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Executive Summary  
This document is the final public deliverable “D2.4: A complete digital twin enabled with cognitive 

elements for the Steel pilots” of the project COGNITWIN. This document accompanies the 

demonstrator and is the result of the final stage (M33-M42) of the project development.  

 

Saarstahl AG Pilot: Two main points for action have been focused on: improving steel billet 

identification upon entrance into the mill train and enable seamless tracking of billets in the 

blooming train, a part of the mill train. The first point is tackled by installing an improved billet 

identification system and the latter is to be solved by setting up a computer vision tracking system. 

The overall goals of SAG’s COGNITWIN approach are to improve rolling line efficiency by 15%, 

reduce energy consumption and process emissions by 15 % and to set up an automatic error 

detection. 

The final project phase was used to enhance the billet identification system with cognitive elements 

and continue work on the tracking system development.  

 

SIDENOR Pilot: The Cognitive Digital Twin will help to reduce refractory wear and increase 

operational ladle lifetime. The goal is to increase ladle refractory lifetime to 80 heats for full relining 

and 40 heats to partial relining. As part of this the ambition is to reduce the critical refractory depth 

for renewing the refractory lining. Sidenor’s initial situation was assessed and the relevant process 

data were identified. Moreover, the measurement of the ladle profile was also established. The 

relevant production information was shared with the involved partners so that they defined the 

predictive models.  

 

NOKSEL Pilot: The purpose of the planned cognitive digital twin regarding predictive maintenance 

for the Steel Welding Plant (SWP) was developed as a real-time monitoring system of the SWP 

production process that enables predictive maintenance by integrating data from multiple sensor 

streams with the existing process monitoring models. Hybrid digital twin was established. Use 

cases, user stories and related challenges have been determined and specified. On site tests and 

validations of the system have been performed and are in progress. The development of a cognitive 

digital twin has been completed. With the COGNITWIN SWP System, the main targets are to 

achieve: 10% reduction in energy consumption, and 10% reduction in shifted average duration of 

downtimes. 

 

 

 

 

 

 

 

 



 DT-SPIRE-06-2019 (870130) Deliverable D2.4  

 

   

Classification Public Page 3 of 103 

 

Table of Contents 
Executive Summary ............................................................................................................................. 2 

Table of Contents ................................................................................................................................ 3 

1 Introduction .............................................................................................................................. 10 

2 Saarstahl AG  – Pilot .................................................................................................................. 11 

Introduction to Saarstahl & Process description .......................................................................... 11 

Pilot challenges ............................................................................................................................. 12 

Pilot specific aim ......................................................................................................................... 15 

Innovation .................................................................................................................................... 16 

Description of Data available ........................................................................................................ 17 

IoT platform and architecture in use ......................................................................................... 17 

Digital Platform - Overall architecture for SAG Pilot ............................................................ 18 

Sensors and Data Acquisition ................................................................................................. 19 

Database and Digital Twin Data representation ................................................................... 20 

Cognitive Digital Twin – Analytics and AI ................................................................................. 20 

Billet ID identification ............................................................................................................. 20 

Anonymizer.............................................................................................................................. 24 

Blooming train billet tracking ................................................................................................ 26 

Demonstrator – Cognitive Digital Twin ..................................................................................... 29 

Conclusion and Summary/Challenges addressed and remaining ........................................... 30 

Measurable KPIs and Final impact ................................................................................................ 31 

3 SIDENOR  – Pilot ........................................................................................................................ 32 

Introduction to SIDENOR & Process description .......................................................................... 32 

Pilot challenges ............................................................................................................................. 33 

Pilot specific aim ........................................................................................................................... 36 

IoT platform and architecture in use ............................................................................................ 36 

Architecture of the data systems .............................................................................................. 36 

Data about ladle refractory....................................................................................................... 37 

Data transfer ............................................................................................................................. 38 

Physics based (PB) model development ....................................................................................... 39 



 DT-SPIRE-06-2019 (870130) Deliverable D2.4  

 

   

Classification Public Page 4 of 103 

 

Video demonstration of physics based model ......................................................................... 45 

StreamPipes .................................................................................................................................. 46 

StreamPipes .............................................................................................................................. 46 

Pipeline #2 (cyclic data) ............................................................................................................ 48 

Knowledge Graph Based Solution for Cognition........................................................................... 50 

FA³ST (Fraunhofer AAS Tools for Digital Twins) Service ............................................................... 54 

Measurable KPIs and Final impact ................................................................................................ 56 

Conclusion and Summary ............................................................................................................. 57 

4 NOKSEL  – Pilot .......................................................................................................................... 58 

Introduction to NOKSEL & Process description ............................................................................ 58 

User stories ................................................................................................................................... 61 

Current challenges ........................................................................................................................ 69 

Pilot specific aim ........................................................................................................................... 72 

Innovation ..................................................................................................................................... 73 

IoT platform and architecture in use ............................................................................................ 74 

Database and Datasets for  Digital Twin Pilot - Noksel ............................................................. 78 

Description of Data available .................................................................................................... 79 

▪ Digital Platform for Digital Twin Pilot - Noksel ..................................................................... 80 

Noksel Digital Platform – Overall architecture ......................................................................... 80 

Noksel Digital Platform – Data Acquisition – including sensors ............................................... 83 

Noksel Digital Platform – Data storage/preparation ................................................................ 87 

Noksel Digital Platform – Analytics/AI/Machine Learning ........................................................ 89 

Noksel Digital Platform – Action/Interaction-Control-Visualisation ......................................... 90 

StreamPipes and AAS Studies Validation ...................................................................................... 93 

Demonstrator of Digital Twin Pilot – Noksel ................................................................................ 95 

Measurable KPIs and Final impact ................................................................................................ 95 

Conclusion and Summary ............................................................................................................. 99 

5 Summary ................................................................................................................................. 100 

6 References .............................................................................................................................. 101 

 

 



 DT-SPIRE-06-2019 (870130) Deliverable D2.4  

 

   

Classification Public Page 5 of 103 

 

 

List of Figures 
 

Figure 1: Schematic overview of the Nauweiler rolling mill ............................................................. 12 

Figure 2: A billet passing through a rolling stand in the Nauweiler rolling mill ................................ 15 

Figure 3: The billet identification system .......................................................................................... 16 

Figure 4: Schematic overview of blooming train with cameras ....................................................... 17 

Figure 5: Captured images from blooming train cameras ................................................................ 17 

Figure 6: SAG IoT Infrastructure - Schematic Overview (ESB – Enterprise Service Bus, DWH – Data 

Warehouse, S3 – Simple Storage Service, DB – Database) ............................................................... 18 

Figure 7: SAG IoT Infrastructure - Operational Phase ....................................................................... 19 

Figure 8: Pilot Integration ................................................................................................................. 19 

Figure 9: Identified digits of billet ID ................................................................................................ 21 

Figure 10: Integration of punch stamp reader ................................................................................. 22 

Figure 11: User interface for billet ID reader .................................................................................... 22 

Figure 12: Editable plausibility checks and settings in user interface .............................................. 23 

Figure 13: System alerts operator if reading was faulty ................................................................... 23 

Figure 14:Novel billet/slab ID identification system instances at SAG and other SHS-entities ........ 24 

Figure 15: Anonymizer – Schematic overview .................................................................................. 25 

Figure 16: Anonymized employees (highlighted by green rectangle) in recorded video stream .... 25 

Figure 17: Deployment of anonymizer model .................................................................................. 26 

Figure 18: Spatiotemporal deep learning network approach. ResNet-Unet illustration adjusted 

from Charng et al. Deep learning segmentation of hyperautofluorescent fleck lesions in Stargardt 

disease. Scientific Reports 10 (16491), 2020. ................................................................................... 27 

Figure 19: Snapshots from three blooming train cameras in Saarstahl’s Nauweiler rolling mill.  

Billet tracking networks trained solely with simulated data track billet instances in real videos. ... 27 

Figure 20: Amodal spatiotemporal DL network approach. Note that output masks are amodal - 

they show also hidden billet parts. ................................................................................................... 28 

Figure 21: Left image: billet instance temporal segmentation without mask post-processing. Note 

that pixels of the same billet get wrong ID after the long gap. Right image: Billet instance 

segmentation with Mask-RCNN post-processing. ............................................................................ 28 

Figure 22: Modified Camera 1 and Camera 2 positions. .................................................................. 29 

Figure 23: Steelmaking process in SIDENOR's production plant at Basauri, Spain. .......................... 33 

Figure 24: Ladle lining profile............................................................................................................ 34 

Figure 25:  Section of the ladle displaying the remaining thickness ................................................. 35 

Figure 26 Architecture of the Sidenor data system .......................................................................... 36 

Figure 27: Remaining thickness of (a) ladle reparation; (b) Ladle demolition .................................. 37 

Figure 28 The figure shows a vertical section of a specific ladle refractory (Ladle 4, campaign 51,, 

use number 68, 2019).. Left figure shows the outer shell surface temperature (range 810 – 8600 K) 



 DT-SPIRE-06-2019 (870130) Deliverable D2.4  

 

   

Classification Public Page 6 of 103 

 

and right figure shows erosion profile and refractory temperatures, all at 100 minutes after filling 

steel into the ladle. The erosion profile is the predicted profile at the time of demolition. ........... 41 

Figure 29 The experimental (points) steel temperature, the predicted steel temperatures and 

added energy by the slag heater (heat 203655, Ladle 5, campaign number 69, use number 25, 

2019). ................................................................................................................................................ 42 

Figure 30 Prediction of the evolution of the refractory lining as it is eroded from use to use. The 

average is for the entire lining, while the maximum value is dominated by the position of the slag 

layer. ................................................................................................................................................. 43 

Figure 31 Comparison of predicted versus measured eroded thickness for Ladle 11, campaign 80, 

2019. ................................................................................................................................................. 44 

Figure 32 Comparison of predicted versus measured eroded thickness for Ladle 5, campaign 71, 

2019. ................................................................................................................................................. 44 

Figure 33 Comparison between measured and predicted erosion thickness at time of demolition 

of wear lining. Symbols represent different ladle numbers. ............................................................ 45 

Figure 34 Close-up of comparison between per heat averaged measured and predicted erosion 

thickness at time of demolition of wear lining. Symbols represent different ladle numbers. ......... 45 

Figure 35 Developed pipeline (arrows represent data flow) ............................................................ 47 

Figure 36 Displayed notification ....................................................................................................... 48 

Figure 37 Visualization of outputs of Keras Neural Network (Brick Degradation Class), Task 

Duration (Time Between Heats) and Sidenor Measurements Simulation (Ladle Information, 

Kwh_rr) ............................................................................................................................................. 48 

Figure 38 Developed pipeline (arrows represent data flow) ............................................................. 49 

Figure 39 Raw JSON representation of MEWMA output .................................................................. 50 

Figure 40 Information Model of SIDENOR Pilot. ............................................................................... 51 

Figure 41 SINDIT Knowledge Graph .................................................................................................. 52 

Figure 42 Domain Expert Knowledge for making decision on the Ladle. ......................................... 53 

Figure 43 Reasoning Rule: Recommend analysing the ladle if the use number is within a specific 

range. ................................................................................................................................................ 53 

Figure 44 Reasoning Rule: Recommend to repair or demolish the ladle if the predicted thickness is 

below 50mm. .................................................................................................................................... 53 

Figure 45 Properties of selected nodes shown in a separate window: (a) Heat node and (b) 

Prediction node. ................................................................................................................................ 54 

Figure 46:AAS model opened in AASX Package Explorer ................................................................. 55 

Figure 47:Comparison between measured and predicted refractory thickness .............................. 57 

Figure 48:Schematic lay out of the SWP Machinery ......................................................................... 59 

Figure 49:Photo of the SWP machinery. ........................................................................................... 59 

Figure 50: NOKSEL's use case processes ........................................................................................... 60 

Figure 51:Hybrid and Cognitive Digital Twins are both Digital Twins (Albayrak and Unal, 2021) .... 73 

Figure 52: Steps in the SWP process at NOKSEL. .............................................................................. 74 

Figure 53 : AS-IS: Existing Architecture at NOKSEL at the beginning of the COGNITWIN project .... 75 



 DT-SPIRE-06-2019 (870130) Deliverable D2.4  

 

   

Classification Public Page 7 of 103 

 

Figure 54 : System’s Generic Static View of the Architecture at NOKSEL......................................... 76 

Figure 55 : Engine Types at NOKSEL ................................................................................................. 77 

Figure 56 : Existing Digitalization at NOKSEL: Distribution Panels .................................................... 78 

Figure 57:Cognitive Digital Twin System Control for Monitoring ..................................................... 80 

Figure 58: Updated Topology Aligned with Pipeline Architecture for Noksel Pilot ( (Unal, Albayrak, 

Jomaa, & Berre, 2021)) ..................................................................................................................... 81 

Figure 59:Pipeline Architecture for Noksel Pilot mapped to TIA PLATFORM tools .......................... 81 

Figure 60:NOKSEL Pilot architecture presented as aligned to BDVA reference architecture .......... 82 

Figure 61: Pipeline Architecture for Noksel Pilot: DT Data Acquisition/Collection ( (Unal, Albayrak, 

Jomaa, & Berre, 2021)) ..................................................................................................................... 84 

Figure 62: Existing hardware topology ............................................................................................. 84 

Figure 63: Added hardware topology ............................................................................................... 85 

Figure 64: Coupling of the PROFINET subnets with the PN/PN Coupler .......................................... 85 

Figure 65:Control panel developed for Noksel pilot ......................................................................... 87 

Figure 66:Welding Machines in a Closed Room at Noksel ............................................................... 87 

Figure 67: Pipeline Architecture for Noksel Pilot: DT Representation ( (Unal, Albayrak, Jomaa, & 

Berre, 2021)) ..................................................................................................................................... 88 

Figure 68:Pipeline Architecture for Noksel Pilot: DT Representation mapped to TIA PLATFORM 

elements ........................................................................................................................................... 88 

Figure 69: Pipeline Architecture for Noksel Pilot: DT Hybrid (Cognitive) Analytics Models () ......... 89 

Figure 70:Pipeline Architecture for Noksel Pilot: DT Hybrid (Cognitive) Analytics Models mapped to 

TIA PLATFORM .................................................................................................................................. 90 

Figure 71: Pipeline Architecture for Noksel Pilot: DT Visualisation and Control ( (Unal, Albayrak, 

Jomaa, & Berre, 2021)) ..................................................................................................................... 91 

Figure  72: Artificial Intelligence/ Machine Learning/ NN Algorithms Application GUI ................... 92 

Figure 73: TEKNOPAR's platform visualization and digital twin GUIs ............................................... 92 

Figure 74:Selected new displays generated for the Noksel pilot ..................................................... 93 

Figure 75:Apache StreamPipes pipelines demonstrated at the NOKSEL pilot ................................. 94 

Figure 76:Pipelines used for AAS validation at NOKSEL pilot ........................................................... 95 

Figure 77: Incoming/Outgoing Data Loop of Indoor Temperature Control System (Ref: Temel et. 

al., IEEE Big Data 2022) ................................................................................................................... 100 

 

 

List of Tables 
 

Table 1: Pilot challenges for Digital Twin Data Acquisition/Collection for SAARSTAHL pilot ........... 13 

Table 2: Pilot challenges for Digital Hybrid and Cognitive Digital Twins for SAARSTAHL pilot ......... 13 

Table 3: Pilot challenges for Digital Twin Visualisation and Control for SAARSTAHL pilot ............... 14 

Table 4 Acyclic data: heat number, production date, steel grade and temperature at tapping ...... 38 

https://sintef.sharepoint.com/teams/work-8364/Shared%20Documents/Work%20Packages/M42%20Deliverables%20Submitted/D2.4/D2.4%20Revised/D2_4_rev-AJB.docx#_Toc151713119


 DT-SPIRE-06-2019 (870130) Deliverable D2.4  

 

   

Classification Public Page 8 of 103 

 

Table 5 Overview of data source in Sidenor variables ...................................................................... 38 

Table 6: Use Case NOKSEL-UC-00 ..................................................................................................... 61 

Table 7: Use Case NOKSEL-UC-01 ..................................................................................................... 62 

Table 8: Use Case NOKSEL-UC-1 ....................................................................................................... 63 

Table 9: Use Case NOKSEL-UC-2 ....................................................................................................... 64 

Table 10: Use Case NOKSEL-UC-3 ..................................................................................................... 65 

Table 11: Use Case NOKSEL-UC-4 ..................................................................................................... 65 

Table 12: Use Case NOKSEL-UC-5 ..................................................................................................... 66 

Table 13: Use Case NOKSEL-UC-6 ..................................................................................................... 67 

Table 14: Use Case NOKSEL-UC-7 ..................................................................................................... 68 

Table 15:Use Case NOKSEL-UC-8 ...................................................................................................... 68 

Table  16: Pilot challenges for Digital Twin Data Acquisition/Collection for NOKSEL pilot .............. 70 

Table 17:Pilot challenges for Digital Twin Representation for NOKSEL pilot ................................... 70 

Table 18:Pilot challenges for Digital Hybrid and Cognitive Digital Twin Generation for NOKSEL pilot

 .......................................................................................................................................................... 71 

Table 19:Pilot challenges for Digital Twin Visualisation and Control for NOKSEL pilot .................... 72 

Table  20: AS-IS: Existing Digitalisation at NOKSEL: System Sensor/Switches and Distribution 

Panels. ............................................................................................................................................... 78 

Table 21: AS-IS: Existing Digitalisation at NOKSEL: Operator Panels. ............................................... 78 

Table 22:Sensor List .......................................................................................................................... 86 

Table 23:NOKSEL Pilot KPIs ............................................................................................................... 98 

 

 

Acronyms 
 

 

NOKSEL Noksel Celik Boru Sanayi A.S.  

SAG Saarstahl AG  

SIDENOR SIDENOR Aceros Especiales S.L.  

