a 3D model of a scenery. Here it is important to capture high-quality and highly 
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overlapping images of the setting to compute the best quality model. It is recommended to 
employ a camera with 5Mpx resolution at least and to shoot photographs with 80% overlap. 

Subordinates and platform dependencies 
Recommended configurations for Agisoft Metashape: 

• Windows 7 SP 1 or later (64 bit), Mac OS X Mountain Lion or later, Debian/Ubuntu with 
GLIBC 2.13+(64 bit) 

• Intel Core i7 or AMD Ryzen 7 processor 

• Discrete NVIDIA or AMD GPU 

• 32 GB of RAM 

Licenses, etc.  (free for use in the project) 
The component is realized as a non-disclosed inhouse workflow. 

TRL for overall component/tool and any parts/subordinates 
7 

References – incl. web etc. 
https://www.software3d.de/agisoft-metashape-pro 

To be considered in particular for the following COGNITWIN pilots 
Saarstahl. 
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14.8 Bonzai 

Component/Tool description 

Component/Tool/Method/Framework/Service  Name 
Bonzai 

Defined in Task 
Task 5.3: Deep Learning Performance 

Short Description – incl. Purpose 
Bonzai is Scortex python library handling everything related to deep learning on images. 

Bonzai is built on top of Keras / Tensorflow. It uses as input a connection to a mongo database for 

annotations and meta-information (dates, part reference, acquisition system version, ...), as well 

as an azure filesystem for image storage. The main output is the production of deep learning 

model in tf.keras format (topology in .json and weights in .h5). 

With this library, Scortex engineers manipulate and clean images and their metadata. They use it 

to train deep learning models and properly evaluate these models. 

Progress since delivery D5.1 
Scortex has greatly improved its machine learning library.  

A large focus was puton the maintainability and traceability of the deployed systems. From any 
deployed model, Scortex is able to retrace which images, metadata, and preprocessing was used 
to train it. 

Scortex extended its library to user use cases as well. Previously, only defect detection was 
supported. Now, the library can handle part detection/segmentation as well as anomaly detection. 

Related to inference speed: 

Scortex worked on a way to improve all models inference time and published a blog post about it: 
https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/. This 
technology is now deployed at some of Scortex’ clients.  

Scortex worked on improving the architecture speed of the network they are using at their clients. 
Typically using a smaller / shallower network. The difficulty of this is to maintain good robustness 
(mostly for repeatability. See this other blog post: https://scortex.io/robustness-and-repeatability-
of-modern-deep-neural-networks-a-review/). 

 
Scortex devised real time / light architectures for the task of detection / semantic segmentation as 
well as anomaly detection. 

Scortex has investigated pruning networks but that did not provide good results for inference 
time, as most software / hardware (example: GPU + TensorFlow) do not support leverage sparsity. 
It is our hope FPGA technology will be able to do so. 

“Distillation”:  Scortex successfully managed to transfer knowledge from a large network to a 
smaller one. The performance is not as good as the large model but better than the performance 
of the smaller model trained on its own. 

https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/
https://scortex.io/robustness-and-repeatability-of-modern-deep-neural-networks-a-review/
https://scortex.io/robustness-and-repeatability-of-modern-deep-neural-networks-a-review/
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By combining, Scortex managed to deploy a station capable of a complex inspection of rotating 
parts. The Scortex box handles the inspection of 3 parts per second, which requires inference of 
300 (3 x 100) 1280x640 grayscale images per second. To the best of our knowledge, Scortex is the 
only company able to achieve such performances in a real-life deployment. 

Some experiments such as “Pruning “or “distillation” are not yet in production as the benefits did 
not outweigh the implementation cost as of today. 

Scortex is also working on improving training speed as shown by this blog post: 
https://scortex.io/extending-selective-back-propagation-to-segmentation-focus-biggest-losers/. 

Its new unsupervised demonstrator allows one second training for a very constrained set up. 

Progress since delivery D5.2 
N/A 

Examples of usage / illustrations 
Below is an example image from our unsupervised anomaly detection demonstrator. 

The user can train a model with a few un-annotated images and the model will detect anomalies. 

The result shows the original image with a defect score and a defect localization. Here is detects a 
tiny pen mark on the business card the model was trained on. 

 

Figure 35: Example image from our unsupervised anomaly detection demonstrator 

Example of detections on our supervised demonstrator (less constrained). The part goes on the 
conveyor belt. Inside the Scortex dark “box” there are 2 cameras filming continuously 1920x1200 
colored images. One report is created per part. The (defect) detection is shown with closeups on 
the bottom of the screen.  

https://scortex.io/extending-selective-back-propagation-to-segmentation-focus-biggest-losers/
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Figure 36: Scortex Bonzai software in action 

There is currently no frontend to train supervised models using only the mouse but we are hoping 
to be able to work on this in 2021. 

Interfaces  (in/out) – system/user 
Bonzai connects to mongodb and other database systems to get images and meta-data (e.g.: 
annotations). Outputs are deep learning Keras/Tensorflow models and pipelines to be used in 
productions. 

Subordinates and platform dependencies 
keras/tensorflow, mongodb. 

Licenses, etc.  (free for use in the project) 
Proprietary. In development, remains the property of Scortex. Will be used by Scortex exclusively. 

TRL for overall component/tool and any parts/subordinates 
   TRL 7 

References – incl. web etc. 
https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/ 

https://scortex.io/robustness-and-repeatability-of-modern-deep-neural-networks-a-review/ 

https://scortex.io/extending-selective-back-propagation-to-segmentation-focus-biggest-losers/ 

To be considered in particular for the following COGNITWIN pilots 
Saarstahl, Sumitomo SHI FW 

 

  

https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/
https://scortex.io/robustness-and-repeatability-of-modern-deep-neural-networks-a-review/
https://scortex.io/extending-selective-back-propagation-to-segmentation-focus-biggest-losers/
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14.9 Machine learning to FPGA conversion: Keras2RTL 

Component/Tool description 

Component/Tool/Method/Framework/Service  Name 

Machine learning to FPGA conversion: Keras2RTL 

Defined in Task 

Task 5.3: Deep learning performance 

Short Description – incl. Purpose 

This tool allows to fill the gap between machine / deep learning development environments and 

FPGA development environments.  

 

Machine learning development environments are typically based on the python programming 

language and libraries such as Keras and Tensorflow (or pytorch) relying on the Nvidia low level 

computing library named CUDA. 

 

Meanwhile, FPGA developments are based on VHDL programming language and integrated 

development environments (IDE) provided by the company providing the FPGA component. For a 

Xilinx Virtex Ultrascale+ VU9P, the IDE is named Vivado. 

 

Keras2RTL takes as input a tf.keras model that is a file with .h5 extension which contains the 

topology of the machine learning neural network and the weights. At Scortex, the Keras model is 

generated using the bonzai library (see other 5.3 components). 

 

Keras2RTL converts the topology from the .h5 file and generates the VHDL configuration files. 

These files will be used by Vivado to generate Honir. 

 

Progress since delivery D5.1 

This task is currently handled manually by following a defined process to verify the corner cases 

and technically cover 100% of the scope to unlock the automation of this process. 

 

Its 100% automation will be part of the next steps. 

Progress since delivery D5.2 
N/A 

Examples of usage / illustrations 

The overall usage flow is: 

- Train a tf.keras / keras model (typically using bonzai). 

- Quantize the model (or train it in a quantized way immediately). 

- Convert it using keras2RTL. 

Use this model to run inference on images using the Honir component. 

https://www.xilinx.com/products/design-tools/vivado.html
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Figure 37: Overall usage flow of Keras model 

As a demonstrator, Scortex trained a Keras model on data from one of its demonstrators. The 

model allows defect detection on common goods parts, such as Lego bricks, electrical switches 

and door handles. 

This deep learning model was quantized using the bonzai tool (see other component) and then 

processed by Keras2RTL process manually. The VHDL files produced was used for the configuration 

of the inference engine (Honir: in task 4.4).  

In a more general manner, the tool should be used to allow automatic and fast conversion from a 

Keras machine learning model to a VHDL config file that can be used for Honir creation.  

  
 

Interfaces  (in/out) – system/user 

At a user level (a command line tool) 

IN : keras .h5 file (topology + weights) 

OUT : VHDL config file (for Honir tool build in T4.4) 

 

Subordinates and platform dependencies 

This module can work in standalone. It is, however, necessary for Honir (inference engine) to work 

properly. Today the tool will support only keras models. 

Licenses, etc.   

In development, remains the property of Scortex. Will be used by Scortex exclusively. 

TRL for overall component/tool and any parts/subordinates 

   TRL5 

References – incl. web etc. 