CC Continuous Casting 

CEP Complex Event Processing 

CT cognitive digital twin 

DB Database  

DP Distribution Panel  

DT digital twin 

DWH Data Warehouse  

EAF Electric Arc Furnace 

EBT Eccentric Bottom Tapping 

ESB Enterprise Service Bus  



 DT-SPIRE-06-2019 (870130) Deliverable D2.4  

 

   

Classification Public Page 9 of 103 

 

FC  Factored Contributions 

GAN Generative Adversarial Networks  

GUI Graphical User Interface  

IoT Internet of Things  

JSON JavaScript Object Notation  

KeNN  Keras Neural Network 

LF Ladle Furnace 

MCC Main Control Center  

MES Manufacturing Execution System  

MFT Material Flow Tracking  

ML Machine Learning  

MLP Multi-Layer Perceptron  

MQTT Message Queuing Telemetry Transport  

OEM Original Equipment Manufacturer  

OPC Open Platform Communications  

OPCUA Open Platform Communications Unified Architecture  

PCA Principal Component Analysis  

PLC Programmable Logic Controller  

PPBM Physics-Based Modelling 

REST Representational State Transfer  

RFID Radio-Frequency Identification  

RTSP Real-Time Streaming Protocol  

RUL Remaining Useful Life  

S3 Simple Storage Service  

SAW Submerged Arc Welding  

SCADA Supervisory Control And Data Acquisition  

SM Secondary Metallurgy 

MEWMA Multivariate Exponentially Weighted Moving Average 

SMB  Sidenor Measurements Buffe 

SUCM Sidenor Unbatched Cyclic Measurements Simulation 

SWP Spirally Welding Pipe Machine  

UML Unified Modeling Language  

VD Vacuum Degasser 

 

 

 

 

 

 



 DT-SPIRE-06-2019 (870130) Deliverable D2.4  

 

   

Classification Public Page 10 of 103 

 

1 Introduction 
In the COGNITWIN project, three different pilots in steel production has been implemented. Each 

pilot covers a particular segment of a multi-billion euros industry and has its own specific challenges 

that need to be fully understood in order to develop techniques and methods to overcome them. 

The main objective of the final phase of the project (M33-42) has been  to develop cognitive digital 

twins based on the hybrid digital twins established in the previous project phase. This document 

summarises this work.  

 

The state of the models used, input and output data, their accuracy, speed and level of detailing, 

are clarified up to the limit that the confidentiality of prior backgrounds (IPR) is not compromised. 

The interaction and collaboration with the technical work packages WP4, WP5 and the usage of 

toolbox components is laid out.  

 

Each pilot’s individually challenges and subsequent solutions to these challenges are detailed. 

 

This document is composed of three main chapters. Each chapter presents one of the pilot cases. 

In each chapter, the following template has been followed: 

- Process description 

- Current challenges 

- Pilot specific aim 

- Innovation 

- Description of Data available 

- IoT platform and architecture in use 

- Cognitive digital twin 

- Demonstrator 

- Conclusion 

- Measurable KPIs and Final impact 

 

In the steel production process, from pig iron to rolled bars or wire rod, a multitude of sensorial and 

relational data from various sources arises. In order to generate additional value from this, a linkage 

between data from different sources is needed, but due to the typically harsh conditions in a steel 

production plant, technologies such as RFID sensors are often unsuitable for this task.  

A computer vision-based system can provide a robust alternative as cameras can often be placed 

at a certain distance from the target to be observed, shielding them from the gravest impact of the 

harsh environment. 

 

The steel industry is a key driver of new developments in the refractory industry due to the high 

market share of steel refractories in the range of 60 to 70% and the harsh conditions for refractories 

in the steel making processes. In fact, the annual refractory consumption in a steel plant that 

produces more than 750.000 ton of steel per year, can reach around 10.000 ton.  
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Ladle refractory is a key factor in secondary metallurgy management for all steelworks despite 

particular differences due to process, installations or product conditions. It has clear economic 

implications but also affects quality, productivity and safety of the steelmaking installations and 

people involved. At the same time, the spent ladle bricks are generally sent to the landfill generating 

an additional cost and a waste of historically considered critical materials like Magnesite. From the 

refractory utilised in the steel industry, a 49% is dissolved in the process and 36% ends in a landfill. 

 

Spiral Pipe Manufacturing industries has promising features for market uptake of digital 

technologies and provide a convenient infrastructure for ground-breaking innovations as it is 

immature yet. Condition monitoring market is expected to witness high growth value like 2.21 

billion USD in 2017 and expected to reach 3.50 billion USD by 2024. Digital twin is gaining attraction 

and digital twin related sales are foreseen to reach about 18.29 billion USD in 2024.  

It is estimated that machine downtime costs UK manufacturers £180bn every year. The research by 

Oneserve, found that  ”... Each time the machine breaks down, it takes on average, 9 hours to fix. 

But some report having to wait 72 hours for a resolution, taking an enormous hit on the production 

schedule and decreasing productivity.... “. In another words; broken machinery and faulty parts are 

hampering productivity, equivalent to almost 3% of all working days. Therefore; by reducing 

maintenance costs in manufacturing environment will result to both efficiency increases in steel 

pipe production, decrease in maintenance cost and save energy more. 

2 Saarstahl AG  – Pilot 

Introduction to Saarstahl & Process description 
The Saarstahl AG - with its locations in Völklingen, Burbach and Neunkirchen along with 

Roheisengesellschaft Saar in Dillingen (Saarstahl and Dillinger Hütte each with 50%) - is a German 

steel manufacturing company with a global presence on the steel production market. Saarstahl AG 

specializes in the production of wire rod, hot rolled bars and semi-finished products of various 

sophisticated grades. These products are important preliminary products for the automotive 

industry and its suppliers, general mechanical engineering, oil and gas industry, the mining industry 

and other steel processing branches. The primary goal of the SAG use-case is to track individual 

billets in the Nauweiler rolling mill train, thus providing a linkage between various sensor data as 

well as other relational data on individual billets collected before and after the non-continuous part 

of the mill train. Figure 1 depicts a schematic overview of the Nauweiler rolling mill. 
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Figure 1: Schematic overview of the Nauweiler rolling mill 

The cold steel billets coming from the steel mill have an ID stamped on to them. When a steel billet 

enters the Nauweiler rolling mill train, this ID is automatically read before the billet enters the oven 

to be heated for rolling. Upon leaving the oven, the heated billet enters the first sequential rolling 

stands in the step. After that, the roll strand enters the blooming train, a non-continuous part of 

the mill train, where it moves back and forth, repeatedly passing through several rolling stands. 

Here rolled bars can overtake one another, or a bar can receive a too severe bend to be rolled 

further and needs to be put aside and removed from the mill train area after cooling down. This 

non-continuous part of the mill train is where a computer vision tracking system is to be installed. 

Operators will occasionally enter the area while the mill train is active, introducing the need for an 

automatic anonymization of employees/people in the video stream. The pace with which the roll 

strand moves back and forth through this section is moderate; not more than 20 km/h. After this 

non-continuous part, the roll strand enters another continuous part of the mill train where rolling 

is completed. 

 

Pilot challenges  
 Table 1, Table 2, and Table 3 collect the challenges for data handling, (cognitive) digital twins and 

visualization & control in the Saarstahl pilot. 
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Table 1: Pilot challenges for Digital Twin Data Acquisition/Collection for SAARSTAHL pilot 

Sensors • Challenge: Need for Full HD video camera for Blooming and Mill 
Train 

• Requirement:  Full HD camera for industrial environment 

• Solution: Introduction of Machine vision Full HD Cameras 

Communication • Challenge:  To handle the video stream data in a suitable way 

• Requirement: RTSP stream for life video data, JSON via 
messaging queue/rest service for communication of tabular 
data.  

• Solution: For training purposes, video data exchange with 
technical partner via hard drive. 

Cloud platform • Challenge:  Use the existing platforms of Saarstahl as the basis 

• Requirement: Utilise the existing Saarstahl infrastructure 

• Solution:  Embed the solution into the Saarstahl infrastructure 

Data Lake, storage • Challenge:  Resolve the management of large volumes of video 
data 

• Requirement: Ensure management of both training and 
production data 

• Solution:  For productive setting, video data will not have to be 
persisted. Training data is saved in storage (x TB, type of 
storage…). Tracked IDs saved in DWH. 

Digital Twin – Data 
driven 
representation 

• Challenge: Neural network detecting billets for digital 
representation of status quo in blooming train. 

• Requirement: Vast amounts of training data required 

• Solution:  Set up routine for mass generation of synthetic 
training data for DL network. 

Real time event 
handling, CEP 

• Challenge: Video images need to be analyzed in real time to 
understand the billets movement 

• Requirement: Neural Network inference speed needs to be 
optimized for real time event handling. 

• Solution: Use local processing – consider FPGA 

Cybersecurity • Challenge:  Due to the risk of cyber attack the process system is 
isolated from external access. 

• Requirement:  Ensure closed loop system without connection to 
the exterior 

• Solution: Ensure that the systems in the plant are not externally 
connected. 

 

 
Table 2: Pilot challenges for Digital Hybrid and Cognitive Digital Twins for SAARSTAHL pilot 

Analytics Models • Challenge: How to match detections among frames 

• Requirement: Analytical modelling for matching DL detections 
over consecutive frames and different camera viewpoints. 



 DT-SPIRE-06-2019 (870130) Deliverable D2.4  

 

   

Classification Public Page 14 of 103 

 

• Solution: Analytical models 
 

Physical Models • Challenge: Billet location needs to be known accurately for ML 
algorithms to be able to optimize the process 

• Requirement: Seamless billet tracking movement, constrained 
by physical environment 

• Solution: Instance segmentation technology is used to track the 
billets 

Machine Learning • Challenge: Need to analyse video imagery in order to 
understand the movement of billets 

• Requirement: Need to have effective training and use of Image 
analytics including aerial photogrammetry including use Deep 
Learning Neural Network. Analytical modelling for matching DL 
detections over consecutive frames and different camera 
viewpoints. 

• Solution: A visual debugger for neural networks Neuroscope 
with use of aerial photogrammetry. 

• Challenge: only Real-life training data for DL networks not a 
feasible solution;  

• Requirement: Provide suitable training data 

• Solution: synthetic training data is needed as 
addition/supplement 

Cognitive Digital 
Twins 

• Challenge:  Support self-learning of the system also after initial 
machine learning.  

• Requirement: The system should provide alerts and 
recommendations for operators and be able to learn 
continuously 

• Solution:  Provide interactive operator guidance 

 
Table 3: Pilot challenges for Digital Twin Visualisation and Control for SAARSTAHL pilot 

2D/3D  visualisation • Challenge: Suitable visualization for operators. 

• Requirement: tracking of billets must be accurate and in real-
time 

• Solution: User preferred visual presentations in Neuroscope 
tool 

Control • Challenge: interfere in real time if critical situation is detected 
to prevent damage to billet or the roll stand 

• Requirement: sufficiently short inference time of model and 
suitable visualization for operator 

• Possible Solution: alert operator with sufficient lead time and 
provide suggestion for action 
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    Pilot specific aim 
 

 
Figure 2: A billet passing through a rolling stand in the Nauweiler rolling mill 

 

The objective of the SAG use case was to track individual billets in the Nauweiler rolling mill train 

and thus to be able to associate sensor and other data collected throughout the rolling process to 

the corresponding billet. Figure 2 depicts a billet in the Nauweiler rolling mill. Combining the data 

from the rolling mill associated to the billet with data collected beforehand at the steel mill would 

allow SAG to extend the digital twin of the billet to span the entire production process and enable 

the twin to acquire cognitive elements. The digital resp. cognitive twin in return could then be used 

e.g., to optimize production processes, recognize causes for deviations and, depending on the 

specific situation, react in real time to prevent deviations from occurring. Another benefit of the 

envisaged computer vision tracking system would have been to detect deviations and erroneous 

billets. 

 

The tracking system developed in the curse of the COGNITWIN project consists of three parts: 

• CV-based blooming train billet tracking, developed by DFKI 

• Billet ID identification system, developed by SAG 

• Anonymizer system, developed by SAG 

 

Two main points for action were identified at the start of the project 
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• old billet identification system -> closed proprietary system, performance good but not 

perfect, and improvement only possible by manufacturer, hardware in use was reaching 

end of estimated lifetime. When automatic identification fails at present, the ID has to be 

entered into the system manually. 

• blooming train -> initially, billets could not be tracked in blooming train.  Due to harshness 

of environment, rolled bars possibly lying in very close proximity, erroneous bars cooling 

down in the area and manual operation of some appliances, conventional means such as 

RFID or other sensors or thermal cameras are not suitable for tracking. 

   Innovation  
 Improved billet identification upon entrance into mill train:  in-house development. A prototype 

has been running in parallel to the old system since December 2019. Figure 3 depicts a billet with 

identified billet ID digits. The prototype is now fully integrated into the Material Flow Tracking (MFT) 

system. 

 
Figure 3: The billet identification system 

  Blooming train: the situation in the blooming train was analyzed together with local engineers to 

determine optimal placement of cameras and specify camera requirements, also taking network 

installation requirements into account. The camera data is to be used as input for a Computer Vision 

tracking system based on deep learning. Figure 4 depicts a schematic overview of the blooming 

train.  
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Figure 4: Schematic overview of blooming train with cameras 

When running in production, the computer vision tracking system will need to process input from 

3 Full HD cameras in real time; the number of frames per second required will need to be 

determined in the process of model evolution.  

Operators will occasionally enter the area while the mill train is active, introducing the need for an 

automatic anonymization of people in the live and recorded video stream. The anonymizer should 

obscure employees with workwear and helmets. 

 

Description of Data available 
The data provided for the tracking system is a video stream stemming from 3 Full HD Cameras and 

possibly some additional video or image data. Figure 5 depicts captured images from the three 

blooming train cameras. 

   
Figure 5: Captured images from blooming train cameras 

For training purposes, recorded video files were provided in addition to the synthetic training data. 

The billet identification system uses sensor data as trigger and images obtained from a Full HD 

camera to identify billets. Training data was obtained via annotating captured images and 

generating synthesised data from captured images.  

For the anonymization system, training data was obtained from open source data provided online 

and by generating synthetic data from captured images.  

 

IoT platform and architecture in use   
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The rolling mill in Nauweiler is controlled by SAG’s Manufacturing Execution System and SAG’s 

Material flow tracking system. These applications flexibly exchange data (sensor and controlling 

data) to due interoperable data models between the assets and the high-level software systems. 

Standards in use: OPC Unified Architecture, Enterprise Service Bus (Kafka or RabbitMQ), REST-

Service 

Components/services within the platform: MES (Manufacturing Execution System; in-house 

development), MFT (Material Flow Tracking; in-house development), Interfaces (REST or Message 

queue). 

Digital Platform - Overall architecture for SAG Pilot 

The IoT architecture at SAG is designed to combine a high flexibility, integrating multiple 

heterogeneous data sources and catering to a wide variety of users, and meeting performance 

and stability requirements dictated by production needs and user demands.  Figure 6 gives a 

schematic overview of SAG’s IoT infrastructure and Figure 7 depicts tools in use in the pilot IoT 

infrastructure for the operational phase. 

  

 
Figure 6: SAG IoT Infrastructure - Schematic Overview (ESB – Enterprise Service Bus, DWH – Data Warehouse, S3 – Simple 

Storage Service, DB – Database) 
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Figure 7: SAG IoT Infrastructure - Operational Phase 

 

The pilot components are integrated into the In-house developed Material Flow Tracking system 

(MFT), as depicted in Figure 8. 

  

 

 
Figure 8: Pilot Integration 

 

 

Sensors and Data Acquisition 

The sensors used in this pilot are cameras, one for the billet ID recognition module, and 3 at the 

blooming train providing visual input to the tracking system. The video stream is ingested via 

RTSP. Trigger data for the billet ID recognition module and the blooming train tracking module are 



 DT-SPIRE-06-2019 (870130) Deliverable D2.4  

 

   

Classification Public Page 20 of 103 

 

obtained via OPC UA through a timeseries database from assets in the corresponding parts of the 

mill train. 

  

  Database and Digital Twin Data representation 

  

Production parameters and sensor data from throughout the steel making process are saved in a 

dedicated timeseries database for timeseries features and in a DWH for other features.  Where 

applicable, batch or billet IDs corresponding to the data are saved alongside. In other cases, e.g., 

for weather data, keys such as timestamps allow for a matching of data to a billet or batch. Thus, a 

digital twin data representation is given at batch or billet level where applicable and where a 

seamless matching of sensor data to the corresponding ID is possible. At the blooming train 

section of the Nauweiler rolling mill, the initial situation is that a digital twin representation was 

only possible at batch level due to the lack of tracking in the blooming train. The pilot aims at 

allowing a billet level digital twin representation of sensor data in the blooming train section. 

 

Cognitive Digital Twin – Analytics and AI 

  Billet ID identification 

An in-house developed Deep Learning based system recognizes the digits of the billet ID. 

Combining this output with some 1st principles logic, it provides the corresponding billet ID to 

other systems. Figure 9 depicts a billet with identified billet ID digits.  
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Figure 9: Identified digits of billet ID 

The final project phase was used to roll out the punch stamp reader to more locations and to 

continue work on the integration into existing systems. Figure 10 depicts the integration of the 

punch stamp reader model and Figure 14 depicts the different locations at which the system is 

being implemented. A special emphasis was laid on a suitable workflow for machine-human-

interaction and the development & deployment of the corresponding User Interface. Cognition is 

realized by the integration of human knowledge and experience into the Hybrid Twin workflow, as 

propagated in the Industry 5.0 approach 1. Figure 11, Figure 12, and Figure 13 depict the user 

interface and the options for manual override by the operator. 

 
1 Industry 5.0 (europa.eu) 

https://research-and-innovation.ec.europa.eu/research-area/industrial-research-and-innovation/industry-50_en
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Figure 10: Integration of punch stamp reader 

 

 
Figure 11: User interface for billet ID reader 
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Figure 12: Editable plausibility checks and settings in user interface 

 
Figure 13: System alerts operator if reading was faulty 
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Figure 14:Novel billet/slab ID identification system instances at SAG and other SHS-entities 

Thus the billet ID identification system reached a full cognitive twin state as envisaged at the 

beginning of the project, completely fulfilling its contribution to task 2.4. 