- https://www.h5py.org/ 

- https://www.tensorflow.org/guide/keras/save_and_serialize  

- https://github.com/keras-team/keras  

To be considered in particular for the following COGNITWIN pilots 

- The Honir platform will be considered as a way to run the tracking system for the Saarstahl  

use case. In which case, keras2TL will be used to generate Honir configuration. 

https://www.h5py.org/
https://www.tensorflow.org/guide/keras/save_and_serialize
https://github.com/keras-team/keras
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- But it could be extended to any other pilots running deep learning on images. 

 

14.10 TIA DATA-GEN MATLAB Synthetic Data Generator 

Component/Tool description 

Component/Tool/Method/Framework/Service  Name 

TIA DATA-GEN MATLAB Synthetic Data Generator 

Defined in task 

T5.4 

Short Description – incl. Purpose 
TIA DATA-GEN (MATLAB Synthetic Data Generator for Electro Mechanical parts) is a synthetic data 

generator for common electro-mechanical parts, including electric DC motors and a hydraulic 

shaft. 

The purpose of TIA DATA-GEN is to generate synthetic of fault data from the model elements. 

Hence, the generation of such data enables users to have a model-driven digital twin for a 

common DC motor, gearbox, and hydraulic shaft and their associated components.  

TIA DATA-GEN utilizes several 1st order models: DC motor and gearbox models, and a hydraulic 

press model. For both of these models, random sources of errors (degradation of the components) 

are introduced. A load representative to what they may experience in the real world is then 

applied. Virtual sensors will collect data for several specific degradation scenarios. The outcome is 

a supervised and annotated dataset. The latter will be used in training a ML classifier. The classifier 

will be used to monitor the condition of the machine in operation and provide early warning for 

potential fault.  

In the context of COGNITWIN, the TIA DATA-GEN output will be useful in conducting the predictive 

maintenance of the modelled elements.  

 

Progress since delivery D5.1 
Since the last milestone, sensors have been added to the 1st order principal models. Current and 
temperature sensors have been added to the motor and gearbox model, while a hydraulic press 
sensor has been added to the previously developed hydraulic press model. 

Following the sensor implementations for the models, model parameters have been calibrated 
and the random error sources have been introduced to the model. Thus, the model has been 
updated to be ready for predictive maintenance algorithms by introducing sources of random 
errors to be used in predictive maintenance, adding appropriate sensors to observe the effect of 
these error sources on important variables of the models and calibrating the geometrical, 
electrical, and hydraulic parameters of components to make the model as applicable and as 
realistic as possible. 

Progress since delivery D5.2 
N/A 

Progress since delivery D5.3 

• Verification and validation have been completed. 

Examples of usage / illustrations 
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MATLAB Simulink is used to develop and update the models. 

Interfaces  (in/out) – system/user 
TIA DATA-GEN generates output data in  .mat format and/or .csv format.  

Subordinates and platform dependencies 
TIA DATA-GEN works with MATLAB Simulink and it converted to operate a standalone executable 
program.  

Licenses, etc.  (free for use in the project) 
TBD 

TRL for overall component/tool and any parts/subordinates 
The current TRL is 5 as targeted. The laboratory integrated system testing has been conducted.. 

References – incl. web etc. 
https://tia-platform.com/module/tia-apps.html  

To be considered in particular for the following COGNITWIN pilots 
NOKSEL 
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14.11 Pragmatism in physics-based modeling (PPBM) 

Component/Tool description 

Component/Tool/Method/Framework/Service  Name 
Pragmatism in physics-based modeling (PPBM) 

Defined in Task 
Task 5.4: Hybrid Digital Twins 

Short Description – incl. Purpose 
"Pragmatism in physics-based modeling" (PPBM) is a method/framework for developing physics-

based mathematical models. Such models may serve as a digital twin alone or as companion with 

data-based AI/ML methods, to form hybrid digital twins to exploit the combination of data and 

physics-based modeling. 

The purpose of PPBM is to devise a generic methodology for development of physics-based 

models for application in digital twins. The PPBM provides a recipe for attacking a digital twin 

development, starting out from problem definition, information collection, including exact 

definitions of the output requirements for the model, assembling a system architects team, model 

specification, use of sub-level empirical or computed data, model building and application. The 

PPBM can only be developed further through application in industrial cases, like the Sidenor pilot 

case. 

The physics, chemistry, and numerical methods to be used may differ between applications, but 

PPBM should help the developers (system architects) to run through a set of well-defined steps on 

the way from problem definition to final application. For each new application using the PPBM, 

new learning must be extracted and reported (published). 

In the Sidenor pilot case offline data is used. Tuning of the model was done by help of operational 

data from the industrial partner. This alone is a hybrid approach. The data has multiple challenges. 

We extended the PPBM to clean the available data, but also to provide additional simulated data. 

These combined data has been, and will be further explored in a extended hybrid approach. 

Progress since delivery D5.3 
During the last period, we finalized the method/framework through the development of the 
physics-based model for the Sidenor pilot. Following elements were in focus: 

i) Adding more iterations to the method. During visit to Sidenor in Bilbao it became clear 
that vacuum treatment has very strong effects of surface flow and splashing. The flow 
in the ladles had to be re-simulated, accounting for vacuum effects. Relations 
obtained from curve fitting of the simulated results was plugged into the code. This 
modified the heat transfer coefficients and erosion speed. 

ii) Tuning methods were developed and applied to the model. This resulted in very good 
temperature predictions.  

iii) Updating the pragmatism work steps 

a.  Problem and Context Identification 

i. Define the problem in a problem document. Consolidation with the 
industrial partner. Defining and collecting the needed information  
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ii. Process to agree on model requirements,  

b. Analytical Strategy and Plan 

i. Writing (here updating) model specification  

c. Architecture of the Analytical Framework 

d. Execution 

e. Evaluation of the Solution 

f. Conclusion and Communication 

i. Result communicated through two papers: 

1. "Pragmatism in industrial modelling, applied to "ladle lifetime in 
the steel industry"", dealing with the PPBM 

2. "Pragmatism based model for ladle lifetime prediction", explaining 
the physics model 

iv) Model was submitted to https://github.com/SINTEF/refractorywear 

The Sidenor pilot has been a good case for further development of the pragmatism method. The 
models were defined to explain the thermal evolution of a steel ladle during its lifetime and 
predict the refractory erosion from heat to heat. In order to handle the major and complex physics 
and thermodynamics (multiphase flows, slag heater, radiation, thermal stress erosion, interface 
waves, local heat and mass transfer, chemical equilibrium of complex metal-slag systems, 
dissolution of refractory components) several simplifications are introduced, some based on using 
Computational Fluid Dynamics (CFD) to create data that can be applied in the simpler and faster 
model. 

In this pilot we applied and extended the PPBM, to be implemented in the Python framework 
where many tools available for Python may be explored for various types of  hybridization. 

The work, involving extensions of the PPBM, will be published under "Pragmatism in industrial 
modeling, applied to ladle lifetime in the steel industry"[JOH+23]. A particularly important 
contribution is to show how such a model can reveal the goodness of the industrial data. This is 
critical as industrial data, for many good reasons, may be completely incorrect, and it may in some 
cases be impossible to build automated filters that can fix the problem. 

 

Progress since delivery D5.2 
The PPBM method has now been extended by more strict checks on the data as we have learned 
that some data cannot be trusted before being checked for consistency. A main learning is that 
consistency is hard to evaluate without some physics-based model. 
The model must be checked against the data and improved and tuned, exploiting alle available 
data. Methods for learning from the data and tuning have been developed. Here we use residual-
based methods and fractional factorial design. 
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Examples of usage / illustrations 
In the Sidenor pilot, applying and extending the PPBM method, we are developing a model for the 
ladle refractory erosion. The model can predict the thermal evolution in the refractory and shell. 
The change of erosion pattern, from heat to heat is predicted. An example is shown below.  

We can see that the steel in this case was rather high (position of slag line). Use of the model has 
indicated that steel may penetrate in between refractory bricks. This will significantly impact the 
temperature of the steel shell, but also ladle life. In this manner, combining  the PPBM-based 
model, thermal imaging and ML/AI a route to keep track on ladle life is possible. 

 

Figure 38: Left: We see the refractory and outer surface temperature at time metal was filled 
into the ladle. The ladle was initially eroded. Right: Same case as on the left, but now the 
erosion pattern has changed since previous heat. In the right subplot we see where the slag is 
located (slag fraction), on top of the metal. 

 

Figure 39: Comparison between predicted and measured erosion profile, taken at the end-of-life 
for a Sidenor ladle. The deviations above brick number 35 is above melt level and is not included 
in the model. 

 
Interfaces  (in/out) – system/user 
The Sidenor application of the PPBM is currently reading data in ascii format (*.csv, *.xls) and 
output is saved as files in similar formats. In addition, data can be saved in the VTK *.vts format. 
These files can be loaded into the Paraview (https://www.paraview.org/ ) tool for 3D visualization 
of the results. 

Subordinates and platform dependencies 

https://www.paraview.org/
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The Sidenor model is using Python 3 and standard Python libraries. It can be run on both Windows 
and Linux systems. 

Licenses, etc.  (free for use in the project) 
The model will be open (free of use), and is published at 

https://github.com/SINTEF/refractorywear , using the MIT open source license. 

TRL for overall component/tool and any parts/subordinates 
Currently it is TRL-3. As this belongs to the class of methods it may be developed into a technical 
standard at a later stage. https://en.wikipedia.org/wiki/Technical_standard  

References – incl. web etc. 
[ZOR+15]  J. Zoric, S. T. Johansen, K. E. Einarsrud, and A. Solheim, ‘ON PRAGMATISM IN 

INDUSTRIAL MODELING’, Progress in Applied CFD, Selected papers from 10th 
International Conference on Computational Fluid Dynamics in the Oil & Gas, 
Metallurgical and Process Industries, vol. 1, pp. 9–24, 2015. Available: 

https://www.sintefbok.no/book/download/1038  

[ZOR+15b] J. Zoric et al., ‘On Pragmatism in industrial modeling - Part II: Workflows and 
associated data and metadata’, Melbourne, Australia, 7-9 December, 2015, 2015, 
p. 7 pages, [Online]. Available: 

http://www.cfd.com.au/cfd_conf15/PDFs/032JOH.pdf .  

[JOH+17] S. T. Johansen, E. A. Meese, J. Zoric, A. Islam, and D. W. Martins, ‘On Pragmatism in 
Industrial Modeling, Part III: Application to Operational Drilling’, in Progress in 
Applied CFD – CFD2017 Selected papers from 12th International Conference on 
Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process 
Industries, Trondheim, 2017, p. 11, [Online]. Available: 

http://hdl.handle.net/11250/2465068 . 

[JOH+22] S. T. Johansen, K. E. Einarsrud, A. Solheim, and K. J. Vachaparambil, ‘A Pragmatic 
Model for Alumina Feeding’, in Light Metals 2022, D. Eskin, Ed. Cham: Springer 
International Publishing, 2022, pp. 503–511. doi: 10.1007/978-3-030-92529-1_67. 

[JOH+23] Stein Tore Johansen, Bjørn Tore Løvfall, Tamara Rodriguez Duran and Josip Zoric, 
'Pragmatism in industrial modelling, applied to "ladle lifetime in the steel 
industry"', paper ready for submission, 2023.   

Was applied in the following COGNITWIN pilots 
Sidenor. However, PPBM could have been applied in the Sumitomo SHI FW (fouling), as well as the 
Hydro and Elkem pilots. 

In addition, the Sidenor application may later be exploited by COGNITWIN partners Elkem and 
Saarstahl. 

 

  

  

https://github.com/SINTEF/refractorywear
https://en.wikipedia.org/wiki/Technical_standard
https://www.sintefbok.no/book/download/1038
http://www.cfd.com.au/cfd_conf15/PDFs/032JOH.pdf
http://hdl.handle.net/11250/2465068
https://doi.org/10.1007/978-3-030-92529-1_67
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14.12 Cybernetica CENIT 

Component/Tool description 

Component/Tool/Method/Framework/Service  Name 
Cybernetica CENIT  

Defined in Task 
5.4 Hybrid Digital Twins 

Short Description – incl. Purpose 
Cybernetica CENIT is a tool for online estimation and nonlinear model predictive control. It can be 
used as both a soft sensing application and a control application. 
 
Model Predictive control is an advanced control method where a mathematical model of the 
process is used to predict future behavior. The predictions from the model are used in a 
mathematical optimization algorithm that calculates the optimal process inputs in order to 
achieve optimal future behavior of selected variables in the process. Constraints and setpoints 
may be imposed both on the manipulated process inputs variables and the controlled process 
output variables. Model predictive control also has the advantage that couplings between 
variables in the process are taken into account. 

Progress since delivery D5.1 
Cybernetica CENIT has been extended with application modules for the Elkem and Hydro pilot 
processes. These modules contain physics-based models of the processes and make it possible to 
run online state and parameter estimation, as well as implement soft sensing and nonlinear model 
predictive control applications. 

Cybernetica CENIT has further been extended with routines for validation of the input data and its 
own calculation results. This includes new interface routines for the application components. This 
extension forms a basis for the development of the proposed “Cognitive CENIT” tool. 

Progress since delivery D5.2 

The validation routines added in D5.1 have been improved and the application component 
interface has been standardized. 

Progress since delivery D5.3 

The error validation routines has been further improved. 

Examples of usage / illustrations 
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Figure 40: Main components of Cybernetica CENIT 

Cybernetica CENIT consists of a generic part and an application-specific part, namely the process 
model. A Cybernetica CENIT application is defined as Cybernetica CENIT and some process model 
together. 
The following table describes the main components of a Cybernetica CENIT application: 

 
Component Purpose 

CenitKernel This is the main component of Cybernetica CENIT. It implements 
communication with the process control system and the calculation 
algorithms (estimator and nonlinear model predictive controller). 

CenitMMI This is an engineering interface used to configure and supervise CenitKernel, 
mainly during the engineering phase of the project. The operators interface 
is normally integrated in the existing DCS interface. 

Process model This is the application-specific part of a Cybernetica CENIT application. It 
implements a mathematical representation of the process that is controlled.  

Database An optional database for logging parameters and calculated data from 
CenitKernel. The data is used both by CenitMMI and for offline data analysis, 
and can be used to trend inputs, states and other calculated values. 

Control system This is the process control system (DCS/ PLC), which handles the low-level 
communication with the process. This system is not a part of Cybernetica 
CENIT and should implement an OPC server on a standard form to handle 
the communication with CenitKernel. Both OPC Classic and OPC UA 
interfaces are supported by Cenit. The communication includes process 
measurements, manipulated variables and possibly other variables as well. 

 

The model component is implemented as a Microsoft Windows dynamic link library (DLL). 
One or more model interfaces can be implemented in such a DLL, depending on which 
calculation modules shall be used. It is not necessary to implement unused interfaces. 

The interfaces do not depend on each other, and it is possible to implement different 
models for each interface, i.e., a complex model for the simulator interface and a simpler 
model for the controller. However, it is quite common to implement the same model for 

Cenit

MMI

TCP/IP OPC

Database
Offline

analysis
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all the interfaces. The figure below shows how to do this. In this figure, there is a common 
inner model code base for all the interfaces: 

 

Figure 41: Cybernetica CENIT interfaces 

The available interfaces are: 

• Sim interface: Used to simulate the process. 
• GenEst interface: Used by the Kalman Filter. 
• MHE interface: Used by the Moving Horizon Estimator. 
• Nmpc interface: Used by the non-linear predictive controller 

• ModelFit interface: Used by Cybernetica ModelFit. 

• AsyncData interface: Used by Cybernetica Cenit to handle input data that 
requires special handling; e.g. registration of process event data. 

Interfaces  (in/out) – system/user 
Data can be presented to the user by using Cybernetica CenitMMI, or extracted from the database 
using the included tool getdbdata. 
 
Example of CenitMMI displaying some historical trend and prediction plots for some manipulated 
variables: 
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Figure 42: Cybernetica CENIT MMI 

 

Subordinates and platform dependencies 
May use PostgreSQL database. 

Licenses, etc.  (free for use in the project) 
Cybernetica Cenit licenses are provided free of charge for the duration of the CogniTwin-project 
for project partners who need such license to execute their work in the project. Should the project 
result be taken into permanent use after the end of the project, licenses are provided on fair and 
reasonable terms as stated in the Grant Agreement. 

TRL for overall component/tool and any parts/subordinates 
9 - Commercial product. 

References – incl. web etc. 
http://cybernetica.no/technology/model-predictive-control/ 

To be considered in particular for the following COGNITWIN pilots 
Hydro, Elkem. 

  

http://cybernetica.no/technology/model-predictive-control/
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14.13 Cybernetica ProXim 

Component/Tool description 

Component/Tool/Method/Framework/Service  Name 
Cybernetica ProXim  

Defined in Task 
5.4 Hybrid Digital Twins 

Short Description – incl. Purpose 
Cybernetica ProXim is a software platform for building tailor-made process simulators using the 
same kind of process models as Cybernetica CENIT.  
The platform includes components for simulation and data visualisation.  

Progress since delivery D5.1 
This product has not been updated since last milestone, but the description is included as it will be 
used at a later stage in the Elkem and Hydro pilots. 

Progress since delivery D5.2 
N/A 

Progress since delivery D5.3 
N/A 

Examples of usage / illustrations 
Example of the user interface of a process simulator:  

  

 

Figure 43: Cybernetica ProXim 
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Interfaces  (in/out) – system/user 

 

Subordinates and platform dependencies 
 

Licenses, etc.  (free for use in the project) 

Cybernetica ProXim licenses are provided free of charge for the duration of the COGNITWIN-
project for project partners who need such license to execute their work in the project. Should the 
project result be taken into permanent use after the end of the project, licenses are provided on 
fair and reasonable terms as stated in the Grant Agreement. 
  