  Anonymizer 

An in-house developed Deep Learning based system automatically detects people in the video 

stream of the blooming train surveillance cameras and pixelates them to prevent unnecessary 

surveillance of employees. Figure 15 gives a schematic overview of the anonymizer module and 

Figure 16 shows the output of the model. 
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Figure 15: Anonymizer – Schematic overview 

 

 
Figure 16: Anonymized employees (highlighted by green rectangle) in recorded video stream 

The green rectangle in the Figure 16 is only added in this document for explanatory reasons. The 

productive system does not highlight employees.  

The anonymizer system purposefully does not include human interaction as this would contradict 

the overall goal of protecting privacy rights and thus is constrained to a hybrid model combining 

1st principles and data driven components. The final project phase was used to deploy the 

anonymizer system and make it available as a service to internal customers. Videos or images can 
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be sent to the anonymizer system via queue, which returns the anonymized item via queue back 

to the sender. Figure 17 depicts the deployment of the system. 

 

 
Figure 17: Deployment of anonymizer model 

 

Thus the anonymizer system achieved all goals initially aimed for, completely fulfilling it’s 

contribution in task 2.4.  

  Blooming train billet tracking   

In the previous stages of the project, DFKI synthesized datasets for training the state-of-the-art 

object detection networks like Mask-RCNN and YOLO. Unfortunately, because of very challenging 

conditions for billet tracking (high level of occlusions, low level of individual billet characteristic, 

thin and elongates billet shape), tracking of individual billets via bounding box matching from one 

frame to the next frame is very unstable. Instead of using the “tracking-by-detection” approach, 

we propose to track billets with a temporal segmentation network with an architecture illustrated 

in Figure 18 .  The instance segmentation model proceeds on a per-frame basis, guided by the 

output of the previous frame, which gives additional data source for instance linking about several 

frames in an image sequence. To be more precise, the network receives as an input the current 

frame n in the video sequence together with the billet instance masks n-1 for the previous frame 

n-1. The network output is then predicted billet instance masks n for the current frame n. Since 

the billet positions in the current and previous frames differ only slightly, the billet linking task 

becomes much easier.  The segmentation results for all three camera views in Figure 19  shows 

that the network can propagate individual billet masks through the image sequence. 
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Figure 18: Spatiotemporal deep learning network approach. ResNet-Unet illustration adjusted from Charng et al. Deep 

learning segmentation of hyperautofluorescent fleck lesions in Stargardt disease. Scientific Reports 10 (16491), 2020. 

 
Figure 19: Snapshots from three blooming train cameras in Saarstahl’s Nauweiler rolling mill.  Billet tracking networks 

trained solely with simulated data track billet instances in real videos. 

 

One of the most prominent issues of the proposed network is occlusion handling and billet re-

identification. If an occluded area has large size, the network has difficulties to predict a correct 

billet ID after the billet re-appears behind the obstacle. We have tried to solve this problem in two 

different ways: by modifying the temporal segmentation network with amodal outputs and by 

post-processing the predicted mask using detection algorithms such as Mask-RCNN.   

 

Amodal temporal segmentation network 

Amodal completion is the ability to see an entire object despite parts of it being covered by 

another object in front of it. We modified the temporal segmentation network in Figure 18 by 

replacing the network output with amodal billet masks, Figure 20 . Amodal masks show not only 

visible but also hidden billet parts. The billet masks predicted by the amodal network show fewer 

billet ID switches, but the network is still not robust enough in the presence of large obstacles.   
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Figure 20: Amodal spatiotemporal DL network approach. Note that output masks are amodal - they show also hidden 

billet parts. 

 

Mask post-processing 

In billet detection experiments, we observed that Mask-RCNN performs well in handling 

occlusions. This advantage of Mask-RCNN can be used to reduce ID switches for covered billets. If 

a billet reappears after a large gap and its pixels have wrong IDs (see Figure 21 , left image), the 

pixel IDs can be corrected if Mask-RCNN detects that the pixels belong to the same billet (Figure 

21, right image). 

 
Figure 21: Left image: billet instance temporal segmentation without mask post-processing. Note that pixels of the same 

billet get wrong ID after the long gap. Right image: Billet instance segmentation with Mask-RCNN post-processing. 

 

The mask post-processing works best for the second camera view since all billets in the view move 

horizontally. This horizontal orientation gives all the billets tight aligned Mask-RCNN bounding 

boxes, which minimizes the likelihood of multiple billets appearing in the same bounding box. 

However, the mask-postprocessing with help of Mask-RCNN bounding boxes works very poorly for 

the third camera, where billets move diagonally. Due to the elongated shape and diagonal 

orientation, billets become very large bounding boxes, which increases the chance of detecting 

multiple billets within the same bounding box. However, this can be overcome by rotating the 

images prior to the inference such that billets move approximately horizontally. 
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Challenges for billet tracking 

We were not able to reach the deployable status of the tracking prototype, which seamlessly 

tracks the billets from the furnace to the end of the rolling street via all three cameras.  Even 

though the models show promising tracking results in individual cameras, we could not setup a 

robust linkage between three cameras because of camera disjoint views due to a lack of time after 

availability of the necessary technologies.  The continuation for this is now progressing afther the 

end of the project. Choosing other camera positions as depicted in Figure 22  and other camera 

optics can improve billet tracking. In such camera settings, billets in all three cameras would have 

approximately the same size and move horizontally, which simplifies usage of standard AI 

solutions for billet detection and billet tracking between the cameras, by needing less pre-

processing on the images, but at the costs of more specialized and expensive camera hardware 

and a less generalizable system. However, this would not have affected the challenge of handling 

occlusions, which was the main reason for the delay in the subtask. 

 

 
Figure 22: Modified Camera 1 and Camera 2 positions. 

 

The infrastructure for deploying the cv-based blooming train billet tracking system was all 

prepared. Once the technical development of the system reaches a deployable status, the 

prototype can be tested in production and the KPIs can be validated. 

Demonstrator – Cognitive Digital Twin  
  

The final stages of the different components are demonstrated in the final SAG Demonstrator 

video [5]:  

 

Demonstration script:   

  

1. Punch Reader 
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2. Blooming Train Billet Tracking 

3. Anonymizer 

 

 

Conclusion and Summary/Challenges addressed and 

remaining 
  

Initial challenges have been addressed as follows: 

Obtaining sufficient training data for data-driven Deep Learning Computer Vision approaches can 

be challenging. For the blooming train billet tracking, this has been approached by generating a 

3D-Model of the blooming train via photogrammetry and from this, rendering synthetic training 

data images by inserting synthetic billet instances into the 3D-Model. Challenges to counter in this 

approach were among others the size of the section of the mill train to be modelled, resulting in a 

large volume of high-resolution image data required for the photogrammetry approach, taking 

the lens distortion of the surveillance cameras into account in rendering synthetic images for 

training and modelling realistic synthetic billets into the images. 

Moreover, a new billet ID identification system has been developed in-house to replace the old 

unsatisfactory one and a Deep Learning based network has been trained to automatically 

anonymize people in image data, addressing legal and works council issues preemptively. 

The billet ID identification system is now fully integrated into the ambient productive systems and 

provides a graphical interface for the operator to enable the integration of the operator’s human 

cognition into the hybrid twin model, thus constituting a full cognitive twin. 

Similarly, the anonymization system is now deployed as a productive system realizing a full hybrid 

twin. Integrating a human operator into the loop would counteract the intent of the system to 

protect employees from unnecessary surveillance and was thus omitted. 

Aside from the successes in the two aforementioned subsystems of the SAG Use Case, also the 

more general problem when applying Deep Learning based CV-systems of obtaining sufficient 

suitable training data was approached by testing and establishing different workflows and 

routines for the generation of synthetic data, depending on the particular requirements for the 

task at hand. With these, the SAG Use Case also showcases best practices for implementing DL-

based CV solutions in industrial settings at an affordable workload and timespan. This is especially 

valuable for SMEs that lack the resources for extensive image collection and annotation. 

  

Challenges and requirements remaining are as follows:  

The third subsystem of the tracking system/SAG Use Case, the blooming train billet tracking 

system did not reach a prototype level suitable for testing at the production facility before the 

end of the project, but the foundation for the further development was provided.  

SAG planes to finish the technical development of the CV-based blooming train billet tracking 

system in-house after the end of the COGNITWIN project. SAG’s linked third party SHS has and is 
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hiring additional personnel for the IT department’s AI group in 2023. These additional resources 

will make it possible to overcome the remaining challenges and obtain a fully functional tracking 

system integrated into the production environment. 

 

 

Measurable KPIs and Final impact 
 

• Improve rolling line efficiency by 15% 

By identifying and reacting to situations likely to cause erroneous bars, the rolling 

line efficiency is improved already. Additionally, providing a linkage in data 

associated to individual billets throughout the production process will allow SAG to 

use advanced analytics to identify other causes for deviations in the production 

process and react to these by e.g., adapting rolling parameters for individual billets. 

Moreover, the final version of the tracking system should allow for further 

automatization of the rolling process in the blooming train altogether [although this 

will most likely exceed the scope of COGNITWIN project]. 

• Reduce energy consumption (15%) and process emissions (15%) 

Each occurrence of an erroneous bar means a new billet needs to be cast and rolled, 

leading to additional energy consumption and process emissions. Moreover, the 

return transport to the steel mill for remelting has further impact on process 

emissions. Thus, by identifying and reacting to situations likely to cause erroneous 

bars, this additional impact can be reduced. Moreover, providing a linkage between 

data associated to individual billets over the entire process will allow SAG to use 

advanced analytics to identify other causes for deviations in the production process 

and react to these to reduce the level of scrap from the production goods even 

further [i.e., the level of billets/rolled bars with too severe deviations to be sold to 

the costumer that are remelted].   

• Automatic error detection 

At present, there is no automatic detection of situations in process that will likely 

lead to e.g., bent bars or of erroneous bars in assigned section. Erroneous bars are 

identified manually. The target is to identify over 95% of erroneous bars 

automatically and to identify over 90% of situations likely leading to erroneous bars 

automatically. As to the tracking: At present, around 95% percent of all billets enter 

and leave the mill train sequentially, however, since there is no tracking system 

installed so far, it is not possible to safely link the sensor data obtained in and after 

the mill train to data associated to a particular billet ID obtained earlier in the 

production process. The goal is to track at least 98% of all billets successfully 

throughout the mill train and recognize when tracking failed such that at most for 

the two billets in the non-continuous mill train section at that time data from later 
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in the process cannot safely be linked to one of the two respective billet IDs, only 

to the two IDs together/two-ID-tuple.  

 

The  full KPIs evaluation is in progress as  the CV-based blooming train billet tracking system 

becomes  deployable in production for further use. However, we still expect that a tracking 

system as planned for this use case would meet those KPIs. 

Although two out of three subsystems of the tracking system reached their final stage and are 

fully deployed in production as initially envisaged, the full KPIs will be further validated as all three 

systems next will be deployed together. 

 

The final Saarstahl pilot demonstrator is described in the COGNITWIN Toolbox [1] with the 

SAG pilot digital twin pipeline description [4] and the final SAG pilot demonstrator videos 

[5] .  This is also further described in the final public deliverable D6.4 Best "Digital Twins" 

practices report [2]. 

 

3  SIDENOR  – Pilot  
 

Introduction to SIDENOR & Process description 
  

Sidenor is one of Europe's leading steel manufacturers. The core business of SIDENOR is to recycle 

steel scrap and transform it into bars of more than 200 different steel grades the production flow 

chart depends on the customer specification and requirements. All the heats produced in Sidenor 

has 3 steps in common, the ones belonging to the melting shop (Figure 23), which are Electric Arc 

Furnace (EAF), Secondary Metallurgy (SM) and Continuous Casting (CC). 

  

1. Electric furnace (EAF): the scrap is melted and once the liquid steel has the defined 

characteristics it is tapped into one ladle. 

2. Secondary metallurgy (SM): Ferro additions are added to the liquid steel for obtaining the 

desired chemical composition. Moreover degassing, deoxidizing and inclusions 

conditioning control is done in this step. A tight control of the liquid steel temperature is 

very important.   

3. Continuous casting (CC): once the liquid steel fits the customer specifications, it is necessary 

to solidify it. During this process the ladle is taken to the CC machine and the liquid steel is 

poured into the tundish and casted to billet or bloom format.    
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The liquid steel is contained during the whole production period in the ladle. Therefore, the ladle is 

very important. The ladle is covered internally with refractory bricks which are the ones in contact 

with the liquid steel. The ladle refractory wears heat by heat and it is very important to measure 

the erosion to avoid safety problems. 

 

 
Figure 23: Steelmaking process in SIDENOR's production plant at Basauri, Spain. 

 

Pilot challenges 
 

Sidenor’s main goal is to extend the life of the ladle refractory. The ladle consists on several 

refractory layers which wear in different way depending on their nature.   

Refractory bricks located on the ladle walls must withstand the chemical attack produced by the 

slag. Moreover, the refractory must be stable when talking about avoiding reoxidation of the liquid 

steel and/or generating inclusions.  

The ladle refractory lining (Figure 24) consists of: 

- Wear line bricks, made of MgO-C. They are in contact with the liquid steel. 

- Permanent line bricks, made of high Alumina or Magnesia. They work as safety lining. 

  

The bricks in contact with the liquid steel are replaced after 1 life cycle, but on the contrary the 

safety lining is replaced only once per year. 
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Figure 24: Ladle lining profile 

 

The ladle is divided in different areas depending on the refractory configuration and/or process 

requirements. These are barrel/wall, transition and slag line. The refractory bricks are different 

depending on the position due to the differences on the chemical attack or mechanical 

requirements. These both mechanisms are the ones who erode the ladle. The principal mechanisms 

are:  

- Chemical attack: Corrosion due to the contact of the bricks with the slag of the liquid steel 

- Mechanical erosion: the liquid steel is stirred to homogenize the chemical composition and 

the temperature. This upward flow contributes to the erosion of the bricks   

 

The wear of the refractory bricks is not equal around all over the ladle. Ladle wall nearest to the 

porous plug wears faster due to the liquid steel flow caused by the gas stirring. The bricks located 

on the slag line wears faster than the ones located bellow, due to slag chemical attack. 

  

Refractory erosion cycle 

The ladle life cycle or campaign is the number of heats produced with the same refractory lining. 

The operators must check visually the refractory to evaluate if the ladle condition is good enough 

for one more heat or not. This inspection is made after each heat. The result of the visual inspection 

added to the checking of several production parameters determine the end of the refractory life. 
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The final decision is taken based on the experience and the background knowledge. More often 

than desire, when a ladle is removed for repair or disposal the worker realized that the remaining 

thickness of the bricks is still useful for operation, implying impact on both productivity and costs. 

  

The working cycle of ladle in the melting shop is cyclic. It rotates from preheating to tapping to SM 

and finally to CC, and preheating again. During the periods when the ladle is empty and up to the 

tapping, thermo-mechanical stresses are the main erosion cause, due to the very intensive 

temperature variations and to the mechanical impact of liquid steel when filling the ladle. On the 

contrary, during in-ladle metallurgical operations when liquid steel and slag are in contact with the 

refractory, thermo-chemical stresses are the main causes of erosion.  

  

Another aspect that made difficult to development a better understanding of wear phenomena was 

the difficulty to get reliable data. SIDENOR measured manually the remaining thicknesses of the 

bricks and checked the refractory lining visually in hot condition. The measurements was done on 

several rows of the lining during the demolition or repair of the ladle after each campaign (Figure 

25). 

 
Figure 25:  Section of the ladle displaying the remaining thickness   

 

Refractory life control  

SIDENOR works with several ladles at the same time. As mentioned above the refractory bricks are 

made of MgO-C, which are eroded in every produced heat. After a certain number of heats (1 

campaign), if refractory lining is below a defined minimum thickness value, risk of liquid steel 

leakage appears. Therefore, the possibility of causing severe health hazards and production 

shutdown is too high.   

  

This is the reason why, to assure the correct conditioning of the refractory lining a worker checked 

the refractory after each produced heat. The technician decided whether to repair or to completely 

demolish the existing refractory lining. The final decision was made based not only on the by visual 

inspection but also on checking several production parameters.  

As the decision was taken by a person, the criteria were not the same for all the technicians, and 

sometimes they could decide to repair or replace the refractory bricks when this was not necessary.  
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Some figures related to SIDENOR’s production are: 

- 10 ladles in operation are used at the same time. 

- The average estimated erosion of the refractory per heat is 3mm/heat. 

- Average heats produced until reparation [33-46] and until demolition [69-82]. 

- The bricks on the bottom ladle are replaced at the end of each cycle. 

- If during the visual inspection the thickness of the bricks is ≤50mm, the refractory is 

changed. 

 

 

Pilot specific aim 
The aim was to develop ML/AI models with cognitive capabilities that predict when the refractory 

lining in the ladle needs to be replaced or repaired. 

The developed models can predict with high accuracy (P<1e-6) when a ladle must be taken out of 

production to repair. 

   

IoT platform and architecture in use 
 

Architecture of the data systems 

The architecture of the data collection and storage systems is shown in Figure 26. The collected set 

of data, which have different source and nature, are described in the next paragraphs. 

 
Figure 26 Architecture of the Sidenor data system 

 

The steelmaking MES system Figure 26 centralizes all the information regarding the production 

process as heats, scheduling, requirements and programming. The main inputs for the MES systems 

regarding the programming activity are the ERP from the company (a SAP system) and the manual 

inputs described below. The SAP system stores customer’s specification and requirements. The 
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production sensors (PLCs and SCADAs) feed with different types of production data and reports the 

MES systems. MES system stores data collected manually too. As an example, the results obtained 

in the chemical laboratory from steel and slag composition, or the measurements done of the ladle 

refractory thickness. 

 

Data about ladle refractory 

 

As explained above, the ladles used for steelmaking production are repaired or demolished after 

several heats to assure no breakout. The repair consists of changing the bricks of the slag line and 

transition zone. These bricks are replaced by new ones, but they are measured row by row before 

removing, just to know the real thickness and wear. The measurement results are included in file 

(Figure 27.a) where the history of the ladle is registered. The most affected areas are highlighted, 

as well as the zones where the refractory has been optimised (in green). 