TRL for overall component/tool and any parts/subordinates 
8 

References – incl. web etc. 
http://cybernetica.no/technology/model-predictive-control/  

To be considered in particular for the following COGNITWIN pilots 
Hydro, Elkem. 

  

http://cybernetica.no/technology/model-predictive-control/
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14.14 Cybernetica RealSim 

Component/Tool description 

Component/Tool/Method/Framework/Service  Name 
Cybernetica RealSim  

Defined in Task 
5.4 Hybrid Digital Twins 

Short Description – incl. Purpose 
Cybernetica RealSim is a plant replacement process simulator used for testing of CENIT or other 

control applications. It communicates over the OPC protocol in order to replicate the interface to 

the DCS at the plant as closely as possible.  It interfaces to Cybernetica Model and Application 

Components. The plant replacement model might be the same as the model used in CENIT or it 

might be a different one in order to evaluate how the controller responds to model uncertainty 

and unknown process disturbances. Cybernetica RealSim is typically used during application 

development and for factory acceptance tests.  

Progress since delivery D5.1 
Cybernetica RealSim has been extended with application modules for the Elkem and Hydro pilot 
processes. These modules contain physics-based models of the processes and make it possible to 
run online state and parameter estimation, as well as implement soft sensing and nonlinear model 
predictive control applications. 

Support for using OPC UA servers for data exchange has been added. 

Progress since delivery D5.2 
Functionality for using OPC UA server has been improved. 
Support for using text data (strings) as input and output data  has been added. 

Progress since delivery D5.3 
N/A 

Examples of usage / illustrations 
Example of Cybernetica RealSim user interface:  
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Figure 44: Cybernetica RealSim 

  

Overall architecture / pipeline / workflow (incl. figure – elements according to BDVA)  
The following figure shows how Cybernetica RealSim works as a plant replacement tool 
for Cybernetica CENIT:  
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Figure 45: Cybernetica RealSim as a plant replacement tool for Cybernetica CENIT 

  
  

 

Interfaces  (in/out) – system/user 

 

Subordinates and platform dependencies 
 

Licenses, etc.  (free for use in the project) 
Cybernetica RealSim licenses are provided free of charge for the duration of the COGNITWIN-
project for project partners who need such license to execute their work in the project. Should the 
project result be taken into permanent use after the end of the project, licenses are provided on 
fair and reasonable terms as stated in the Grant Agreement. 

  

TRL for overall component/tool and any parts/subordinates 
8 

References – incl. web etc. 
http://cybernetica.no/technology/model-predictive-control/  

To be considered in particular for the following COGNITWIN pilots 
Hydro, Elkem. 

  

http://cybernetica.no/technology/model-predictive-control/
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14.15 Cybernetica Modelfit 

Component/Tool description 

Component/Tool/Method/Framework/Service  Name 
Cybernetica Modelfit  

Defined in Task 
5.4 Hybrid Digital Twins 

Short Description – incl. Purpose 
Cybernetica ModelFit is a tool used for off-line estimation of model states and parameters, for 

model validation, and for design of the on-line estimation part of Cybernetica CENIT 

applications. ModelFit is used to decide which model parameters should be estimated on-line, to 

design the on-line estimators, and to estimate the parameters that are considered 

constant. ModelFit interfaces to Cybernetica Model and Application Components, and it supports 

the same model formats as CENIT.  

Progress since delivery D5.1 
Cybernetica Modelfit has been extended with application modules for the Elkem and Hydro pilot 
processes. These modules contain physics-based models of the processes and make it possible to 
run online state and parameter estimation, as well as implement soft sensing and nonlinear model 
predictive control applications. 

Progress since delivery D5.2 

Support for text data input has been added. 

Progress since delivery D5.3 

N/A 
Examples of usage / illustrations 

Cybernetica ModelFit user interface:  
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Figure 46: Cybernetica ModelFit 

The features of Cybernetica ModelFit include:  
 Design and tuning of on-line estimators in CENIT applications.  
• Estimation of constant or time varying model parameters.  
• Estimation of initial states.  
• Simultaneous use of multiple data sets.  
• Parameter identifiability analysis.  

Cybernetica ModelFit is flexible with respect to configuration of the parameter estimation. 
Parameters can be time varying or constant. Multiple data sets from different operating 
conditions may be used to find the best parameter fit taken all data sets into account.  

 

Interfaces  (in/out) – system/user 

 

Subordinates and platform dependencies 

 

Licenses, etc.  (free for use in the project) 

Cybernetica ModelFit licenses are provided free of charge for the duration of the COGNITWIN-
project for project partners who need such license to execute their work in the project. Should the 
project result be taken into permanent use after the end of the project, licenses are provided on 
fair and reasonable terms as stated in the Grant Agreement. 

TRL for overall component/tool and any parts/subordinates 

9 – Commercial product. 

References – incl. web etc.  

http://cybernetica.no/technology/model-predictive-control/  

http://cybernetica.no/technology/model-predictive-control/
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To be considered in particular for the following COGNITWIN pilots  

Hydro, Elkem. 
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14.16 Cybernetica Viewer 

Component/Tool description 

Component/Tool/Method/Framework/Service  Name 

Cybernetica Viewer  

Defined in Task 
5.4 Hybrid Digital Twins 

Short Description – incl. Purpose 
Cybernetica Viewer is a tool for creating user interfaces to display and manipulate data from an 

OPC server in various ways.  

Progress since delivery D5.1 
This product has not been updated since last milestone, but the description is included as it will be 
used at a later stage in the Elkem and Hydro pilots. 

Progress since delivery D5.2 

No updates. 

Progress since delivery D5.3 

A REST interface has been implemented, such that the Viewer application can be 
displayed in a web browser. 

Examples of usage / illustrations 
The following figure shows an example of Cybernetica Viewer. The user interface is tailor made for 
the specific application: 

 

 

Figure 47: Cybernetica Viewer 

 

Interfaces  (in/out) – system/user 
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OPC classic + OPC UA 

Subordinates and platform dependencies 
 

Licenses, etc.  (free for use in the project) 
Cybernetica Viewer licenses are provided free of charge for the duration of the COGNITWIN-
project for project partners who need such license to execute their work in the project. Should the 
project result be taken into permanent use after the end of the project, licenses are provided on 
fair and reasonable terms as stated in the Grant Agreement. 
  

TRL for overall component/tool and any parts/subordinates 
9 

References – incl. web etc. 
http://cybernetica.no/technology/model-predictive-control/  

To be considered in particular for the following COGNITWIN pilots 
Hydro, Elkem. 

 

  

http://cybernetica.no/technology/model-predictive-control/
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14.17 Cybernetica Cognitive CENIT 

Component/Tool description 

Component/Tool/Method/Framework/Service  Name 
Cybernetica Cognitive CENIT  

Defined in Task 
5.5 Cognitive Digital Twins 

Short Description – incl. Purpose 

This is an experimental extension of the existing Cybernetica CENIT that adds cognition to the 
application.  
  
The goals of the extension are to:  

• Add self-diagnosing capability to CENIT by use of data analysis 
 
The generic functionality has been added. The cognitive extension runs in parallel with the current 
estimator (digital twin).  

 
Cybernetica CENIT already implements adaption in the form of parameter estimation.   
In addition we have developed and implemented a simple method for real-time and offline analysis 
of the estimator (digital twin) performance related to process data.  
  
For future extensions, we want to further develop Cybernetica Cognitive CENIT to include advanced 
AI-based identification and classification methods. In this way it should be possible to automatically 
classify types of errors: sensor failure, input error or model error. Ultimately, the goal will be to 
suggest model improvements based on this analysis.  
 

Progress since delivery D5.1 
The development of an extension of Cybernetica CENIT that enables self-diagnosing has been 
started. A framework for self-monitoring of the MPC application via stage-cost monitoring has 
been developed. The framework consists of the following steps:  

• Estimate the measurement error distribution.  

• Propagate that noise distribution through the closed-loop MPC model via Monte Carlo 
simulations  

• Compare the resulting distribution of the average stage cost to the actual average stage 
cost from the actual plant. If average stage cost is significantly off from the theoretical 
distribution, this indicates an error in the closed-loop model. 

 
After monitoring and error detection, the next step is to develop error classification and correction 
routines.  

Progress since delivery D5.2 

 
A rudimentary implementation of the described framework has been implemented, using Python 
for the statistical analysis, as a proof of concept. Although it was found that the crude Monte Carlo 
implementation was prohibitively slow, it showed that it is possible to detect controller 
degradation.  
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Figure 48: Cybernetica Cognitive CENIT 

 

Progress since delivery D5.3 

No significant updates to Cybernetica Cognitive CENIT since D5.3 
 

Examples of usage / illustrations 
Example 1: Error detection (Current capabilities) 
The performance of the MPC system will eventually degrade over time due to changing plant 
conditions, i.e. increased plant-model-mismatch. To prevent poor controller performance, the 
error/performance degradation first must be detected. There are currently no self-diagnosing 
capabilities in CENIT. An important part of Cognitive CENIT will be the ability to perform self-
diagnosis and detect when the controller performance is unsatisfactory. In the case where 
unacceptable levels of control performance degradation has been found, further action (such as 
error classification and error correction) is needed.  
 
Example 2: Error classification (Future capabilities) 
Estimators are generally unable to distinguish between prediction deviations resulting from the 
following errors:  

• Faulty input data (requires correction or scepticism)  
• Faulty model (suggest adaption)  

  
Being able to distinguish between these errors is important because the required response is very 
different:  
In the case of input error, the appropriate response is some combination of correcting the faulty 
input signal and minimizing the faulty signal’s impact on the model-predictive control.  
This can include:  

• Using a default signal instead of the faulty signal,  
• Ignoring model state variables that are highly correlated with the faulty signal, and  
• Altogether turning off estimation for the affected data points.  

 
In the case of model error, the appropriate response is to try to adapt the model to most accurately 
reproduce the process data.  
  
An important goal for Cognitive CENIT will be to distinguish between these cases based on an offline 
training of a classification algorithm.  
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Example 3:  (Future capabilities) 
Situations where the model structure is incomplete or wrong may be identified using an automated 
analysis of the prediction error distributions. Currently Cybernetica CENIT estimators assume that 
the model structure is correct, and that the prediction error is normally distributed around a mean 
value, which the estimator tries to centre at zero. In many cases this is not true, and significant 
deviation from normally distributed error may imply error in the model structure. Identifying this 
error is non-trivial and may be a well-suited task for an AI extension.  
 

Interfaces  (in/out) – system/user 
CENIT controller and estimator data + process data in via OPC (UA). Performance data + CENIT 

controller and estimator parameter suggestions out.  

Subordinates and platform dependencies 
CENIT, OPC (UA), python 

Licenses, etc.  (free for use in the project) 
Cybernetica Cenit licenses are provided free of charge for the duration of the CogniTwin-project 
for project partners who need such license to execute their work in the project. Should the project 
result be taken into permanent use after the end of the project, licenses are provided on fair and 
reasonable terms as stated in the Grant Agreement. 

TRL for overall component/tool and any parts/subordinates 
Cybernetica CENIT: TRL 9 
Cybernetica Cognitive CENIT: TRL 1-2 

References – incl. web etc. 
 

To be considered in particular for the following COGNITWIN pilots 
Hydro, Elkem. 
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14.18 TIA MONITORING 

Component/Tool description 

Component/Tool/Method/Framework/Service  Name 
TIA MONITORING  

Defined in task 
T5.1, T5.2 

Short Description – incl. Purpose 
TIA MONITORING  is an application, that enables  users to monitor condition of a system The data 

can be gathered from multiple different sources. TIA MONITORING  is a module that enables 

predictive maintenance using the condition monitoring method used in machine maintenance. 

Progress since delivery D5.3 
 The application has been tuned and named after D5.3. Validation and verifications have been 
completed. 

Examples of usage / illustrations 
Data coming from multiple sources are being monitored. 

Interfaces  (in/out) – system/user 
Data streams to be monitored are input, where as generated charts and notifications are output. 

Subordinates and platform dependencies 
None 

Licenses, etc.  (free for use in the project) 
Proprietary/ Subject to License 

TRL for overall component/tool and any parts/subordinates 
The current TRL is 6. 

References – incl. web etc. 
https://tia-platform.com/module/tia-apps.html 

To be considered in particular for the following COGNITWIN pilots 
NOKSEL 

 

 

14.19 TIA STATISTICS 

Component/Tool description 

Component/Tool/Method/Framework/Service  Name 

TIA STATISTICS 

Defined in task 
T5.1 

Short Description – incl. Purpose 
TIA STATISTICS is a software module created to perform statistical analyzes on the data. 
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The tool has an easy-to-use user interface.  Different data sources can be used as inputs.  

Progress since delivery D5.3 
The module is created and named. Verification and validation have been completed. 

Examples of usage / illustrations 
Data of different sources are statistically analyzed. 

Interfaces  (in/out) – system/user 
Input are data output is statistical results of performed statical data analysis. 

Subordinates and platform dependencies 
None 

Licenses, etc.  (free for use in the project) 
Proprietary/ Subject to License 

TRL for overall component/tool and any parts/subordinates 
The current TRL is 6. 

References – incl. web etc. 
https://tia-platform.com/module/tia-apps.html 

To be considered in particular for the following COGNITWIN pilots 
NOKSEL 

 

14.20 TIA METRICS 

Component/Tool description 

Component/Tool/Method/Framework/Service  Name 

TIA ASP METRICS 

Defined in task 
T5.1 

Short Description – incl. Purpose 
TIA METRICS enable the users to calculate defined criteria for any process, production unit, or 

product. 

Progress since delivery D5.3 
Created, named, and deployed. Validation and verification have been completed. 

Examples of usage / illustrations 
Different metrics can be defined by means of the application. For example a threshold value is set 
as a criteria to pass or fail. 

Interfaces  (in/out) – system/user 
Data in and parameters are input, defined metric is output. When data and metric are selected by 
the user at the same time, the selected metric type is calculated and the result is compared with 
the metric value. 
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Non 

Apache StreamPipes, Apache Kafka, Fiware 

Licenses, etc.  (free for use in the project) 
Proprietary/ Subject to License 

TRL for overall component/tool and any parts/subordinates 
The current TRL is 6. 

References – incl. web etc. 
https://tia-platform.com/module/tia-apps.html 

To be considered in particular for the following COGNITWIN pilots 
NOKSEL 

 

14.21 TIA OEE 

Component/Tool description 

Component/Tool/Method/Framework/Service  Name 
TIA OEE 

Defined in task 
T5.1 

Short Description – incl. Purpose 
TIA OEE is a software module created to calculate overall equipment effectiveness (OEE) of the 

process and/or machine  

The tool has an easy-to-use user interface.  Validation and verification have been completed. 

Progress since delivery D5.3 
Created, named and deployed. 

Examples of usage / illustrations 
OEE is calculated based on its formula using the input data. 

Interfaces  (in/out) – system/user 
 

Subordinates and platform dependencies 
None 

Licenses, etc.  (free for use in the project) 
Proprietary/ Subject to License 

TRL for overall component/tool and any parts/subordinates 
The current TRL is 6 as targeted. 

References – incl. web etc. 
https://tia-platform.com/module/tia-apps.html 
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To be considered in particular for the following COGNITWIN pilots 
NOKSEL 

 

 

14.22 TIA ASP 

Component/Tool description 

Component/Tool/Method/Framework/Service  Name 
TIA ASP Teknopar Machine Learning on StreamPipes as a Data Processor 

Defined in task 
T5.5 

Short Description – incl. Purpose 
TIA ASP is an Apache StreamPipes based tool, it enables none technical users to select and execute 

machine learning algorithms for predictive maintenance purposes. The performances and the 

results obtained by the executed Machine Learning algorithms are presented in forms of graphs.  

The tool has an easy-to-use, drag and drop user interface.  Different data sources can be used as 

inputs to the ML algorithms of TIA ASP, including data from Kafka, and .csv files. The ML algorithms 

are MLP, GBT, LSTM, RF, SVM, and KNN. 

Progress since delivery D5.1 
Since the last milestone a data processor to conduct an ML application has been developed. 

Progress since delivery D5.2 
A new model addition to the executable ML/DL model list has been implemented. 
Displaying invalid mode message is realized, in cases where invalid ML/DL models are to be 
included. 

Progress since delivery D5.3 

Verification and validation have been completed. The component has been renamed. 

Examples of usage / illustrations 
Data coming from Kafka or .csv files can be used by the user selected machine learning algorithms, 
and the results of the predictive maintenance applied by the selected algorithms are displayed on 
the presented GUI above.  

Interfaces  (in/out) – system/user 
User selected set of ML algorithms are executed on the stream and the results of the algorithms 
can be compared and graphically presented. Stream data contains sensor data in vector form. 

Subordinates and platform dependencies 
Apache StreamPipes, Apache Kafka, Fiware 

Licenses, etc.  (free for use in the project) 
Proprietary/ Subject to License 

TRL for overall component/tool and any parts/subordinates 
The current TRL is 6 as targeted. 
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References – incl. web etc. 
https://tia-platform.com/module/tia-apps.html  

To be considered in particular for the following COGNITWIN pilots 
NOKSEL 
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14.23 TIA PREMA 

Component/Tool description 

Component/Tool/Method/Framework/Service  Name 
TIA PREMA 

Defined in task 
T5.5 

Short Description – incl. Purpose 
TIA PREMA (MATLAB Predictive Maintenance for Electro Mechanical Components) is a model used 

for predictive maintenance of DC motor, gearbox and hydraulic press. 