 

   
(a)                                                                                     (b)  

Figure 27: Remaining thickness of (a) ladle reparation; (b) Ladle demolition 

The same measurement is done at the end of the ladle life (Figure 27.b). In this case, each row is 

measured and the remaining thickness is included in the database. 

 

Another data source are the steelmaking parameters, as for example: time of the ladle with liquid 

steel, steel grade, vacuum time, etc.... These data are heterogeneous and were treated to obtain 

the information needed for the developed models. Two types of production data were studied: 
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- Acyclic data:  process parameters taken heat by heat. See Table 4 

- Cyclic data: parameters measured and recorded with a time-series data for each heat. The 

frequency of data collection is 1sec. 

 
Table 4 Acyclic data: heat number, production date, steel grade and temperature at tapping 

The data collected (cyclic and acyclic) were coupled to set up the database. The data model seeks 

effects from changes in the process data over the wear measured in the bricks. The short-term 

prediction works as an advisory system recommending ladle repair when residual thickness gets 

below a safety level. The combination of the data stored from ladle history can explain the rich data 

obtained with the manual measurement of the ladle profiles. As summary, Table 5 lists the data 

used in COGNITWIN and how to manage it. 

 

Data source Overview COGNITWIN Integration  Granularity of data 

MySQL Level 1 data from PLCs Yes, TBD 1 second  

Informix Level 2 data – MES Yes, TBD Heat (Production batch) 

ERP SAP No Heat (Production batch) 

Excel Refractory brick measurements  Yes, files When ladle is removed for 
repairing (upper part) or 
demolition (complete) 

Table 5 Overview of data source in Sidenor variables 

 

Data transfer 

 

The production parameters were sent to an FTP server so that all the partners involved in SIDENOR’s 

pilot have access to them and can work with them. The acyclic data were sent to the server once a 

ladle was emptied (heat casting process is finished), and the cyclic data were sent once per week.  

The initial idea was to send the cyclic data at the end of each heat, but due to SIDENOR’s 

cybersecurity politics this was not possible. This is the reason why the data are sent to the FTP 
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server twice per week. The ladle wear is calculated at this moment and the result obtained are new 

inputs for calculating till which heat could be used the refractory. 

 

 

Physics based (PB) model development 
 

A physics-based model was developed for SIDENOR’s pilot. Its objective was to provide information 

about refractory erosion, for a given ladle, from heat to heat. The model has prediction power as 

standalone Digital Twin (DT), but more important as part of a Hybrid Digital Twin (HT) and, finally, 

as part of a Cognitive Digital Twin (CT).   

  

The overall goal was to predict if a ladle can be used at least one more time before relining. The 

model was built applying the methodology of Pragmatism in Physics-Based Modelling (PPBM). 

  

The ladle operations involve many complex phenomena, where the most important are: transient 

thermal conduction, convection in liquid steel and liquid slag due to inert gas purging, waves set up 

by the bubble plume, natural convection in the steel, high power slag heater, slag, metal, refractory, 

thermal radiation, refractory dissolution, phase enthalpies of slag and metal (melting/dissolution), 

and handling of the composition and temperature dependent solubility of refractory. 

  

Although the implemented Python model can be classified as a physical model, it requires process 

data to give accurate predictions. The model is simulating the actual process and the starting values 

and to a certain extent, the boundary conditions are taken from the data. A detailed description 

follows: 

The modelling approach described above can, in principle, be used to simulate all operations 

(thermal operation, refining processes, and lining erosion) of a lifetime of a ladle, except for the re-

lining process itself. Even though the focus has been on lining erosion during the refining stage, the 

whole cycle is important to get a realistic temperature in the ladle wall at the start of the refining. 

This is a function of the history of the ladle, and we have to note that no experimental data is 

available for the wall temperatures. 

 

To run a simulation of a given heat, it is a relatively limited amount of data that is needed.  

1) The total amount of steel that was in the ladle during the refining 

2) The total amount of slag that was in the ladle during the refining. This was first done in a simple 

way by using the acyclic data giving the totals. Later this was extended to use data where the time 

and amount of each individual addition was done. 

3) The added electrical power, purge gas flow rates, vacuum pressure, all as a function of time. 

4) The time of each heat. 
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In addition, we are using the measured temperature in the steel phase. This is reported at 1 second 

intervals, but the number of actual measurements is limited to a handful for each heat. The orange 

line in Figure 29 is a result of drawing straight lines between some very few experimental points. 

 

In addition, the model requires data on density, heat capacity and thermal conductivity of all 

materials. This is partly taken from literature and is partly provided by SIDENOR. 

 

We see a simulation result demonstrating the predictions of erosion profiles and refractory 

temperatures Figure 28. The inner refractory lining is showing severe erosion at level of the slag 

line. As a result, a hot spot appears at the outer steel shell, indicating the wear of the refractory. 

This opens for the possibility to combine the model with thermal images and machine learning to 

get a very firm understanding of the erosion state inside the refractory. This possibility will not be 

further exploited in the COGNITWIN project but may be pursued in new projects. During the 

development physical property data had to be tuned to the industrial observations. Good 

agreement with measured steel temperatures could only be obtained by significant increase in the 

thermal conductivity of the refractory and insulation materials. This indicates that steel may 

penetrate in between the refractory bricks (depends on wetting, liquid hydrostatic pressure, gap 

sizes). This phenomenon can be included into the model in the future and may explain thermal 

images that show hotter spots in the lower part of the refractory. 

 

The thermal predictions are important input to the refractory erosion model, as the solubility of 

refractory into the slag is temperature dependent. In addition, the predicted refractory 

temperatures at the time of filling fresh steel into the ladle, is the most important parameter for 

assessing thermomechanical stress erosion.  There is no intension to predict this due to the 

complexity of the problem. However, these predicted temperatures may become a weighing factor 

for a machine learning algorithm to assess the thermomechanical stress contributions. We expect 

that the thermomechanical erosion contributions are more evident at the lower part of the ladle as 

this part is more heavily exposes to the hot metal during tapping into the ladle. 
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Figure 28 The figure shows a vertical section of a specific ladle refractory (Ladle 4, campaign 51,, use number 68, 2019).. 

Left figure shows the outer shell surface temperature (range 810 – 8600 K) and right figure shows erosion profile and 

refractory temperatures, all at 100 minutes after filling steel into the ladle. The erosion profile is the predicted profile at 

the time of demolition. 

We see an example where the model predicts the temperature well in Figure 29. The prediction has 

several undulations which are due to combinations of additions (cooling the ladle) and heat 

addition. The measured data consists of 5 points (the first point is not real) and gives a snap-shot of 

the temperature at the time of sampling. As the model assumes perfect internal mixing in the metal 

and slag, and the sampling is taken at a specific point in the ladle, this accounts for some uncertainty 

in the comparison. 

 

The model could simulate a complete lifespan of one ladle. All the ladles use in Sidenor during 2019 

were simulated by the model and compared to operational data. The simulations handled the 

transient evolutions of approximately 5000 ladle uses and took around 8 hours on a single CPU.  
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Figure 29 The experimental (points) steel temperature, the predicted steel temperatures and added energy by the slag 

heater (heat 203655, Ladle 5, campaign number 69, use number 25, 2019). 
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Figure 30 Prediction of the evolution of the refractory lining as it is eroded from use to use. The average is for the entire 

lining, while the maximum value is dominated by the position of the slag layer. 

 

By running the model over complete campaigns we can compare the predicted erosion profiles with 

production data. In this case, we begin from the first heat after building the ladle, and simulate each 

heat. Both thermal and erosion history are accumulated until the operational data tells when the 

ladle must be repaired. Then, the refractory is repaired in the model, as done in production. The 

ladle is the restarted, using the repaired erosion profile, and run again until the last heat before 

demolition. Example data from the demolition is compared with predictions in Figure 31 and Figure 

32. The erosion data is obtained by dividing the ladle into two halves and recording the maximum 

erosion for each of the halves. Quite high erosion is observed in the upper part of the ladle, where 

the refractory is not covered by the steel nor the slag. This is a special type of erosion that is not 

included in the model and therefore we use only brick numbers from 5 to 35 for the overall 

comparison, coming in next paragraph. 
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Figure 31 Comparison of predicted versus measured eroded thickness for Ladle 11, campaign 80, 2019. 

 
Figure 32 Comparison of predicted versus measured eroded thickness for Ladle 5, campaign 71, 2019. 

 

The overall comparison between the predicted erosion and measured erosion is seen in Figure 33 

and Figure 34. Two outliers A and B can be observed. Each point is the result of multiple uses of a 

ladle, until demolition has happened (typically 80 – 100 uses). As the observations are based on the 

most eroded positions at each level and we compare with a predicted average erosion, the model 

is designed to underpredict the data by 10 %.The outlier points may be understood by further 

analytics, including anomaly detections. However, changes in the quality of refractory bricks are 

hard to monitor and may influence refractory degradation without knowledge. 
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Figure 33 Comparison between measured and predicted erosion thickness at time of demolition of wear lining. Symbols 

represent different ladle numbers. 

 

 
Figure 34 Close-up of comparison between per heat averaged measured and predicted erosion thickness at time of 

demolition of wear lining. Symbols represent different ladle numbers. 

 

The results shown above show that we have a model that can reproduce data in an acceptable 

manner and may contribute significantly to supporting the operators in deciding whether one new 

use of the refractory is recommended or not. 

 

Video demonstration of physics based model 

 

A video demonstrating the model may be found here. 

 

 

https://www.dropbox.com/s/8duafqeos41x6cb/PPBM_Sidenor_2023.mkv?dl=0
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StreamPipes 
 

This section provides high-level overview of industrial pipelines created for the Sidenor pilot using 

the StreamPipes platform. 

First, it shortly describes StreamPipes  – its purpose and features. Afterwards, it provides overview 

of created pipelines with elements that were used, both built-in and custom-built, alongside their 

brief description. 

 StreamPipes 

 

Apache StreamPipes is a self-service (Industrial) IoT toolbox that enables non-technical users to 

connect, analyze and explore IoT data streams. It provides a set of built-in elements and an editor 

that enable users to easily create and manage pipelines. Additionally, it provides means of creating 

custom pipeline elements, further increasing its functionalities and applicability. 

StreamPipes’ core features:  

• Connecting with IoT data – Data Sets and Data Streams types of pipeline elements enable 

users to connect data with the following pipeline elements, via the built-in StreamPipes 

Connect library with support for generic protocols such as HTTP, Kafka, MQTT, Files or 

specific adapters for open data sources. 

• Analyzing data – Data Processors type of pipeline elements enables users to process and 

analyze data using a real-time algorithm toolbox, ranging from simple filters up to pre-

trained Neural Networks. Some of the included Data Processors are: Trend Detection, Peak 

Detection, Trigonometry Functions and Frequency Calculation. 

• Exploiting data – Data Sinks type of pipeline elements enables users to trigger notifications, 

send data to third-party systems or visualize data. Some of the included Data Sinks are: 

Apache Kafka, Apache CouchDB, RabbitMQ and Email, PostgreSQL. 

Pipeline #1 (acyclic data) 

The main purpose of this pipeline is to create a path from the SIDENOR acyclic sensory data, to the 

Neural Network output, depicting the state of the tool through several pipeline elements. In 

addition, this pipeline triggers notifications when the value of a particular property goes above a 

certain threshold, displaying time between consecutive heats and information about each heat. 

These pipeline elements include elements that simulate the connection between acyclic sensory 

data and the rest of the pipeline (Data Stream – marked in yellow), elements for processing, 

including one with the Neural Network (Data Processors – marked in green) and elements that 

provide output of the pipeline – visualization, notifications, etc. (Data Sinks – marked in blue) 

(Figure 35). 

https://streampipes.apache.org/
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Figure 35 Developed pipeline (arrows represent data flow)  

 

The first pipeline element, named SMS for Sidenor Measurements Simulation, simulates connection 

between acyclic sensory data and the rest of the pipeline, by reading row-by-row of .csv file. Each 

row represents one heat and contains values of parameters for said heat. Simulates real-world 

situation in which, after each heat, data measured for said heat would be sent to the pipeline. 

The first element in the top row, named SMB for Sidenor Measurements Buffer, represents a buffer 

that orders heats according to ladle, cycle and phase they come from. Our Neural Network requires 

input that is calculated based on all heats from the same ladle, cycle and phase. For each new heat, 

this element adds it to the list that holds heats that came from same ladle, cycle and phase and 

then forwards the entire list to the next element. 

The following element in the top row, named FC for Factored Contributions, serves as a pre-

processing element that prepares forwarded data for inference done by next pipeline element with 

integrated Neural Network model. This element calculates the “contribution” of each parameter to 

the wear of the ladle and outputs a vector where each value represents the “contribution” of the 

corresponding parameter. 

Said vector represents input to the KeNN (Keras Neural Network) element. It represents input of 

both the mentioned pipeline element and the Keras Neural Network model loaded within it. After 

inference, NN outputs class which states the condition of the ladle (lower/higher degradation than 

predefined threshold). This output value is forwarded to the visualization element. 

The first element in the second row, named Numerical Filter, filters events (heats, in this context) 

based on the value of the selected numerical property. In this case, it filters heats based on the 

consumed electricity (Kwh_rr) - if a heat has the value of the consumed electricity greater than the 
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specified threshold, it gets forwarded to the next element (notification element), otherwise, it gets 

ignored. 

The first element in the third row, named Task Duration, computes the time difference between 

two events (heats, in this context). It forwards the measured difference to the visualization element. 

The last element in the second row, named Notification and marked with bell, displays a notification 

in the UI panel of StreamPipes. In this pipeline, it displays a notification regarding heats that have 

consumed an electricity value above a certain threshold (Figure 36). 

 

Figure 36 Displayed notification 

The rest of the elements colored in blue, named Dashboard Sink, serve as a visualization tool. They 

visualize data streams in the StreamPipes dashboard (Figure 37). 

 

Figure 37 Visualization of outputs of Keras Neural Network (Brick Degradation Class), Task Duration (Time Between Heats) 

and Sidenor Measurements Simulation (Ladle Information, Kwh_rr) 

Pipeline #2 (cyclic data) 

 

This pipeline is meant to process cyclic (transient) sensory data using various analytical methods. 

Currently, we have implemented an element that calculates MEWMA (Multivariate Exponentially 

Weighted Moving Average) over input data and forwards its output.  
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This pipeline’s elements include: an element that simulates the connection between the cyclic 

sensory data and the rest of the pipeline (Data Stream – marked in yellow), element(s) for analytical 

processing (Data Processors – marked in green) and element(s) that provide output of the pipeline 

– visualization (Data Sinks – marked in blue) (Figure 38). 

 

Figure 38 Developed pipeline (arrows represent data flow) 

 

The first pipeline element, named SUCM for Sidenor Unbatched Cyclic Measurements Simulation, 

simulates the connection between cyclic sensory data and the rest of the pipeline. Each event 

represents cyclic data for an entire heat, hence unbatched – not divided into batches. This first 

element simulates real-world situation in which, after each heat, the data measured for said heat 

would be sent to the pipeline. 

The following element, named SM for Sidenor MEWMA, receives cyclic data for an entire heat and 

calculates MEWMA for it, outputting result of its execution, including detected anomalies along 

with the information which parameters caused it. 

The third element, named SC for the Sidenor CEP, performs Complex Event Processing (CEP) using 

the Siddhi engine. It performs a CEP query on the received data. It applies complex logic to the 

“main” outputs of this pipeline (results of various analytical methods). In addition, this element 

provides the point of connection for this and the previous pipeline. Complex Event Processing can 

be applied on outputs of multiple pipelines connecting them into one complex pipeline.  

The pipeline elements at the end are used for visualization of the performed analysis. At the 

moment, we are presenting raw data, as it is received (JSON format) ( 

Figure 39). 
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Figure 39 Raw JSON representation of MEWMA output 

Knowledge Graph Based Solution for Cognition 
 

An advantaged functionality of Cognitive Digital Twin (CT) is "cognition": a digital twin (DT) able to 

"reason" and "act" taking into consideration of the data as well as the states and results of other 

hybrid twins (HT). To enable cognition, the CT not only composes the data and information from 

DTs and HTs but also extract knowledge from the domain expert in order to perform self-learning, 

situation analysis and decision-making in the same way that the human operators handle the 

information. Therefore, knowledge representation is an important requirement to support this 

vision. The knowledge must be integrated and represented formally so that the CT can process, 

analysis and reasoning automatically. In this pilot, we employ semantic knowledge graph 

technologies for knowledge representation. Accordingly, SINDIT2 (SINTEF Digital Twin Framework) 

- a knowledge graph based Digital Twin Framework – was employed to achieve the "cognition" for 

SIDENOR pilot.  

 

 
2 https://github.com/SINTEF-9012/SINDIT 
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Figure 40 Information Model of SIDENOR Pilot. 

Figure 40 illustrates the information model of the pilot which contains both acyclic data (e.g., 

process parameters) and cyclic data (e.g., timeseries sensor data). The data was used by hybrid 

digital twins (e.g., physical models, hybrid models) to simulate and make prediction about the 

conditions of the ladles. The input data as well as output of these hybrid models are integrated into 

SINDIT in order to support automatic reasoning and decision-making support for the human 

operator.   

 

Figure 41 illustrates the corresponding SINDIT knowledge graph which contain the Ladles (blue 

node), Ladle Use (pink), Heats (dark green), Alloy Additions (purple) and prediction models output 

(light green). To import the knowledge graph to SINDIT, we develop mapping rules using RML3 to 

 
3 https://rml.io/specs/rml/ 
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map structural data from relational database to semantic knowledge graph. Particularly, tools such 

as Mapeathor4 and Morph-KGC5 were employed to develop and execute the mappings.  