By studying random scenarios, due to the changes in gearbox efficiency, resistance and damping 

coefficient values multiple random scenarios can be generated. Using the data fault code, labeling 

is performed. TIA PREMA uses different ML Models. 

Progress since delivery D5.1 
All of the related work related to TIA PREMA is conducted after the last milestone. 

Progress since delivery D5.2 

Early detection of bearing faults have been studied by developed additions that are 
utilizing vibration signals.  
Transfer learnings on pre-trained networks such as AlexNet, GoogLeNet and ResNet-50 
has been applied ater saving spectograms.  For the studies MATLAB’s spectogram function 
is used. 

Progress since delivery D5.3 

New models have been trained.  

Subordinates and platform dependencies 
TIA PREMA  uses Predictive Maintenance Toolbox of MATLAB and Classification Learner App.  

Licenses, etc.  (free for use in the project) 

TRL for overall component/tool and any parts/subordinates 
The current TRL is 5 as targeted. 

References – incl. web etc. 
https://tia-platform.com/module/tia-apps.html  

To be considered in particular for the following COGNITWIN pilots 
NOKSEL 
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14.24 SpinPro 

Component/Tool description 

Component/Tool/Method/Framework/Service  Name 
SpinPro – Speech support in Production 

Defined in Task 
Task 5.5 

Short Description – incl. Purpose 
The goal of this component is to formalize human tacit knowledge and make it available to other 
software components. This will be done by generating machine-processable rules based on spoken 
input. In addition, the knowledge base will be extended by the "discovered" rules, while at the same 
time ensuring the consistency of the knowledge base (e.g., avoiding contradictory rules).  

-  

Progress since delivery D5.1 
During the reporting period, we have defined the conceptual architecture (see below) and 
performed detailed analysis of the existing speech recognition frameworks. 

Today, many speech recognition frameworks archive good accuracies on given test sets like 
LibriSpeech (Panayotov, Chen, Povey, & Khudanpur, 2015). However, these results often are not 
applicable to an industrial and commercial usage. Consequently, we focus on making these 
techniques more robust to their respective environments. Moreover, domain specific language 
must be recognized as well. Therefore, possibilities for efficient addition of vocabulary to existing 
frameworks needs to be found. As a first step, we made an overview on some speech recognition 
frameworks available now and evaluates a subset of them. Additionally, we discuss the possibility 
to use multiple speech recognition frameworks and evaluate the margin for improvement by 
using the proposed technique. Moreover, possibilities to add vocabulary by using the proposed 
technique are presented. 

Recently several frameworks for speech recognition were published. Some of them are 
compared in  

. The data for the comparison is obtained from the linked repositories and connected websites. 
The word error rate (WER) is obtained from the papers describing the approaches. Most of the 
frameworks are written either in C++ or Python. In order to evaluate the performance of a 
framework, the WER on the LibriSpeech test-clean dataset (Panayotov, Chen, Povey, & 
Khudanpur, 2015) is used. Comparing the WERs, RETURNN (Zeyer, Alkhouli, & Ney, 2018) and 
Espresso (Wang, et al., 2019) archive the best performance with 2.3 % and 2.8 % WER respectively. 
Kaldi (Povey, 2020) archived 3.76 % WER and therefore archives the best performance of the C++ 
frameworks. Even though Kaldi is only the third best performing framework of the compared 
ones, it is the most important one. Many frameworks are based on Kaldi, for example Vosk (Inc., 
2020) and Espresso. The frameworks differ in their approaches. DeepSpeech, Espresso, Eesen, 
RETRUNN, wav2letter++ and NVIDIA NeMo utilize machine learning approaches. Vosk uses a 
database to minimize training time and utilize a bigger pool of audio transcripts. In the following 
the project descriptions of some frameworks are gathered. 
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Table 40: Comparison of speech recognition frameworks 

 

In the following we will focus on: 

• Sphinx-4, because it has a native JAVA binding that we needed at the time we first 
experimented with the frameworks 

• DeepSpeech, because it offers one of the best trained open-source models, and  

• Vosk, because it uses an alternative approach.  

All of them are easy to use, offline and open source and therefore fulfil our most basic 

requirements. Sphinx-4 slowed down the evaluation process significantly. As seen in Figure 49, 
Sphinx-4s performance is significantly worse. The recognition time takes about 1.8 times the 
length of the audio part to recognize. In contrast DeepSpeech only takes about 0.68 and Vosk only 
0.15 times the audio length. Since also the accuracy of Sphinx-4 is twice as bad as the accuracy of 
the other ones, the usage of Sphinx-4 is impractical. 

Another observation out of Figure 49 is, that Vosk (vosk-model-small-en-us-0.3) needs only about 
half the time to recognize long audio samples than DeepSpeech (deepspeech-0.8.1-
models.pbmm). If Vosk and DeepSpeech are used in parallel, this difference is utilizable by 
reducing the resources for Vosk. Therefore, the recognition is less expensive. Another possibility 
is using the additional time to improve the accuracy of the result. One facility is to additionally 
preprocess the audio sample and run the original as well as the preprocessed sample through the 
recognition process. Thereafter an algorithm combines the two results into one result by utilizing 
the differences in the recognition results. 



 DT-SPIRE-06-2019 (870130) Deliverable D5.4  

Classification Public Page 160 of 175 

 

Figure 49: A performance comparison of CMUSphinx, DeepSpeech and Vosk 

Figure 49 shows performance comparison of CMUSphinx, DeepSpeech (deepspeech-0.8.1-
models.pbmm) and Vosk (vosk-model-smallen-us-0.3) on a randomly chosen subset of 
LibriSpeech’s test-clean. On the x-axis the duration of the given audio segment to recognize is 
given. On the y-axis the needed time to recognize the audio is described. The results are divided 
by cold start and initialized. Cold start times include the time needed for preparation when 
initializing a framework. Initialized times do not include any file independent preparation time, 
like model loading. 

In order to evaluate the potential of such an algorithm, the impact of preprocessing on the 
recognition results must be estimated first. Therefore, three preprocessings were chosen and the 
differences in the WERs per audio sample compared. For each of the two LibriSpeech test sets 
(test-clean/test-other) three additional test sets were created. In the *-normalized test sets, the 
volume of the audio samples is raised to a threshold of −1.0 decibel. In the *-compressed test sets, 
a compressor was used to reduce dynamic in the audio samples and afterwards normalize them. 
For the *-equalized test sets, the intensity of very high and low frequencies was reduced. 

Figure 50 shows the fraction of audio samples with an improvement and a debasement. Files 
with no change are not shown. On average over all test-other test sets and tested framework 
model combinations about 28% of the entries changed with a maximum of 54.6% for vosk-model-
small-en-us-0.3 at test-other-compressed. About half of them improved the WER. If the algorithm 
is capable to distinguish between improvements and debasements, the WER on about 14% 
(average) of the audio samples is improvable. Consequently, these variabilities lead to a margin 
for improvement of speech recognition frameworks. 

Moreover, a combination algorithm could use specialized frameworks for recognizing domain 
specific language. Those frameworks only need to recognize a few words similar to finding 
keywords for speech assistants. This task is significantly easier than a complete speech recognition 
and therefore allows for smaller models that are trained more easily. This method can also be 
applied to recognize words that are important for the later use of the recognition result. This use 
may be the control of a machine or similar tasks. Those tasks usually use a rather limited 
vocabulary, and it may increase the accuracy if the words are recognized by specialized 
frameworks. It is important to note that the framework is still usable for the general case even if 
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it uses specialized frameworks, because the general tasks are still done by generic speech 
recognition frameworks. The specialized frameworks only improve accuracy where possible. 

For the purpose of developing an algorithm that combines the result of different preprocessing 
for an audio sample recognized by different frameworks with different models, more research has 
to be done. Most likely an evaluation of the results on word level is needed to be able to distinct 
features, that give hints over the accuracy of a recognized audio sample. Ideally generic relations 
between the preprocessing framework model combination and the accuracy of the recognition of 
special kinds of words or auditory events are found. However, it is likely, that such generic rules 
do not exist or lead to bad results due to the complexity of the underlaying recognition process. 
Nonetheless it may be interesting to try using machine learning approaches for the algorithm. We 
will try to combine several recognitions of an audio sample into one sentence the reduction of 
post recognition error (RPRE) and will continue to research in this topic. 

 

Figure 50: An illustration of changes in accuracy per preprocessed file with respect to the original 
file on LibriSpeech test-clean. 