 

 
 

Figure 41 SINDIT Knowledge Graph 

 

Domain expert knowledge for making assessment (e.g., whether to repair or demolish the ladles) is 

also integrated into SINDIT under the form of reasoning rules (IF-THEN rules). Such domain 

knowledge was illustrated in Figure 42. Figure 43 is a simplified version of a rule to inform the 

 
4 https://github.com/oeg-upm/mapeathor 
5 https://github.com/morph-kgc/morph-kgc 
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operator to carefully analyse the ladle before using it for the next heat as it is reaching the repair 

or demolish cycle. Figure 44 is another example of the reasoning rule to notify the operator 

whenever the predicted thickness of the ladle is below operational range (e.g., 50 mm). 

 

 
Figure 42 Domain Expert Knowledge for making decision on the Ladle. 

 
Figure 43 Reasoning Rule: Recommend analysing the ladle if the use number is within a specific range. 

 

 
Figure 44 Reasoning Rule: Recommend to repair or demolish the ladle if the predicted thickness is below 50mm. 

The reasoning result is also integrated into the knowledge graph and visualised in a separate 

window in SINDIT in order to support the operator to make decision on the ladles after every heat 

as can be seen in Figure 45. 

[?PredictionModel, :hasRecommendAction, "Analysis Required" ] :- 

[?PredictionModel, :assetType, "PredictionModel"], 

[?PredictionModel, :FromHeat, ?Heat], 

[?Use, :UseInHeat, ?Heat], 

[?Use, :UseNum, ?UseID], 

NOT [?PredictionModel, :hasRecommendAction, "Repair or Demolish" ], 

FILTER((?UseID >= 33 &&  ?UseID <= 46) || (?UseID >= 69 &&  ?UseID <= 85))  

[?PredictionModel, :hasRecommendAction, "Repair or Demolish" ] :- 

[?PredictionModel, :assetType, "PredictionModel"], 

[?PredictionModel, :hasPredictionResult, ?Result], 

[?Result, :hasPredictionValue, ?value], 

FILTER(?value <= 50) . 
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Figure 45 Properties of selected nodes shown in a separate window: (a) Heat node and (b) Prediction node. 

 

FA³ST (Fraunhofer AAS Tools for Digital Twins) Service 
Fraunhofer IOSB has developed a digital twin for a ladle based on Asset Administration Shell (AAS) 

specifications (“Details of the asset administration shell - part 1 version 3.0rc01,” [Online]. 

Available: https://industrialdigitaltwin.org/wp-content/ 

uploads/2021/09/07 details of the asset administration shell part1 v3 en 2020.pdf; “Details of the 

asset administration shell - part 2 version 1.0rc02,” [Online]. Available: https://www.plattform-

i40.de/IP/Redaktion/EN/Downloads/Publikation/Details of the Asset Administration Shell Part2 

V1.html). The digital twin was developed by applying the following steps: 

1. The AAS-compliant digital twin type 1 was modeled, i.e. the AAS model was created as a 

file. The AAS is a static file serialized according to Part 1 of the AAS specification. We used 

the AASX Package Explorer (https://github.com/admin-shell-io/aasx-package-explorer) to 

model the digital twin manually and stored it as a JSON file.  

https://industrialdigitaltwin.org/wp-content/
https://github.com/admin-shell-io/aasx-package-explorer
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To develop a model, we analyzed all the data types provided by Sidenor. This included not only the 

acyclic data, cycle data, and lining data, but also the created models (e.g., physics-based). 

Additionally, we analyzed the existing AAS submodel templates 

(https://industrialdigitaltwin.org/en/content-hub/submodels) to be as standard compliant as 

possible.  

The AAS model contains (i) general information about the ladle, such as the number of heat runs, 

the original thickness of the bricks, or information from inspections; (ii) operating parameters of 

the current and historical heat runs of the ladle; (iii) prediction results of the simulations, (iv) meta-

information about the simulations used, etc. We used the AAS properties to represent single 

measurement per parameter. To represent the time-series measurements per parameter, collected 

every second during each ladle usage, we used the template “SubmodelTemplate Time Series Data” 

(SMT). This is the AAS submodel template currently in development that aims to provide a 

standardized metamodel and API for modelling time series data. In Figure 46 the AAS model is 

partially shown within the AASX Package Explorer.

 
Figure 46:AAS model opened in AASX Package Explorer 

 

 

  

2. We used the FA³ST Package Explorer Converter 

(https://github.com/FraunhoferIOSB/FAAAST-Package-Explorer-Converter) to convert the 

Sidenor AAS JSON file created with AASX Package Explorer in step 1 to a FA³ST-compatible 

https://industrialdigitaltwin.org/en/content-hub/submodels
https://github.com/FraunhoferIOSB/FAAAST-Package-Explorer-Converter
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version. We note that the AASX Package Explorer uses AAS meta model v2.x while FA³ST 

uses v3.x.  

  

3. We used the FA3ST service (https://github.com/FraunhoferIOSB/FAAAST-Service) to create 

the AAS compliant digital twin type 2. The AAS is a software component that provides a 

standardized API according to Part 2 of the AAS specification. Information is exchanged 

automatically via external software that communicates with the AAS via the API.  

This means that we created the software representation of the ladle. This was done by starting the 

FA³ST service with the AAS model created in step 2. The result is the digital twin for Sidenor with an 

AAS-compliant digital twin API interaction of the digital twin with the outside world. More 

information on FA3ST could be found in D4.4 deliverable.  

  

4. The final step was to ensure that the digital twin for Sidenor is always synchronized with 

the underlying physical asset, i.e. the ladle. To do this, we connected the digital twin of 

Sidenor developed in step 3 to the data source. In this case, this was the InfluxDB provided 

by Nissatech, which contains real-time data. The connectivity was achieved by (i) creating 

a configuration file that defines how to access the data stored in the external database and 

by (ii) starting the FA³ST Service with both the Sidenor AAS model and the configuration 

file.  More information on that could be found in the D5.4 deliverable.  

  

The key advantage of the AAS-compliant digital twin for Sidenor is the improved interoperability 

and thus the reduced effort required to integrate the digital twin into the potential applications. 

 

Measurable KPIs and Final impact 
 

The model gives an objective prediction which takes into account the history of the ladle. Up to the 

beginning of the project the refractory was rebuilt after 69 to 81 heats, but we detected that in 

some occasions the ladles could have worked longer. In other words, using the model developed 

within the COGNITWIN, we are now able to predict if the ladle's lining will last one more heat taking 

into account the safety limits defined by Sidenor.   

 

Due to cybersecurity restrictions, the possibility of giving Nissatech access to Sidenor’s production 

data was forbidden so the partners working in this WP agreed to send the data to a FPT server. 

Moreover, the possibility of sending the production data and how to manage the files took longer 

than expected. Nevertheless, the problem was solved and the model was able to run online with 

the cyclic and acyclic production data sent.    

 

 

https://github.com/FraunhoferIOSB/FAAAST-Service
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After a deployment delay at the end of the project, the cognitive digital twin pipeline has been  

installed with Sidenor to support the future refractory wear decision making 

 

The estimation was calculated taking into account the results obtained with the predictive model. 

The model run the heats already produced and these results were compared with the real 

measurements. The improvement on the refractory life could reach 14% what means saving around 

54.000€ per year, taking into account the refractory cost of 2021.   

 

 
Figure 47:Comparison between measured and predicted refractory thickness 

 

 

Conclusion and Summary 
 

The Hybrid Digital Twin with enhancement to a Cognitive Digital Twin has in particular taken 

advantage of the use of a physical model combined with a data driven model.  As part of this 

development based on  PPBM (Pragmatism in physics-based modelling), a physics-based model for 

ladle lining lifetime has been developed. The model is using physical conservation principles and 

has been tuned to operational data. In addition to its prediction capability, the model has been 

proven useful to filter or clean data which does not comply with the basic conservation principles. 

ML and regression models have been explored, but these model does not have the capability to 

explain observations without excessive amounts of data.  

 

A specific challenge with ladle lining erosion was that no quantitative state of the refractory exists 

except at the time of lining repair (only part information) and the time of ladle demolition 

("complete" information). The "complete" information consists of a measurement of the most worn 
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brick at each brick row in the ladle. This is done for each of two half sectors of the ladle.  The average 

erosion and the variation of erosion at each height has recently been mapped, partly because of 

question resulting from the PPBM-based model. This information will be very useful for further 

development of the model. The model predicts erosion profiles which are ensemble averages. 

Accordingly, a safety margin has to be applied. Some uncertainty in the data must be acknowledged 

and the model prediction is therefore taken as a recommendation for the ladle operator. 

 

The model has been integrated into a StreamPipes-based application, where both historic and 

online process data is available. Prediction is here made available to operators. Historic and current 

prediction data is saved in the database and is available for other tools. One specific tool which has 

been explored is a knowledge-graph based solution for adding new cognition elements. 

 

The work has led to new understanding about phenomena that impact outer surface temperatures 

of a ladle, and quantitative information about how much different phenomena contribute to ladle 

lining erosion has been obtained. This will help operators the better understand what their decision 

windows are. 

 

The developed model have several possibilities for further improvement and will have value for 

many other steel companies. The generic version of the PPBM-based model is available at 

github.com6. This model has been included in the final Sidenor digital twin pipeline. 

 

The final Sidenor pilot demonstrator is described in the COGNITWIN Toolbox [1] with the 

Sidenor  digital twin pipeline description [6] and the final Sidenor  demonstrator video [7] .  

This is also further described in the final public deliverable D6.4 Best "Digital Twins" 

practices report [2]. 

 

4  NOKSEL  – Pilot 

Introduction to NOKSEL & Process description 
NOKSEL is one of the leading steel pipe manufacturers of Turkey with its plants located in 

Iskenderun at the region Hatay and in Hendek at the region Sakarya since 1987. Noksel serves 

domestic and international markets by manufacturing spiral welded steel pipes for petroleum, gas, 

water and piling industries.  

 

Turkey is the biggest producer of spirally welded steel pipe in Europe with production capacity of 

5.2 million tons of steel pipe per year. In Turkey NOKSEL continuously is in the First Biggest Industrial 

 
6 https://github.com/SINTEF/refractorywear 
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Companies List issued research by İstanbul Chamber of Industry since 1996 b and the second largest 

in company steel pipe industry. Besides NOKSEL Turkey, Noksel España S.A. was established in Spain 

in 2008. All manufacturing plants of NOKSEL are planned mainly for the production of the pipes in 

API standard. NOKSEL produces pipes in accordance with AWWA, DIN, BS, ASTM, ISO, EN, UNI and 

AFNOR standards to serve the petroleum, gas, waterline and construction industries. With a full 

commitment to superior performance, the Company constantly strives to ensure that its quality 

policies and principles are in full compliance with all national and international regulations and 

standards.  To optimize information management, NOKSEL has been using the SAP system for its 

own business operations and MIS systems since 2005 and the company continues to invest in 

digitalization of its premises.  

 

Noksel’s pilot case aims at the development of Digital Twin for the production process of Spiral 

Welded steel Pipes (SWP). The digital twin will collect, integrate and analyse multiple sensors’ data 

streams in real-time, and enable predictive maintenance by a smart condition monitoring system. 

Real-time data acquisition, communication networks for monitoring, and automated 

recommendation generation are among the key innovative features of this pilot.  

  

Smart components that use sensors to collect in real-time condition of the equipment's and their 

position are connected by a cloud-based system that processes the collected data streams. Theses 

inputs are analysed against business and other contextual data through smart visualization systems. 

The digital twin models allow joining the physical and the virtual worlds to create a new networked 

layer in which intelligent objects interact with each other to virtualize the steel pipe manufacturing 

process on the Spirally Welded Pipe (SWP) machinery shown in below Figure 48: Schematic lay out 

of SWP Machinery and Figure 49: Photo of SWP Machinery. 

 

 
Figure 48:Schematic lay out of the SWP Machinery  

Figure 49:Photo of the SWP machinery. 

 
 

SWP machinery is used in the production of spirally welded steel pipe. In these machines the hot 

rolled sheets are combined by turning at a certain angle or flatly using the submerged arc welding 
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(SAW) method. The general name of this process is spirally welded steel pipe production process, 

in Figure 50. 

 
Figure 50: NOKSEL's use case processes 

 

 

SWP is a multi-step, manufacturing process that consists of the following steps:  

1) Preparation of hot rolled coils,  

2) Coil ends welding, (skelp end welding) 

3) Edge preparation of the coils, 

4)  Transforming the coils to pipe, (pipe forming) 

5)  Welding operations, 

6)  Pipe production, 

7)  Pipe cutting,  

8)  Repair welding,  

9)  NDT(Non-Destructing) testing, 

10)  Acceptance of the pipes, 

11)  Coating and lining, 

12)  Final testing and acceptance of the pipes. 

 

The objectives of the NOKSEL case on the SWP machinery are threefold: 1) real-time condition 

monitoring, 2) predictive maintenance, and 3) digital twin generation.  

Due to the very large size of SWP machinery, and the high number of its components, 

development of an user-friendly software for SWP’s real-time condition monitoring is a challenge. 

The condition monitoring has been realized by means of a platform. The platform was connected 

with PLC, SCADA and ERP interfaces of the production plant. In the aimed platform, data gathered 

from different sources, such as sensors, operational data input, automation system input were 

analyzed for understanding current situation of the SWP machinery. Using the digital twin 
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technology, SWP’s outputs were shown to the operator. Smart components that use sensors to 

gather data about real-time status, working condition, or position have been connected to a cloud-

based system. 

By applying AI/ML/DL based analytics and computation, and using the data acquired by the 

platform, smart predictive maintenance is aimed via cognitive digital twin. The Digital Twin, has l 

visualized maintenance predictions real-time, and notified personnel with current condition of the 

machinery, abnormalities and alarms. 

Both data driven and model driven twins were generated for the case. Both synthetic and real 

data collected from the platform have been developed as planned to be used for data driven twin 

generation. The 1st order, or the process modeling were used to generate the model driven twin. 

By combining the data and the model driven twins, a hybrid digital twin was created. Adding the 

cognitive elements to conduct predictive maintenance by enhancing the digital twin via AI/ML/DL 

components, a cognitive digital twin has been generated as aimed (Albayrak and Unal, 2021). 

 

User stories 
 

The users of the system are Maintenance Operators and Maintenance Managers. The following 

sentences brief the requirements of the users in forms of user stories. 

• As a user, I want to monitor the condition of the system so that I follow the current status 

of the machine. 

• As a user, I want to learn the remaining useful life of machine so that I conduct predictive 

maintenance and take actions before the machine’s breakdown. 

• As a user, I want collect data from sensors and PLCs so that the acquired data set is used 

for condition monitoring. 

• As a user, I want conduct data pre-processing so that the data set becomes ready to be 

used for ML/DL model training. 

• As a user, I want to execute selected ML/DL models so that I detect anomalies in real time. 

• As a user, I want visualize past sensor data so that I see the data trend of sensors.  

• As a user, I want visualize operational data so that monitor the real-time condition of the 

SWP machinery. 

• As a user, I want to generate synthetic data for electromechanical components so that I 

create machine break down and/or faulty cases. 

 

The pilot requirements written above as user stories are detailed in forms of user stories/use cases 

by Table 6 - Table 15. 

 
Table 6: Use Case NOKSEL-UC-00 

Use Case Template Description 
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Use Case Name Condition Monitoring 

Use Case ID NOKSEL-UC-00 

User story expression of use 

case 

As a user, I want to monitor condition of the system so that I 

follow the current status of the machine.  

Goal To monitor the condition of the machine and environment 

Measurable KPIs for the goal 

(if any) 

The latency between data acquisition and data visualization < 

200ms. 

Actors and stakeholders 

involved 

Maintenance operator, Maintenance Manager 

Input data Sensor data, and data from the PLC (alarm and status data) used 

for condition monitoring 

Output data / actions Quality data that is cleaned, scaled, filled in, analyzed, 

normalized, and preprocessed and displayed to the user 

Summary description – Main 

success scenario 

1. User selects the machine component for which the 

condition is to be monitored. 

2. The system displays the 3D view of the selected machine 

component and presents the stream data measured by 

the sensors implemented on the machine. 

Extensions, exceptions, 

variations 

If the user selects a specific place (hotpoint) on the machine 

component’s 3D view, the system displays the sensor values that 

are implemented only on the selected place. 

Possible generalisation of use 

case 

The use case can be generalized for condition monitoring of 

other assets and systems on IoT platforms. 

Use case analysis – related to 

which Digital Twin pipeline 

steps 

This use case has been supported through the following Digital 

Twin pipeline steps:  Digital Twin Data Acquisition, Digital Twin 

Representation, Digital Twin Visualization and Control 

  
Table 7: Use Case NOKSEL-UC-01 

Use Case Template Description 

Use Case Name Predictive Maintenance 

Use Case ID NOKSEL-UC-01 

User story expression of use 

case 

As a user, I want to learn the remaining useful life of machine so 

that I conduct predictive maintenance and take actions before 

the machine’s breakdown.  

Goal To estimate RUL and to be able to conduct predictive 

maintenance 

Measurable KPIs for the goal 

(if any) 

 The models should provide TP = 100%. 

The models should provide FP = 100%. 
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(Both true negatives and false negatives will be 0, thus Type I and 

Type II errors will be 0) 

Actors and stakeholders 

involved 

Maintenance operator, Maintenance Manager 

Input data Sensor data, and data from the PLC (alarm and status data) used 

for condition monitoring and data-driven AI models 

Output data / actions Estimates on the RUL is provided. 

Summary description – Main 

success scenario 

1. The system runs ML/DL algorithms on the stream data 

2. The system displays the anomalies in data 

3. The system calculates RUL and informs the user. 

Extensions, exceptions, 

variations 

None 

Possible generalisation of use 

case 

The use case can be generalized for predictive maintenance of 

other assets and systems flow 

Use case analysis – related to 

which Digital Twin pipeline 

steps 

This use case has been supported through the following Digital 

Twin pipeline steps:  Digital Twin Data Acquisition, Digital Twin 

Representation, Hybrid/Cognitive Digital Twin Generation, Digital 

Twin Visualization and Control 

  
Table 8: Use Case NOKSEL-UC-1 

Use Case Template Description 

Use Case Name Industrial Big Data Processing 

Use Case ID NOKSEL-UC-1 

User story expression of use 

case 

As a user, I want conduct data pre-processing so that the data set 

becomes ready to be used for ML/DL model training.  