Figure 50 shows an illustration of changes in accuracy per preprocessed file with respect to the 
original file on LibriSpeech test-clean. Positive entries signalize an improvement in WER and 
negative entries signalize a debasement. The original test-clean LibriSpeech corpus contains 2620 
entries. The other corpi were created by applying an audio effect to each file. Consequently, each 
of the corpi contains 2620 entries. 
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Figure 51: An illustration of changes in accuracy per preprocessed file with respect to the original 
file on LibriSpeech test-other 

Figure 51 shows an illustration of changes in accuracy per preprocessed file with respect to the 
original file on LibriSpeech test-other. Positive entries signalize an improvement in WER and 
negative entries signalize a debasement. The original test-other LibriSpeech corpus contains 2939 
entries. The other corpi were created by applying an audio effect to each file. Consequently, each 
of the corpi contains 2939 entries.  

Progress since delivery D5.2 
Speech recognition systems differ in their quality. By combining several speech-to-text 
frameworks, the quality of speech recognition can be increased. During the 2nd reporting period, 
we worked on a distributed speech recognition system that can be used and deployed in many 
scenarios. Special attention was paid to the interchangeability of the individual components and 
the adaptability to a given situation. 
In this context, SpinPro was extended by a framework for Distributed Automatic Speech 
Recognition (DARS). This is shown in Figure 52 below. 
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Figure 52: SpinPro extension with DASR 

 
Nowadays, speech recognition systems differ in many aspects, especially in their API. They also 
require more and more resources to perform inference. To use them jointly, the solution can only 
be to distribute speech recognition. Due to the long inference and the large size of the audio files, 
this is a challenge all its own. DASR is a system we have developed to overcome this challenge. It is 
a tool for exploring combination techniques for multi-system speech recognition using distribution 
techniques for faster evaluation. 
At the highest architectural design level, DASR uses a source-worker architecture. DASR has a 
source component that is responsible for handling jobs, distributing them to workers, combining 
recognition results and producing the result for a request. The source component of DASR is called 
the core. The DASR workers are responsible for pre-processing the audio samples and recognition 
by an ASR algorithm, i.e. for handling a worker request. The core and the workers communicate 
via a network. In addition, DASR introduces another component called Dev. Dev provides access to 



 DT-SPIRE-06-2019 (870130) Deliverable D5.4  

Classification Public Page 164 of 175 

additional functionality that is mainly used when designing a DASR instance for a specific use case. 
An overview on the components of DASR is shown below. 

 

Figure 53: Overview of the DASR components 

 
Whenever a task reaches DASR, it is first checked whether all desired ASR algorithm combinations 
are available for preprocessing. For each work request, the audio material is preprocessed and 
then speech recognition is performed with the desired ASR algorithm. The results are collected 
and forwarded to the combination algorithm. The combination algorithm takes all the recognition 
results and creates a new combined output. This output is stored with the original recognition 
results in the corresponding job. When all the jobs in a task are completed, the task is returned 
with all the results it contains. The entire process is shown below. 

 

Figure 54: Activity diagram of the general process for distributed speech recognition 
used by DASR 

 

Examples of usage / illustrations 
 
SpinPro receives the audio data and triggers DARS. DASR itself forwards the audio data to so-called 
recognisers. Each of these recognisers performs automatic speech recognition using a predefined 
speech recognition framework and model. 
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In addition, the recognisers can perform pre-processing of the audio data. For example, one could 
use a compressor effect to reduce the dynamics of the audio input. After all the recognisers have 
finished, the results are collected on the main server. 

There, a combination algorithm is used to combine the recognised transcripts into one. The 
combination algorithm itself is interchangeable. 

A typical example is a two-step process in which the transcripts are first matched with a 
progressive multiple sequence alignment algorithm and then a vote is taken per word. The voting 
can be done by a neural network, but also by a simple majority vote. After the combination, DASR 
returns the final transcript to SpinPro. 

The next step in the SpinPro pipeline is the so-called release step. 

In this step, the user is asked whether the recognised transcript is correct. The user can choose 
whether to cancel the request or continue with the next step. 

The third step is the actual rule creation. It can be very frustrating for a user to receive a rule 
created by non-deterministic algorithms. The user might get a different result each time. We aim 
for consistent and deterministic rule creation. 

SpinPro has a list of keywords. A heuristic based on the occurrence of these keywords chooses a 
regex pattern. SpinPro checks whether the regex pattern matches the transcript and, if it does, 
forwards the match to a so-called service. A service contains the keywords, the regex pattern and 
the parsing logic. Services are developed independently of SpinPro and loaded as needed.  

Since the service must know which inputs and outputs are available, SpinPro manages all inputs 
and outputs and provides them to the services. Services have also a Callback to SpinPro for parsing 
a specific string within a pattern. This is useful for actions that contain different actions. A simple 
example is an IF-THEN rule that contains actions in the THEN part. In addition, SpinPro provides 
useful parsers for arithmetic expressions and conditions. 

When SpinPro has successfully created a rule, the final step is to store the rule in a JSON syntax. 
The JSON syntax used is an intermediate format that contains more meta-information than 
necessary. Part of the meta-information serves only statistical and identifying purposes, another 
part can be used to check the compatibility of the services used to create the rules with the 
interpreters of these services. Of course, they also contain the actual rule actions in the format 
defined by the services. Some action formats such as IF and WHILE are predefined. 

The resulting rule is stored in a predefined directory and sent to the client. 
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Figure 55: SpinPro 

 

Figure 56: SpinPro 
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Interfaces  (in/out) – system/user 
 In – spoken text 

Out -rule(s)  

Subordinates and platform dependencies 

 The extension of SpinPro with DASR is shown in Figure below.  

 

Figure 57: The extension of SpinPro with DASR 

  

Licenses, etc.  (free for use in the project) 
License will be defined when the component is ready. 

TRL for overall component/tool and any parts/subordinates 
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TR4 

References – incl. web etc. 

Frameworks 

• Sphinx-4 - https://github.com/cmusphinx/sphinx4 

• DeepSpeech - https://github.com/mozilla/DeepSpeech 

• Kaldi - http://kaldi-asr.org/doc/about.html 

• VOSK - https://github.com/alphacep/vos 
https://github.com/c3di/neuroscope 

To be considered in particular for the following COGNITWIN pilots 
 TBD - Relevant in consideration for Cognitive services. 

 

  

https://github.com/cmusphinx/sphinx4
https://github.com/mozilla/DeepSpeech
http://kaldi-asr.org/doc/about.html
https://github.com/c3di/neuroscope
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14.25  FouMon 

Component/Tool description 

Component/Tool/Method/Framework/Service  Name 

FouMon (Fouling Monitoring) 

Defined in task 

T5.4 (T5.1) 

Short Description – incl. Purpose 

 

FouMon is a fouling monitoring component. The component aims at monitoring on-line the 

state of fouling at heat exchange surfaces, using various alternative and redundant 

approaches. The approaches include direct calculations using on-line process measurements 

and laws of physics, a model-based approach using state estimation of uncertain fouling-

related parameters, and indexes computed from therein. For model-based state estimation 

approaches, a heat exchanger model (HE-model) has been derived and the ensemble 

Kalman filter (EnKF) implemented to fuse the model with on-line data. 

 

In particular, the FouMon component is developed for estimation of combustion boiler 

superheater heat exchanger surfaces loaceted in the flue gas path. Both short-term (between 

soot blowings) and long-term (between maintenances) fouling and smoothing can be 

monitored, but main focus has been set on short term sootblowing.  
 

The FouMon component uses a physical simulation model of a heat exchanger. For this 

purpose, a physical model for main phenomena between fluegas and the water-steam 

system has been derived, guided by availability to validate the model using on-line 

measurements from the process (steam and flue gas temperatures, flows, etc.). The HE-

model (heat exchanger model) can be used for simulation of other heat exchangers as well. 

The model is available for download. 

  
Figure 1. Modeling and simulation of a heat exchanger. Model structure (left) and a typical 

tube rack setup (right). 
 

The chosen EnKF (Ensemble Kalman filtering) state estimation technique can be applied 

for alternative state estimation purposes, given that a suitable plant model and 

measurements are provided. The EnKF algorithm is well known in the academia. However, 

as no CST/SYSID toobox Matlab implementation is yet available, a Matlab tool has been 

coded. The COGNITWIN Matlab EnKF tool is available for download. 

 

To support data driven modeling of system dynamics, a general purpose data quality tool 

(ODtool) focusing on detection of outliers has been developed and applied in the context of 

fouling monitoring. Creation of a purely data-driven model requires good quality data. 

Plant measurements tend to have occasional errors that must be taken into consideration for 

the self-learning digital twin to be robust. Therefore, in addition to standard measurement 
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verification by detecting sensor faults (1) and frozen values etc. (2), an additional outlier 

detection (3) method is implemented for this application. Identifying the nontrivial outliers 

from a batch of multidimensional measurement vectors supports the process of finding a 

valid digital twin model, thus enhancing the cognitive capabilities of the approach. The tool 

is available for download. 
 