Goal To prepare data for ML/DL training 

Measurable KPIs for the goal 

(if any) 

There will be no empty cell in the data set 

All data fields in the data set will be labelled 

Actors and stakeholders 

involved 

Maintenance operator or maintenance manager 

Input data Sensor data, and data from the PLC (alarm and status data) used 

for remaining useful life estimation and type of ML/DL algorithm 

to be trained 

Output data / actions Quality data that is cleaned, scaled, filled in, analyzed, 

normalized, and preprocessed and get ready to be used for 

ML/DL model training 

Summary description – Main 

success scenario 

1. Data set is selected and uploaded. 

2. Rules to fill in empty data is selected by the user. 
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3. Data is normalized. 

4. Mean, median and variation of the data set is calculated. 

5. Processed data is stored. 

Extensions, exceptions, 

variations 

None 

Possible generalisation of use 

case 

The objective function of the ML/DL models to be trained may be 

functions other than predictive maintenance. 

Use case analysis – related to 

which Digital Twin pipeline 

steps 

This use case has been supported through the following Digital 

Twin pipeline steps:  Digital Twin Data Acquisition, Digital Twin 

Representation 

  

   
Table 9: Use Case NOKSEL-UC-2 

Use Case Template Description 

Use Case Name Real time anomaly detection using pretrained ML/DL models 

Use Case ID NOKSEL-UC-2 

User story expression of use 

case 

As a user, I want to execute selected ML/DL models so that I 

detect anomalies in real time.  

Goal To estimate anomalies on stream data.  

Measurable KPIs for the goal  

(if any) 

None  

Actors and stakeholders 

involved 

Maintenance operator and/or maintenance manager 

Input data Sensor data, PLC data, alarm and status data 

Output data / actions Anomalies are detecting by the selected ML/DL models and the 

results are graphically displayed 

Summary description – Main 

success scenario 

1. The users select the pre-trained ML/DL model set to be 

executed on the stream data. 

2. The selected models are executed on the stream data. 

3. The results of the selected ML/DL models are calculated 

and displayed to the user 

Extensions, exceptions, 

variations 

If the user does not select any ML/DL model a warning message 

is displayed to the user in order to state that at least one model 

must be selected. 

Possible generalisation of use 

case 

The pretrained ML/DL models can be generated for purposes 

other than predictive maintenance and anomaly detection 
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Use case analysis – related to 

which Digital Twin pipeline 

steps 

This use case has been supported through the following Digital 

Twin pipeline steps: Hybrid/Cognitive Digital Twin Generation, 

Digital Twin Visualisation and Control 

  

  
Table 10: Use Case NOKSEL-UC-3 

Use Case Template Description 

Use Case Name Big Data Visualization 

Use Case ID NOKSEL-UC-3 

User story expression of use 

case 

As a user, I want visualize past sensor data so that I see the data 

trend of sensors.  

Goal To display collected past sensor data in graphs. 

Measurable KPIs for the goal 

(if any) 

The zoom in and zoom out of displayed data should be <200ms. 

Actors and stakeholders 

involved 

Maintenance operator, maintenance manager 

Input data Past sensor data collected 

Output data / actions Sensor data displayed in graphics with respect to time  

Summary description – Main 

success scenario 

1. The user wants to visualize past sensor data in graphs 

2. The data is displayed to the user 

Extensions, exceptions, 

variations 

When the user zooms in and/or zooms out the time scale of the 

x-axis changes, and the data is displayed in the graphs 

accordingly 

Possible generalisation of use 

case 

The visualized big data does not need to belong to the sensors in 

the NOKSEL pilot, any time series big data can be graphically 

visualized. 

Use case analysis – related to 

which Digital Twin pipeline 

steps 

This use case has been supported through the following Digital 

Twin pipeline steps:  Digital Twin Representation, Digital Twin 

Visualisation and Control 

  

   
Table 11: Use Case NOKSEL-UC-4 

Use Case Template Description 

Use Case Name Operational Data Visualization 

Use Case ID NOKSEL-UC-4 

User story expression of use 

case 

As a user, I want visualize operational data so that monitor the 

real-time condition of the SWP machinery.  
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Goal To monitor operational data regarding the SWP components 

Measurable KPIs for the goal 

(if any) 

Latency in visualization > 200ms 

Actors and stakeholders 

involved 

Maintenance operator, maintenance manager 

Input data Sensors and PLC 

Output data / actions Graphical representation of operational data 

Summary description – Main 

success scenario 

1. The user selects the component of the SWP machine for 

which the condition is to be monitored. 

2. The system displays the 3D model of the component and 

graphics associated to the hotspots on the component. 

3. The user selects the hotspot. 

4. The system displays the values of the sensors associated 

with the selected hotspot in suitable graphics. 

Extensions, exceptions, 

variations 

None 

Possible generalisation of use 

case 

The component visualized may belong to a different machine 

other than SWP, and the sensor set installed on the component 

may be different. 

Use case analysis – related to 

which Digital Twin pipeline 

steps 

This use case has been supported through the following Digital 

Twin pipeline steps (Delete if not related):  Digital Twin 

Visualisation and Control 

  

  
Table 12: Use Case NOKSEL-UC-5 

Use Case Template Description 

Use Case Name New trained ML/DL model inclusion  

Use Case ID NOKSEL-UC-5 

User story expression of use 

case 

As a user, I want to add a new pre-trained ML/DL model so that it 

can be used for anomaly detection in real-time on-stream data  

Goal To include a new ML/DL model in the list of the models to be 

executed without updating the source code  

Measurable KPIs for the goal 

(if any) 

None  

Actors and stakeholders 

involved 

System Administrator, maintenance manager 

Input data Pre-trained ML/DL models 

Output data / actions Updated list of ML/DL model 
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Summary description – Main 

success scenario 

1. The user selects the new model to be added to the list of 

pretrained ML/DL models 

2. The system displays the list of files to be selected. 

3. The user selects the model to be included in the model 

set. 

4. The selected model is added to the list of pre-trained 

ML/DL models. 

Extensions, exceptions, 

variations 

If the file selected by the user is not a model, the system displays 

a warning message to the user. 

Possible generalisation of use 

case 

The pre-trained model can be for a different purpose other than 

anomaly detection. 

Any process can be called and added to a multi selection list. 

Use case analysis – related to 

which Digital Twin pipeline 

steps 

This use case has been supported through the following Digital 

Twin pipeline steps:  Hybrid/Cognitive Digital Twin Generation, 

Digital Twin Visualisation and Control 

  

  
Table 13: Use Case NOKSEL-UC-6 

Use Case Template Description 

Use Case Name Synthetic data generation for generic electro mechanical 

components 

Use Case ID NOKSEL-UC-6 

User story expression of use 

case 

As a user, I want to generate synthetic data for electro 

mechanical components so that I create machine break down 

and/or faulty cases. 

Goal To generate synthetic data needed for the ML/DL training 

Measurable KPIs for the goal 

(if any) 

None 

Actors and stakeholders 

involved 

Maintenance Manager 

Input data Matlab model for the electro-mechanical components, 

parameters, real-data, limits 

Output data / actions .mat file including the faulty data generated 

Summary description – Main 

success scenario 

1. The user selects the Matlab model for the electro 

mechanical component. 

2. The system loads the model. 

3. The user installs the virtual sensors. 

4. The system generates data including faulty cases. 
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5. The system saves the data in .mat file. 

Extensions, exceptions, 

variations 

None 

Possible generalisation of use 

case 

Different model files and sensor types can be used to generate 

synthetic data 

Use case analysis – related to 

which Digital Twin pipeline 

steps 

This use case has been supported through the following Digital 

Twin pipeline steps:  Hybrid/Cognitive Digital Twin Generation 

 
Table 14: Use Case NOKSEL-UC-7 

Use Case Template Description 

Use Case Name Industrial Big Data Acquisition 

Use Case ID NOKSEL-UC-7 

User story expression of use 

case 

As a user, I want collect data from sensors and PLCs so that the 

acquired data set is used for condition monitoring.  

Goal To collect machine and environment data 

Measurable KPIs for the goal 

(if any) 

Data are collecting at the determined frequencies 

Actors and stakeholders 

involved 

Maintenance operator, IoT Platform  

Input data Sensor data, and data from the PLC (alarm and status data) used 

for condition monitoring 

Output data / actions Quality data that is cleaned, scaled, filled in, analyzed, 

normalized, and preprocessed and get ready to be used 

Summary description – Main 

success scenario 

1. Data sources are mapped. 

2. Data is transferred 

Extensions, exceptions, 

variations 

None 

Possible generalisation of use 

case 

The use case can be included in condition monitoring and ML/DL 

training 

Use case analysis – related to 

which Digital Twin pipeline 

steps 

This use case has been supported through the following Digital 

Twin pipeline steps:  Digital Twin Data Acquisition 

  
Table 15:Use Case NOKSEL-UC-8 

Use Case Template Description 

Use Case Name Preventive Maintenance 
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Use Case ID NOKSEL-UC-8 

User story expression of use 

case 

As a Maintenance Manager, I want the system to be able to 

control welding cell temperature so that the system acts 

proactively and eliminates human-in-the-loop for climate 

control operation. 

Goal To conduct preventive maintenance 

Measurable KPIs for the goal 

(if any) 

Energy consumption reduced by at least 10% 

Actors and stakeholders 

involved 

Actor: TIA CONTROL 

Stakeholders: Maintenance operators, Maintenance managers, 

Air Conditioner in the Welding Cell 

Input data Indoor environment, Welding Machine Generators 

temperatures, and Welding Machine Generators current value 

Output data / actions The command to manipulate air conditioner in the welding cell 

Summary description – Main 

success scenario 

1. For each welding machine generators current (voltage) 

are measured. If any of these values is greater than 0.1 

amper, air conditioners are turned on.   

2. Temperature in the welding cell and welding machine 

generator are measured. If for more than one hour 

welding cell temperature is in between 20-25 Celsius 

or if environment temperature is less than 20 Celsius 

then, the air conditioner status is set to close. 

  

Extensions, exceptions, 

variations 

The cause of machine breakdown may stem from a reason that 

is not associated with welding wire cut 

Possible generalisation of use 

case 

The use case is applicable to similar SWP machines that are 

used in the steel pipe production process industry 

Use case analysis – related to 

which Digital Twin pipeline 

steps 

This use case has been supported through the following Digital 

Twin pipeline steps (Delete if not related):  Digital Twin 

Acquisition, Digital Twin Representation, Digital Twin Hybrid 

Analytics Models, Digital Twin Visualisation and Control 

 

Current challenges 
Table  16 - Table 19 collect the challenges for data handling, (hybrid) digital twins and visualization 

& control in the NOKSEL pilot. 
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Table  16: Pilot challenges for Digital Twin Data Acquisition/Collection for NOKSEL pilot 

Sensors • Challenge: The environment in which the sensors to be installed 
is a harsh environment. 

• Requirement: Multi sensor data will be collected for condition 
monitoring in near real time. 

• Solution: Special attention was given to thoroughly determine 
the sensor set and the locations of them to be implemented, by 
using information collected from the TEKNOPAR’s expert 
engineers, on site domain experts, the machine manufacturers 
and the academicians. 

• Challenge: Provide necessary sensor data to monitor machinery 

• Requirement:  Make use of suitable sensors, including vibration 
sensor and energy sensors for motors, in addition to pressure 
and temperature sensors. 

• Solution: Four new sensors have recently been installed, 
including Analog vibration sensor on DC motor and Energy 
analyzers. 

Communication • Challenge:  There are two different PLCs to be used. 

• Requirement: The sensor data from two different PLC’s will be 
collected. 

• Solution: Distributed sensor data is bundled, and uploaded over 
Profinet to an OPC gateway and MQTT broker. PN/PN coupling 
was applied to connect the PLC’s. 

• Challenge: Low performance in data transfer from Kafka to 
PostgreSQL. 

• Requirement: Data shall be transferred at near real time. 

• Solution: The bridge written in Java was written in Phyton. 

 
Table 17:Pilot challenges for Digital Twin Representation for NOKSEL pilot 

Cloud platform • Challenge:  Data losses due to OPC Server’s (KepServerEX) being 
turned off by the operators. 

• Requirement: OPC server shall be up and running with high 
availability. 

• Solution:  OPC server is moved to virtual servers that are on the 
same network of the PLC. 

Data Lake, storage • Challenge:  Bottlenecks in Apache Kafka  

• Requirement: Data shall be stored permanently, and there 
should not be bottlenecks in Apache Kafka. 

• Solution:  Kafka’s topics, partitions and consumers’ 
configuration were rearranged. PostgreSQL and Cassandra have 
been used together as Kafka’s consumers. 
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Digital Twin – Data 
driven 
representation 

• Challenge: Store data in database in a way to fulfill the storage 
and analysis requirements. 

• Requirement: Data shall be stored in databases and be used for 
analytics and real time monitoring. 

• Solution:  Cassandra tables were rearranged to store 
component-based data per-table. 

Real time event 
handling, CEP 

• Challenge: None 

• Requirement: None 

• Solution: None 

Cyber Security • Challenge: Security 

• Requirement: Data should be accessed by authorized and 
authenticated users, data should be coded. 

• Solution: Authentication and authorization was performed. Data 
encryption via coding was done. 

 
Table 18:Pilot challenges for Digital Hybrid and Cognitive Digital Twin Generation for NOKSEL pilot 

Analytics Models • Challenge: Data cleaning and labelling 

• Requirement: Pre-processing for ML/DL for predictive 
maintenance 

• Solution: Industrial Big Data Processing implementation 

• Challenge: The number of features is high 

• Requirement: Efficient ML models generation 

• Solution: PCA on data 

• Challenge: Difficulty in analysis due to high volume of data 

• Requirement: Efficiency and performance 

• Solution: Pandas Profiling is used  

Physical Models • Challenge: Missing models 

• Requirement: 1st order model generation  

• Solution: Models are generated in Matlab Simulink 

Machine Learning • Challenge: Algorithms did not learn very well on the collected 
data set 

• Requirement: Quality ML models trained 

• Solution: A thorough analysis was conducted and feature 
selection is applied 

• Challenge: Missing data 

• Requirement: ML/DL model training for predictive maintenance 

• Solution: Synthetic data generation and data balanced sampling 

• Challenge: Low quality data 

• Requirement: ML/DL model training at high correctness 

• Solution: Under sampling applied on to the data 

Cognitive Digital 
Twins 

• Challenge: Ensure that the predictive maintenance also takes 
into account operators domain knowledge and experiences 
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• Requirement: Combine the Digital Twin based 
recommendations with the inclusion of operators domain 
knowledge for self learning and being proactive 

• Solution: Extract the tacit knowledge from experts  as a basis for 
developing the cognition.  Partially by applying unusuality 
detection on past data 

• Challenge: Fast query of semantics (ontology) 

• Requirement: Ontology should be queried fast and stored 

• Solution: Ontology model development and storage in a 
relational database using Protege and On2RDB respectively 

 
Table 19:Pilot challenges for Digital Twin Visualisation and Control for NOKSEL pilot 

2D/3D  visualisation • Challenge: Slowness in big data visualization 

• Requirement: Latency < 200ms 

• Solution: View creations for zoom in and zoom outs 

• Challenge: Custom 3D visualizations 

• Requirement: none 

• Solution: User preferred visual elements adjustments (i.e. 
colour, light, etc.) 

Control •  Challenge: Controlling ambient temperature of the welding 
room which is a closed environment 

• Requirement: To act proactively and prevent machine failures 
due to increased temperature in the welding room 

• Solution: A control panel has been designed, developed by 
TEKNOPAR and installed at NOKSEL site to control air 
conditioners in the welding cell 

 

Pilot specific aim 
 

The objectives of the NOKSEL case on the SWP machinery are threefold: 1) real-time condition 

monitoring, 2) predictive maintenance, and 3) digital twin generation. The aim of the pilot case is 

to improve the predictive maintenance capabilities and thus increase the total equipment usage 

performance by analysing operational and automation data received from different sensors with 

digital twin supported condition monitoring platform to be developed in serial production of steel 

pipes. 

 

Steel pipe sector is a sector where operation run on 24/7 basis. The cost of machines breakdown is 

very high. Due to the multi-step nature of the process (Figure 52) if a section stops due to a 

malfunction, the entire production is stopped. An efficient Predictive Maintenance approach has 

the potential to increase the machine uptime. Hereby, equipment availability, performance and 

quality have been   increased.  It also supports reduction in maintenance times, maintenance and 
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operational costs and operator risks. Flexibility, agility, profitability and competitive advantage in 

production has been provided. 

Innovation 
The main innovation is the development of a Digital Twin for the SWP in steel pipe production. The 

digital twin collects and analyses multiple sensors’ data in real-time and enable a smart condition 

monitoring system for predictive maintenance. Real-time data acquisition, communication 

networks for monitoring, and automated recommendation generation are among the key 

innovative features of this pilot.  

 

Digital Twins can serve as the basis for advanced analytics and AI applications. Advanced analytics 

and AI applications can be part of a Digital Twin, making it an intelligent and self-contained entity. 

Abburu et.al. defines three types of digital twins: 1) digital twins, 2) hybrid digital twins, and 3) 

cognitive digital twins. A hybrid twin is a digital twin, and a cognitive twin is a hybrid twin ( Figure 

51). A digital twin is a physical replica of a physical system. A hybrid twin using different set of data 

(such as sensor data, databases, simulators, etc.), contains a set of interconnected models, where 

a cognitive twin is proactive and learn by itself. The “cognitive element” in the Digital Twins are 

introduced by learning from historical process data and events to predict unwanted events in the 

operation before these events happen (Albayrak and Ünal, 2021). 

 

 
Figure 51:Hybrid and Cognitive Digital Twins are both Digital Twins (Albayrak and Unal, 2021) 

 

Smart components that use sensors to gather data about real-time status, working condition, or 

position were connected to a cloud-based system that receives and processes all the data the 

sensors monitor. This input has been analysed against business and other contextual data through 

smart visualization systems. The digital twin model allows joining physical and virtual worlds to 
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create a new networked layer in which intelligent objects interact with each other to virtualize the 

steel pipe manufacturing process on the SWP machinery. 

IoT platform and architecture in use 
Currently the SWP Machinery is being tracked by NOBİS System (a Delphi based special software 

created by NOKSEL and machinery adjustments are made by terminals with TEKNOPAR’s installed 

software. NOBIS is also integrated with the SAP system.  

 

The digitalisation architecture is closely related to the processes of the SWP machine. At NOKSEL, 

involved components are; coil feeding station, pinch roll, skelp leveller, skelp and welding station, 

edge milling machine, main drive unit, forming station, internal welding and external welding.  

Figure 52 displays the current processes of SWP realized by the SWP machine components at 

NOKSEL: 

 

 
Figure 52: Steps in the SWP process at NOKSEL. 

The existing architecture at NOKSEL’s pilot facility is referred as AS-IS architecture and the planned 

future architecture is referred as TO-BE architecture. Figure 53 presents the AS-IS architecture that 

was valid in the beginning of the project. The TO-BE architecture has been completed in 2022 2022 

when the Cognitive Digital Twin of Noksel’s use-case had been completed in the COGNITWIN 

project. 

 

The three-tier architecture pattern comprises the edge, platform and enterprise tier that handles 

the data and control flows. In the developed platform, the edge tier collects data from the edge 

nodes within industrial automation system. The platform tier receives, processes and forwards 

control commands from the enterprise tier to the edge tier. The enterprise tier has domain-specific 

applications. 
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Figure 53 : AS-IS: Existing Architecture at NOKSEL at the beginning of the COGNITWIN project 
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Figure 54 : System’s Generic Static View of the Architecture at NOKSEL 

SWP is associated panels and is composed of different SWP units. On these units, there are limit 

sensors located. These sensors are displayed on the existing panels, which are MCC, distribution 

panel, forming input panel and power panel. In a UML class diagram, Figure 54 presents a top-level 

generic architecture of the SWP at NOKSEL from a static point of view. 

 

Currently, there is an IoT platform where the machine is monitored with SCADA systems on the 

shop floor. The initial existing sets of sensors are composed of limit sensors: 

• Direction limit sensors of carrier cars (forward and backward limits) 

• Right/Left roll handler limit sensors (in out limits) 

• Pre delivery up location limit sensors 

• DP1-DP5 limit sensor list 
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Note: We have the complete list of existing sensors and their specifications at NOKSEL. We do NOT 

present the list and sensor specs in this document for confidentiality reasons.  

 

At NOKSEL, three types of motors (AC, DC and servo motors) exist (Figure 55). The motors are 

associated with the drivers that are specific to the associated motors. 

 

 
 
Figure 55 : Engine Types at NOKSEL 

Panels at NOKSEL are classified into two main groups; Distribution panels and Operator panels. 

There are five distribution panels at NOKSEL’s existing IIoT platform (Figure 56).  
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Figure 56 : Existing Digitalization at NOKSEL: Distribution Panels  

 

Each distribution panel (DP) is associated to sensors and switches via modules. Table 20 displays 

the DP’s and their associated types of sensors and switches at NOKSEL’s existing IIoT platform. 
 

Panel Type of System Sensor/Switch Number of Sensor/Switch 

DP1 Proximity End. Sensor 19 

DP1 Pressure Switch 4 

DP2 Proximity End. Sensor 15 

DP2 Pressure Switch 1 

DP3 Proximity End. Sensor 15 

DP3 Laser Photosensor 6 

DP5 Proximity Sensor 9 
Table  20: AS-IS: Existing Digitalisation at NOKSEL: System Sensor/Switches and Distribution Panels. 

At NOKSEL, there are ten operator panels, each of which is associated to different units of SWP. The 

units that are associated with the existing sensors are listed in Table 21. 

 

Name Unit Number of Modules Number of 
Buttons/Keys 

OP1 Coil Feeding Station 2 48 

OP2 Pinch Roll 3 64 

OP3 Skelp Leveller 3 66 

OP4 Edge Milling Machine 2 48 

OP5-6 Main Drive Unit, 
Forming, Internal 
Welding 

4 80 

OP7 Length Cutting 2 48 

OP9K Forming by Internal 
Welding and External 
Welding 

4 36 

OP10K Internal Welding, 
External Welding 

3 56 

MOP Main Operator Panel 4 96 

KMOP Welding Main Panel 5 80 
Table 21: AS-IS: Existing Digitalisation at NOKSEL: Operator Panels. 

 

Database and Datasets for  Digital Twin Pilot - Noksel 
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Data to be used include sensor data, PLC data. Energy consumption data and ERP (NOBİS) data have 

also been utilized. The IoT system components and tools used are given in detail in template tables 

filled for D4.1. Briefly, current IoT system has its components like PLC hardware and software, 

analogue/ digital modules, communication modules and SCADA system installed in the production 

plant. Establishing the necessary infrastructure to communicate with the intermediate module 

software (OPC server) and streaming from PLC to cloud through sensor network are under 

development.  

 

A fully asynchronous communication structure with the event-bus method is used for the 

transmission of data collected from the source with OPC. Data transmission is provided in the JSON 

format. In the architecture managed on the basis of Microservice, Cassandra is used as the NoSQL 

database with a database presented as a log file to users. 

  

Cassandra is a database that provides continuous availability, high performance, and scalability. 

PostgreSQL, a relational database (RDBMS), is used by the interface program that provides user 

interaction to display time series data in real time.  

  

Dataset stored in the databases include sensor data collected from the installed sensors, and alarm 

and status data that are retrieved from the PLCs via OPC. Id, time and value fields are stored in the 

database. A total of 120 sensor values are monitored on the SWP machine to capture data on 

temperature, vibration, pressure, current, oil temperature and contamination. A value is taken 

every 10 milliseconds from the vibration sensors, once every 100 milliseconds from the current 

sensors, and every 1000 milliseconds from the temperature and pressure sensors plus alarm and 

status fields. SWP machinery has a total of 120 sensor values, 122 alarm and 175 status data which 

create 11 GB of incoming data in one day (in 24 hours). 

 

 

Description of Data available 

 

Current tracking system provides downtimes periods and types, total working durations, effective 

working durations, number of produced pipes, meters of produced pipes, weight of produced pipes, 

which pipe produced of which labelled raw material which shows the quality of raw material. 

 

Only daily electrical consumptions have been started to be recorded since November 2019. Before 

then, electrical consumptions have been recorded monthly in 2019. 

 

Starting end of 2020, data from the new sensors installed, and from the added PLC were started to 

be collected. Sensor data, alarm, status and production process data were acquired. A custom ERP 
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system’s data, named NOBİS data has been integrated and used together with the sensor data for 

AI related calculations. 

 

Since 2022 with COGNITWIN project in NOKSEL’s use case; The digital twin established in our 

İskenderun facility collects real-time data from PLCs, more than 125 sensors, and uses the acquired 

data together with alarm and status data of the Spiral Welding Machine (SWP) used in steel pipe 

manufacturing. Our maintenance operators are now able to visualize multisensory data on specially 

designed dashboards to fulfil NOKSEL’s requirements. The dashboards complement TEKNOPAR’s 

previously developed SCADA and control systems.  

  

The demonstrator below in Figure 57 shows how stream data collected real time can be used 

together with the artificial intelligence models to monitor the process, to determine anomalies in 

advance, and to predict machine breakdowns early enough to take precautions.   

 
Figure 57:Cognitive Digital Twin System Control for Monitoring 

 

▪ Digital Platform for Digital Twin Pilot - Noksel 

Noksel Digital Platform – Overall architecture 
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Figure 58: Updated Topology Aligned with Pipeline Architecture for Noksel Pilot ( (Unal, Albayrak, Jomaa, & Berre, 2021)) 

 
Figure 59:Pipeline Architecture for Noksel Pilot mapped to TIA PLATFORM tools 

 

The four-tier architecture pattern that handles the data and control flows. In the developed 

platform, the first tier collects data from the edge nodes within industrial automation system. 

Second tier is performed DT representation. Third tier is related to DT Hybrid (Cognitive) Analytics 

Models.  Fourth tier is associated with DT visualisation and control. The four-tier architecture of the 

developed platform is given in Figure 58,Figure 59.  

  

The architecture can also be presented in the following Figure 60 as aligned with BDVA reference 

architecture. 
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Figure 60:NOKSEL Pilot architecture presented as aligned to BDVA reference architecture 

 

Open Platform Communications (OPC is the interoperability standard for the exchange of data in 

the industrial automation among devices from multiple suppliers. The OPC Unified Architecture 

refers to the service-oriented architecture. KEPServerEx  is an OPC server that serves as a 

connectivity platform with device drivers, client drivers, and advanced plug-ins to fit the 

communication requirements of the industrial control systems. The IoT Gateway is a plug-in to allow 

data from PLCs and other devices to be delivered to third-party nodes and clients via HTTP and 

MQTT protocols. MQTT Broker transports data between the Edge gateway and other nodes in the 

platform. 

  

Eclipse Mosquitto is an open-source broker that implements the MQTT protocol to carry out 

messages using a publish/subscribe model. 

 

Kafka is an open-source distributed event streaming platform used for building data pipelines, data 

integration, streaming analytics, and scalable processing applications. Initially developed as a 

distributed messaging queue, Kafka is based on distributed commit logs which hold the ordered 

sequence of events. Kafka can read, write and process streams of events in a vast array of 

programming languages and has interfaces to connect to numerous event sources and sinks. Kafka 

is highly scalable and supports data persistency. It provides high throughput and low latency. Many 

commonly used programming languages are supported by Kafka. 
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Apache ZooKeeper is used for the management of consensus between producers and consumers 

and for synchronization purposes. Zookeeper coordinates the Kafka system for the cluster integrity, 

broker status, and coupling of producers and consumers. ZooKeeper also manages the failure and 

use of replications, and the authorization process and access control lists are stored in this service. 

  

Cassandra is a NoSQL database that provides continuous availability, high performance, and 

scalability. Due to its high scalability, Cassandra can hold petabytes of data and perform thousands 

of transactions in a very short time. Apache Spark supports batch processing and stream processing 

by micro-batching as an in-memory batch data processing platform. Spark offers increased 

performance with its in-memory processing. Grafana is an open-source, general purpose dashboard 

and graph composer, which runs as a web application.  It retrieves data from multiple different data 

sources and has ready visualization elements to display data. Grafana can easily be integrated with 

many services such as to send alarms and notifications as SMS, or as message etc. SOLIDWORKS is 

used for 3D visualization for the Digital Twin. 

  

Benefits of reuse, interoperability, and flexibility are gained by using micro services.  

Micro services are supported by Docker. Docker is a packaging and deployment methodology in 

order to easily manage the variety of the underlying hardware resources efficiently. Docker Swarm 

is used for clustering and scheduling in Docker containers by establishing and managing a cluster of 

Docker nodes as a single virtual system. Docker Compose helps create a stack of multiple 

simultaneous running Docker containers. 

  

SIMATIC and Kafka are used in the Data Processing Architecture layer. In the Data Analytics layer 

the components are developed by using Python, MATLAB, and Spark.HTML, JavaScript, Grafana, 

and SOLIDWORKS are used in the Data Visualisation and User Interaction Layer. Cyber security and 

Trust are supported by the IDS Security component.

 

Noksel Digital Platform – Data Acquisition – including sensors 
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Figure 61: Pipeline Architecture for Noksel Pilot: DT Data Acquisition/Collection ( (Unal, Albayrak, Jomaa, & Berre, 2021)) 

 

Figure 62 Figure 62 shows the hardware topology of the current system. With the developed digital 

twin-supported condition monitoring platform d, an infrastructure that aims to analyze the 

operational and automation data received from sensors and PLC/SCADA used for PM, which helps 

to increase the overall equipment performance. 

  
Figure 62: Existing hardware topology 

 

Communication between these two topologies is provided with the industrial communication 

protocol PROFINET, and the two structures communicate with each other. Data required from the 

existing structure obtained by using the existing controller. Figure 63 presents the added hardware 

topology. 
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Figure 63: Added hardware topology 

 

The former PLC model used for process control was S7 300. The operation details of the 

components, status information, process information, such as speed and power, production details, 

and system alarms are kept on this PLC while the newly added sensor data and alarms are located 

in the S7 1500 PLC. The existing PLC data was transferred to the S7 1500 PLC through the PN/PN 

Coupler module, allowing all data tracking to be carried out over the new PLC. 

 

 

The PN/PN Coupler module provides the simple connection of two separate PROFINET networks. 

The PN/PN Coupler enables data transmission between two PROFINET controllers. The output data 

from one network becomes the input data of the other. For data transfer, additional function blocks 

are not required and the transfer is realized without latency. In order for the new sensors added to 

the system not to affect the existing process, a new PLC is employed and the controls are 

implemented over it. The communication structure between the PLCs is designed using the PN/PN 

Coupler module as shown in Figure 64. 

 
Figure 64: Coupling of the PROFINET subnets with the PN/PN Coupler 

 

PLC transmits the data it receives from the sensors to OPC, which then transfers the data to the 

platform via MQTT. The received data is transmitted to Kafka, which passes it on to the Cassandra 

and PostgreSQL databases to be stored for further processing or later access. The data are stored 

in the Cassandra database with three columns:  id, time, and value. The id column shows the 
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component to which the data belong. The JSON format streams of the data transferred to the 

Cassandra database are presented to users as a log file. 

  

A fully asynchronous communication structure with the event-bus method is used for the 

transmission of data collected from the source with OPC. Data transmission is provided in the JSON 

format. In the architecture managed on the basis of Microservice, Cassandra is used as the NoSQL 

database, and PostgreSQL, a relational database (RDBMS), is used by the interface program that 

provides user interaction. 

  

SENSORS 

  
Table 22:Sensor List 

IFM HYDAC PHOENIX Contact SIEMENS 

Temperature and 
Vibration sensor 

Temperature, Pressure and 
Contamination sensor 

Current sensor Energy Analyser 

 

While selecting sensors for NOKSEL steel pipe production plant physical constraints of the 

environment and the pilot’s requirements were taken into account. All of the sensors were installed 

at the sensor places determined in the SWP machine (Table 22Table 22:Sensor List  ). Regardless of 

sensor type, the selected sensors have been preferred by TEKNOPAR experts because of our long-

time experiences in automation, hydraulic and pneumatic systems. Moreover, manufacturers of 

the motors, used in SWP machine, suggested these sensors. 

  

IFM sensors provide convenience in harsh industrial environments where mounting on the engine 

is challenging. HYDAC’s sensors have been chosen owing to that they provide convenience in spaces 

where mounting on the engine is difficult on the hydraulic and pneumatic systems that will affect 

the manufacturing process. HYDAC's was specifically developed for OEM (Original Equipment 

Manufacturer) applications. PHOENIX's sensors can be measured by placing sensors on the thick 

cables that feed the motor to measure the current value of the high ampere consumed. Another 

reason for this sensor selection is that the current value can be calculated thanks to the magnetic 

field formed in the cable. SIEMENS's products have been generally chosen for our projects because 

of their standards. That's why SIEMENS energy analyser has been used for measuring energy 

consumption. 

  

The selected products have product characteristics that can be made precise measurements at 

the critical points desired to be followed on the machines.

CONTROL PANEL 
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A control panel, in Figure 65, has been developed 

for the air conditioner so that commands can be 

sent according to the decision taken by the 

system. This panel transforms the update 

commands for the air conditioner status 

determined by the system into a structure that 

the air conditioner can understand and transmits 

it to the air conditioner. The panel has been used 

to control temperature at the welding cell at 

Noksel. 

 

The above control panel designed, implemented 

and developed by TEKNOPAR for the Noksel 

pilot has been installed on the closed room for 

the welding machines, shown in Figure 66: 

 
Figure 66:Welding Machines in a Closed Room at Noksel 

 

Noksel Digital Platform – Data storage/preparation 

 

Figure 65:Control panel developed for Noksel pilot 
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Figure 67: Pipeline Architecture for Noksel Pilot: DT Representation ( (Unal, Albayrak, Jomaa, & Berre, 2021)) 

 
Figure 68:Pipeline Architecture for Noksel Pilot: DT Representation mapped to TIA PLATFORM elements 

 

The data obtained from the sensors, such as temperature, pressure and vibration, voltage, and 

current are transmitted to MQTT over OPC, and then to Kafka in the JSON format. Apache Kafka is 

a data streaming platform developed specifically to transmit real-time data with a low error margin 

and short latency. Kafka achieves superior success in systems with multiple data sources, such as 

sensor data and reduces the inter-system load. It has an integration that can also process big data 

coming from sensors operating at high frequencies. Figure 67 displays the pipeline architecture for 

NOKSEL pilot Data Representation step. 
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Instant data received by Kafka is transmitted to the Python-based server, where the attribute 

extraction process begins. Incremental principal component analysis (PCA), which is the most well-

known method used in big data flow, applies PCA stages to the instantaneous data using data in a 

certain window range, and thus large data that cannot fit into the memory can also be processed 

effectively. PCA basically performs dimensional reduction by making the incoming high-dimensional 

data low-dimensional, providing more accurate results for machine learning, and therefore it is 

frequently used for categorization problems. 

 

Noksel Digital Platform – Analytics/AI/Machine Learning 

 

 
Figure 69: Pipeline Architecture for Noksel Pilot: DT Hybrid (Cognitive) Analytics Models () 
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Figure 70:Pipeline Architecture for Noksel Pilot: DT Hybrid (Cognitive) Analytics Models mapped to TIA PLATFORM 

 

In the MLL module, six different machine learning algorithms are applied to the data passing 

through the incremental PCA stage to detect anomalies. Prediction results are produced using data 

from three different machine learning libraries. First Spark MLlib is produced entirely by Spark, 

which uses Spark’s engine optimized for large-scale data processing. In the pilot, the remaining 

useful life (RUL) of the SWP machine predicted. To predict RUL, we have collected sensor data, 

selected some ML models and trained the algorithms with different data sets. We also compared 

the performance of various ML and DL algorithms. The RF (Random Forest) and gradient boosted 

tree machine learning algorithms belong to this library. Keras library utilizes TensorFlow, and is used 

for deep learning. The LSTM algorithm of this library is utilized. This open- source neural network 

library makes it simpler to work with artificial neural networks through its user interface facilities 

and modular structure. The Scikit-Learn library is another open-source machine learning library that 

contains several algorithms for regression, classification, clustering. We used algorithms like SVM, 

KNN and multi-layer perceptron (MLP) from Scikit-Learn library. In addition, auto encoder, 

generative adversarial networks (GANs), deep belief networks, and K-means algorithms are 

considered being used.  