Progress since delivery D5.1 

N/A. 

Progress since delivery D5.2 
The tool has been developed (designed, implemented, and verified) after the milestone in 2/2021.  

Examples of usage / illustrations 

 The FouMon component originates from solving the WP3 pilot problem on fouling 

monitoring, and has been tuned and tested using real full scale boiler plant design and 

measurement data (WP3 pilot). The basic approach is illustrated in Figure 2. 

 
Figure 2. State estimation applied to monitoring of fouling. 
 

 

 

 
Figure 3. Data-driven FouMon heat transfer estimate from pilot during Nov 2021 (top plot), 

a corresponding model-based EnKF estimate (middle plot), and dimensionless adaptive 

fouling factor indexes. Subscript ‘ws’ refers to water-steam side, ‘fg’ to flue gas side. 
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Figure 3 shows a demonstration of the on-line estimated heat transfer coefficients for a 

superheater in the flue gas path. The data-driven estimate for heat transfer in a clean (after 

sootblowing) pipe is also illustrated. The estimates are constructed in two alternative ways. 

Estimates of the heat transfer coefficient in a physical model can be computed by data 

assimilation. Dimensionless indexes (FF) can be generated for providing process state 

independent indication of the state of fouling. Figure 3 illustrates these using pilot data. 
 

 
Figure 4. Basic principle of ellipsoidal peeling. Removal of few outliers can improve the 

performance of identification significantly. 
 
 

Interfaces  (in/out) – system/user 

 

The physical model and measurements are set up in the Matlab m-files. Input data 

(measurements) are provided as numerical vectors. Interactive tuning is enabled by Matlab 

interface/graphics. Estimation outcomes are provided as numerical vectors. 

 

A link with StreamPipes is enabled by an OPC-UA client/server component (see FUSE 

OPC-UA tool). 
 

Subordinates and platform dependencies 

 

The tool is implemented using Matlab language (m-files). Matlab from the Mathworks is 

required (FouMon has been tested on Matlab 2020b). 
 

Matlab (2020b) is available on all major operating systems, including Windows 7, Ubuntu 

16, Debian 9, MacOS 10 and newer. No particular Matlab Toolboxes are required. Open 

software Octave is known to be able to interpret m-files, but FUSE-codes have not been 

tested with Octave. 

 

Licenses, etc.  (free for use in the project) 
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The HE-model, the EnKF-tool and ODtool are free for use (contact Istvan.Selek@oulu.fi,  

Enso.Ikonen@oulu.fi or Markus.Neuvonen@oulu.fi, respectively). The CFB boiler design 

data and plant measurement data are Sumitomo SHI FW and pilot plant proprietary. 
 

TRL for overall component/tool and any parts/subordinates 

 

TRL 6 (demonstrated in a relevant environment). 
 

References – incl. web etc. 
 

Liukkonen, M., A. Kettunen, J. Miettinen, E. Ikonen, I. Selek, M. Neuvonen, A. Hansen 

and M. Edelborg (2022). Hybrid Modelling Approach to Optimize Fouling Management in 

a Circulating Fluidized Bed Boiler. Fluidized bed conversion conference 2022 (FBC24), 8–

11 May 2022, Gothenburg. 

The EnKF Matlab-tool is available at http://cc.oulu.fi/~iko/COGNITWIN/  
The HE-model and ODtool are available for download. 

 

To be considered in particular for the following COGNITWIN pilots 

Sumitomo SHI FW Energia Oy 
  

mailto:Istvan.Selek@oulu.fi
mailto:Enso.Ikonen@oulu.fi
mailto:Markus.Neuvonen@oulu.fi
http://cc.oulu.fi/~iko/COGNITWIN/
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14.26   FouCon 

Component/Tool description 

Component/Tool/Method/Framework/Service  Name 

FouCon T5.5, (T5.4, T5.1) 
  

Short Description – incl. Purpose 

FouCon is a component for active control/prescriptive maintenance of process, derived 

based on the needs from the WP3 fouling control pilot problem. Potential specific problems 

include soot blowing automation and prescriptive maintenance actions.  

 

The component includes data-driven modeling tool for predicting the impact of fouling and 

soot blowing on heat exchange performance, and optimization algorithm to determine how 

the system should be operated. The identified model is used to compute the optimal soot 

blowing interval for selected set of heat exchangers. The physical modeling (from FouMon) 

is replaced by novel data-driven tools based on the Prony approach. The optimal intervals 

for soot blowing actions are derived using mixed-integer programming (MIP/sb). The 

cognitive learning aspects are emphasized by on-line model parameter update and support 

of human decision making.  

 

The applied data-driven modeling tool separates the effect of plant load level from fouling 

estimation. The Prony approach in model identification is closely related to other subspace 

identification methods, resulting in an LTI model of the system. This method enables 

discarding undesired/unstable modes from the identification results. It is also 

computationally light, and identification is performed on-line. Model update always takes 

the most recent measurement data into consideration when creating the model. Therefore, 

the application is inherently capable of adjusting to changes in the process.  

 

The identified LTI-model is used as a basis for soot blowing optimization. The cost 

function is constructed from gains (improved heat transfer) and losses (steam consumed in 

soot blowing) so that total power from fuel to steam is maximized. Interactions between 

individual heat exchangers are also considered in the formulation of the cost function. The 

optimization problem is solved using Matlab’s built-in mixed integer programming -tool. 

As a result from optimization, MIP/sb provides a suggestion of the optimal starting time of 

soot blowing sequence to operator. 

 

The Prony tool is application independent and can be used in various modeling problems. 

The MIP/sb tool is problem spesific, and provides a solution for the sootblowing 

operational optimization problem at the pilot site. It is expected that the same principles can 

be applied at other installations. 

 

Progress since delivery D5.1 
FouCon has been developed during M31-M42 

 

 

 

Examples of usage / illustrations 
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 The FouCon component originates from solving the WP3 pilot problem on boiler fouling 

management, and has been tuned and tested using real full scale boiler plant design and 

measurement data (WP3 pilot). 
 

 
Figure 1. Soot blowing optimization for three consequtive superheaters (SH1A, SH1B and 

SH2). 

The MPI/sb optimization cost function is constructed from the gains and losses associated 

with a soot blowing sequence (improved heat transfer, steam losses), under constraints 

(e.g., limited actions). The primary target was set to find the start time and/or length of the 

sootblowing sequence for individual heat exchangers.  
 

Figure 1 illustrates the approach in simulations on three superheaters. The measured and 

estimated heat transfer coefficients are displayed, a decrease in HTC indicates fouling of 

surfaces. The tool provides an optimal sootblowing sequence, and illustrates also the 

predicted performance (in terms of HTC) if alternative decisions are made. 
 

Interfaces  (in/out) – system/user 

 

The physical model and measurements are set up in the Matlab m-files. Input data 

(measurements) are provided as numerical vectors. Interactive tuning is enabled by Matlab 

interface/graphics. Estimation outcomes are provided as numerical vectors. 

 

A link with StreamPipes is enabled by an OPC-UA client/server component (see FUSE 

OPC-UA tool). 
 
 

Subordinates and platform dependencies 

 

The tool is implemented using Matlab language (m-files). Matlab from the Mathworks is 

required (FouCon has been tested on Matlab 2020b). 
 

Matlab (2020b) is available on all major operating systems, including Windows 7, Ubuntu 

16, Debian 9, MacOS 10 and newer. No particular Matlab Toolboxes are required. Open 
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software Octave is known to be able to interpret m-files, but FouCon-codes have not been 

tested with Octave. 
 

Licenses, etc.  (free for use in the project) 

Matlab (commercial), SmartBoiler (proprietary), StreamPipes (open) 

The Prony-tool is free for use (contact Markus.Neuvonen@oulu.fi). The CFB boiler design 

data and plant measurement data are Sumitomo SHI FW and pilot plant proprietary. 
 

TRL for overall component/tool and any parts/subordinates 

To be validated in a relevant environment (TRL 5) 
 

References – incl. web etc. 

Neuvonen, M., I. Selek, E. Ikonen and L. Aho. Heat exchanger fouling estimation for 

combustion–thermal power plants including load level dynamics. IEEE International 

Conference on Systems, Man, and Cybernetics, 9–12 Oct 2022, Prague. 
Aho, L. Mallipohjainen on-line estimaattori polttovoimalan lämmönvaihtimien 

likaantumiselle (Model-based on-line estimator for combustion plant heat exchanger 

fouling, in Finnish). 2022. University of Oulu, Master’s Thesis. 
 

contact: Enso.Ikonen@oulu.fi Markus.Neuvonen@oulu.fi 
 

To be considered in particular for the following COGNITWIN pilots 

WP3/Sumitomo SHI FW Energia Oy engineering pilot 
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