  

An MLL application is developed for comparing the machine learning models used for predictive 

analysis. The application enables users to select the machine learning model for a given set of data, 

and then compares the output using graphical elements. 

  

Noksel Digital Platform – Action/Interaction-Control-Visualisation 
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Figure 71: Pipeline Architecture for Noksel Pilot: DT Visualisation and Control ( (Unal, Albayrak, Jomaa, & Berre, 2021)) 

This component contains designing dashboards suitable for sensor data, error detection, and 

transfer of regular information obtained from data processing to the real-time status monitoring 

system, and development of end-user (mobile/desktop/web) applications. Selected GUIs for the 

component is presented in Figure 73. Figure 71 displays the pipeline architecture for NOKSEL pilot 

Visualization and Control step. 

  

Three.js, an open-source JavaScript library, was used to develop animated or non-animated 3D 

applications that can be opened in the web browser using WebGL. Three.js is supported by all 

WebGL supported web browsers. In addition to Three.js for visualization of the Digital Twin 

elements. 

  

For the web interface, the JSON data received with JavaScript have been parsed and then 

transferred to PHP pages. In this communication, the post method has been used in the requests 

sent with JavaScript. With the help of PHP, the information was placed in HTML objects. Grafana 

technology is used in the process of placing graphics within the card object. Dynamic graphics 

created on Grafana are placed on cards in iframe tags. 

  

The generated output includes predictive analytics results. 

 



 DT-SPIRE-06-2019 (870130) Deliverable D2.4  

 

   

Classification Public Page 92 of 103 

 

 
Figure  72: Artificial Intelligence/ Machine Learning/ NN Algorithms Application GUI 

 

 
Figure 73: TEKNOPAR's platform visualization and digital twin GUIs
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New displays have been generated for different applications including but not limited to OEE, energy 

consumption, and breakdowns. 

 

 

 
Figure 74:Selected new displays generated for the Noksel pilot 

StreamPipes and AAS Studies Validation 
 

In the Noksel pilot, some of the tools developed in the COGNITWIN project have been validated and 

tested by TEKNOPAR. Regarding StreamPipes, following three pipelines have been created and shown 

to be working (Figure 75): 
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1. A Pipeline to retrieve data in CSV format and after processing it to visualize it graphically 

2. A Pipeline to enable selection of ML algorithm to be executed on stream data and to be 

visually presented 

3. A streamline to transmit data over MQTT to Kafka broker. 

 

 
 

 
 

 
Figure 75:Apache StreamPipes pipelines demonstrated at the NOKSEL pilot 
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Asset Administration Shell (AAS) appears to be the key concept of Platform Industrie 4.0 in order to 

enable interoperability. The AAS can directly be adopted to implement Digital Twins. As a result, all 

industries may benefit an open and standardized metal model, standardized data models with 

homogenized semantics and standardized APIs and infrastructure services. Regarding AAS studies, 

Package Manager and AASxServer were used and two different pipelines have been developed: 

Pipeline 1) A pipeline to stream data display, and Pipeline 2) A pipeline to preprocess stream data. Both 

of the demonstrations were successfully completed (Figure 76) 

 

 
Figure 76:Pipelines used for AAS validation at NOKSEL pilot 

 

TEKNOPAR has designed and implemented different technical solutions using emerging digital twin 

technologies/tool in order to generate AAS and IDS in a real manufacturing environment. The Admin 

Shell IO, Eclipse BaSyx, IDS connectors have been developed and used together with Apache 

StreamPipes and Node-RED. The developments have been verified and validated by testers (Yallıç at al 

2022). 

 

Demonstrator of Digital Twin Pilot – Noksel 
 

The demonstration of the Digital Twin pilot of Noksel is presented through the 5 steps as listed 

below: 

• Pilot summary 

• Digital Twin 

• Real Time predictive maintenance 

• MATLAB Models 

• Streampipes 

 

 

Measurable KPIs and Final impact 
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The SWP consists of various parts for pipe preparation, welding, cutting, etc. all of which are controlled 

by sensitive servo systems. Due to the process's multiple steps, if one stops working due to a 

breakdown, the entire production is stopped. For the performance monitoring of the SWP machine, 

sensors, and energy analyzers have been installed. Production and failure data were obtained by 

integrating NOBIS, NOKSEL's MES solution. In addition, domain knowledge was obtained from experts 

through monthly meetings and field visits. It has been determined that the welding machine 

components are the most important components of the SWP machine, with the downtime information 

obtained from the experts and NOBIS. With the analyzed data, it has been determined that wire-

cutting failure is the most common cause of unplanned downtime. In order to increase the 

performance of the SWP machine, it is aimed to reduce the unplanned downtimes encountered and 

to reduce the energy consumption by reducing the downtimes. 

  

COGNITWIN was implemented to the pilot plant in two stages as follows: 

  

• “Before” implementation: November 2019 – March 2022 

• “After” implementation: April 2022 – October 2022  

  

In the first phase of COGNITWIN, the final targets for selected KPIs were defined. The improvements 

in the selected KPIs have been calculated by comparing the measured key performance indicators 

(KPIs) after the implementation of the COGNITWIN to the measured performance prior to the 

implementation. The measurable KPIs and their target improvements were set to: 

  

1. Real-time online monitoring of process efficiency with minimal latency < 100 ms 

  

The data transfer time is aimed to be <100 ms in order to instantaneously transfer ML/DL algorithm 

prediction results and to be monitored in real-time by the end user so that the downtime can be 

intervened quickly. In the tests carried out in this context, the difference between the time that the 

data is transmitted and the time it is viewed by the end-user has been measured, and a value of <1 ms 

has been reached. 

  

2. Accuracy of data analytics, and AI algorithms > 95%  

  

Preprocessing steps (correction/cleaning/merging etc.) were applied to the data obtained from the 

sensor, energy analyzer, and NOBIS system in order to be used in ML/DL algorithms. The trained model 

was implemented to predict the type of unplanned wire cut breakdown with the real-time data flow.  

When the model metrics are calculated, the breakdown is confirmed by comparing it with the NOBIS 

system, which it correctly predicts 45-60 minutes ago. The model accuracy was calculated with the test 

data obtained after the model is measured as 99%.  

  

3. No errors in anomaly detection (both Type I and Type II)  

For the anomaly detection of the system Type I Error and Type II Error analyses were conducted on the 

streaming data. The FP and FN values obtained from the generated confusion matrix correspond to 
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Type I error and Type II error values, respectively. While 37 of the 548 predictions are in Type I (FP), 12 

of them are in Type II (FN). This means that out of 548 predictions made by the model and 37 of them 

were predicted to have breakdown, but no breakdowns occurred (FP). Also, although it was predicted 

that no breakdown would occur in 12 predictions, the malfunction occurred (FN). According to these 

numbers, Type I errors make up 6.25% of the total predictions, and Type II errors make up 2.18%. 

When more data is collected for all production parameters and sensors, the Type I and Type II targets 

can be approached. 

  

4. Reduction in machine downtime due to conducted predictive maintenance by 10% 

  

The SWP machine works in the production line and the production process consists of many different 

processing steps. Therefore, in case of unplanned downtime in any of the process steps, the whole 

production is breakdown. With the prediction of the breakdowns, the disruption in production can be 

eliminated and the performance of the SWP machine in production can be increased. When the data 

obtained from the NOBIS system is examined, wire cutting stands out among the other preventable 

breakdown types. With the predictive maintenance developed in the COGNITWIN project, the 

predictions created by the ML/DL model are transmitted to the end user before the machine 

breakdown occurs. Before the DT implementation, a total of 15 wire-cut breakdowns were 

encountered during ~1200 tons of pipe production (1.25 % per ton). After the commissioning of the 

model, while more errors were expected during ~5400 tons of pipe production, only 12 wire cut 

failures were encountered (0,22 % per ton). Thanks to the successful prediction of wire-cut breakdown, 

the number of unplanned machine downtimes has been reduced and an 82% reduction in unplanned 

wire-cutting breakdown number has been achieved based on the per ton breakdown analysis. Thanks 

to the correctly predicted wire-cutting breakdowns by the trained model, the energy and time 

consumed at the time of the machine breakdown are saved. Before the digital twin integration, the 

machine could not operate for 2.7% of the operating time due to breakdowns, after the digital twin 

integration, this rate was reduced to 1% (% 62 reduction in breakdown time). 

  

5. Reduction in energy consumption by 10% 

  

Energy consumption data has been started to be recorded daily since November 2019 at the NOKSEL 

facility. In order to monitor energy consumption, energy analyzers are placed in the electrical panel of 

the welding machines and the SWP electrical panel. 30 different data are collected from these energy 

analyzers. Before November 2019, energy consumption data were recorded monthly.  

  

After the digital twin was integrated, between April 2022 and October 2022, 839 minutes of extra 

production time was added to the production process by reducing machine downtimes. Approximately 

200 tons of extra production is made in ~839 minutes, which corresponds to ~3.6% of the total 

production time. Considering energy consumption, in the default case, when ~5281 tons of production 

was made, 12,345 w of energy per ton would be considered to have been consumed. By preventing 

machine downtimes, ~5481 tons of production was made in the same period and 11,747 w of energy 

is consumed per ton. As can be seen, while it is expected to consume 12,345 w per ton, the energy 
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consumed per ton is reduced to 11,747 w per ton, thus, 4.84% of energy is saved in energy 

consumption per ton. 

 
Table 23:NOKSEL Pilot KPIs 

NOKSEL – Digital Twin Powered Condition Monitoring (and Control) in Steel 

Manufacturing Industry 

Target Achieved 

KPIs Real-time online monitoring of process efficiency with minimal latency   < 100 ms < 1 ms 

Accuracy of data analytics, and AI algorithms  > 95% 99% 

Percentage of Type 1 error in anomaly detection (incorrect rejection of a 

true null hypothesis)  

= 0% 6,75% 

Percentage of Type 2 error in anomaly detection (failure to reject a false 

null hypothesis)  

= 0% 2,18% 

Reduction in machine downtime due to conducted predictive 

maintenance  

10% 62% 

Reduction in energy consumption 10% 4,84% 

 

 

In the Noksel pilot, following benefits are gained by the COGNITWIN project: 

1. Life cycle optimisation of Spiral Welded Machine (SWP) in steel pipe production, where CT of 

the SWP monitors the condition and health of the machinery, offers early warnings, and 

suggests optimised predictive maintenance plans for the machinery based on real-time data 

gathered from sensors such as the pressure, temperature, vibration, etc., and alarm and status 

information. 

2. Improving operational performance of the production process by predicting and identifying 

the optimal operating parameters based on both historical practices and real-time process and 

thus improving the overall productivity of the plant. 

3. Improving energy consumption efficiency by monitoring and predicting the energy analyser 

and operational parameters based on both historical practices and real-time process. 

4. Enhanced utilisation of computing infrastructure with virtual machines and containerisation 

technologies to achieve optimised RAM and CPU usage. 

5. Minimise health & safety risks and maximise the human operator performance by early 

warning of machine and system problems. 

6. Real-time monitoring of parameters like pipe diameter, pitch angle, belt width, production 

speed, pipe diameter and wall thickness for semi-finished and finished steel products for 

ensuring operational efficiency and stabilising the production process. 

   

Noksel pilot associated work and results have been published and/or presented in multiple studies to 

create further impact. These studies include: 

 

• Albayrak, Ö., & Unal, P. (2021). Digitalization of a Steel Pipe Production Factory: STEEL 4.0- A 

Family of Products Developed on Routes from Industry 3.0 to Industry 4.0. The Fifth 

International Iron and Steel Symposium, Data Science in Process Engineering, (pp. 271-274). 
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• Albayrak, Ö., & Unal, P. (2021). Smart Steel Pipe Production Plant via Cognitive Digital Twins: 

A Case Study on Digitalization of Spiral Welded Pipe Machinery. Advances in Intelligent 

Systems and Computing, (pp. 132-143). 

• Unal, P., Albayrak, Ö., Jomaa, M., & Berre, A. (2021). Data-driven artificial intelligence and 

predictive analytics for the maintenance of industrial machinery with hybrid and cognitive 

digital twins. In Technologies and Applications for Big Data Value. Springer. 

• Yallıç, F., Albayrak, Ö., & Ünal, P. (2022). Asset Administration Shell Generation and Usage for 

Digital Twins: A Case Study for Non-Destructive Testing., (pp. 299-306). Malta. 

• Temel, S., Ummak, E., Tokgöz, A., Işık, F., Albayrak, Ö., Ünal, P., & Özbayoğlu, M. (2022). Control 

System Design and Implementation Based on Big Data and Ontology. Osaka, Japan. 

 

Conclusion and Summary 
The initial set of challenges that have been addressed in the previous term includes platform 

establishment, data modelling and data acquisition. By selecting the optimum place, set of sensors, 

and deciding the platform architecture these challenges were addressed and required data set was 

started to be collected. Collected data did not include as much failure data as needed by the machine 

learning/deep learning algorithms to be trained and tested at the targeted levels. To address this 

challenge, physical models of the system elements were developed, and executed to generate 

synthetic data. There are at least three success stories associated with the COGNITWIN project: 

 

1. Anomaly detection: High temperature is detected to be one of the data that results in machine 

failure. The data measured by the system presented an anomaly in temperature and warned the 

operators, who disagreed that there was no anomaly and the heat was normal. When external tools 

are used to present that the heat was actually high as suggested by the digital twin, the operators took 

required actions and their trust in the digital twin increased resulting in increased level of technology 

acceptance.  

  

2. Energy consumption: The energy consumption is important for the SWP machine. The data analytics 

has shown that the energy consumption was positively corelated with the hydraulic power unit 

pressure filter value. As a result, it was suggested to change the filter, and the energy consumption 

was decreased.  

  

3. Preventive maintenance: The analysis performed on data collected presented that one of the main 

causes for the machine failure is about wire-cut, which has been found to be directly associated with 

the high temperature level in the room where the weld generators have been located. A control system 

has been developed in order to control the temperature in the room. For the system related ontology 

has been developed, stored, queried and a hardware control component has been designed and 

developed. The control system manipulated the temperature parameter by controlling the air 

conditioner, as a result preventive maintenance at the pilot site has been supported. 
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The challenges to be addressed are related to data modelling, optimization and deep learning related 

activities have been cope with. Expert knowledge of the operators and the relevant users of the system 

have been developed using ontology models. The serialization (persistence) of the developed 

ontologies have been realized. Following ontology development for fast semantic query performance 

developed ontology has been stored in a relational database. It was found that one of the major factors 

of the welding machines breakdown is the abnormal increase in the environmental heat degree in the 

welding machine’s generator’s room which was formerly being controlled manually. New system 

which automatically control the room’s degree and whenever reach a critical level system 

automatically starts to cool down the environment was installed (Figure 77). To control one of the 

main causes of machine breakdowns, a control panel has been designed, implemented and installed. 

The hybrid twin that has been generated by M18 has been enhanced, and by adding required cognitive 

elements to the hybrid twin a cognitive, self-learning digital twin has been accomplished at NOKSEL. 

The developed cognitive digital twin controlled the temperature and hence prevented unplanned 

machine failures in a proactive manner. It was experienced that the Cognitive Digital System is alert 

the abnormalities in SWP system just 15 minutes before its breakdown so that the system enables not 

to halt to SWP production system. 

 
Figure 77: Incoming/Outgoing Data Loop of Indoor Temperature Control System (Ref: Temel et. al., IEEE Big Data 2022) 

  

 

The final Noksel pilot demonstrator is described in the COGNITWIN Toolbox [1] with the 

Noksel  pilot digital twin pipeline description [8] and the final Noksel  pilot demonstrator 

videos [9] .  This is also further described in the final public deliverable D6.4 Best "Digital 

Twins" practices report [2]. 

 

5 Summary 
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SAG has focused on billet tracking  in the Nauweiler rolling mill and identified lacking sensors and 

required actions. To ensure the correct and automatized identification of billets upon entrance into 

the mill train, an improved billet identification system was installed. The more demanding task of 

providing a seamless tracking of billets in the blooming train was addressed in close collaboration with 

technology partners by means of a Computer Vision tracking system.  To this end, 3 FullHD cameras 

were installed overlooking the entire blooming train. A delay in the deployment occurred because of 

a delay in part of the development, handled through an internal project at SAG completing the 

operational deployment of the technologies after the end of the COGNITWIN project.  

  

In SIDENOR the focus has been on refractory management for replacement in steel ladles. The 

relevant process data and type of available measurement of the ladle profiles were also established 

considering the requirements of the rest of the partners for the tasks to be developed. The definition 

of the data requirements for a data pipeline has been provided to the technological partners. With a 

basis in  data collection cognitive digital twin prediction models were created and realised and, after 

a deployment delay at the end of the project,  Sidenorhas installed a cognitive and hybrid digital  to 

support the future refractory wear decision making. 

  

NOKSEL has had a focus on the development of a cognitive digital twin of Steel Pipe Welding 

machinery. The current system architecture was studied. The data needed to observe and evaluate 

contributions and impact of the new system was collected and analyzed. The current sensors of the 

SWP machine were listed. The desired new sensor installations have been integrated into the current 

plant’s system.  Data from sensors and PLCs were collected and stored in databases to use in 

machine learning. Developed Toolbox interoperability has been in use.  At the end, the predictive 

maintenance system supported by the cognitive digital twin for SWP system was built up and is in 

use. 

 

The final Steel pilot demonstrators are described in the COGNITWIN Toolbox [1] with the pilot 

digital twin pipeline description [4, 6, 8] and the final pilot demonstrator videos [5, 7, 9] .  

This is also further described in the final public deliverable D6.4 Best "Digital Twins" practices 

report [2]. 
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