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Executive Summary 

This document is a public deliverable “D1.4: A complete digital twin enabled with cognitive 

elements for the Non-Ferrous pilots” of the project COGNITWIN and describes the work carried out 

for two of the pilots.  It is accompanied by digital twin pipeline descriptions in the COGNITWIN Toolbox 

and also with Demonstrator videos in the COGNITWIN YouTube channel. 

In the Hydro pilot, the main aim is to evenly adsorb HF in the primary alumina feed. This is because 

the variation of fluoride in alumina fed to electrolysis cells influences the electrolysis heat balance, 

which in turn influences the yield of the cell. Even fluoride content in alumina will be achieved through 

logging/predicting over time the HF evolvement (fluoride to be adsorbed) and adjusting the alumina 

feed such that the weight fraction of adsorbed fluoride becomes as uniform as possible. Several non-

process factors will have to be included in the predictions, including: alumina quality, humidity and 

temperature. The temperature can be adjusted in the pilot and sought to be held as constant as 

possible (~90°C± 5°C), to ensure even and optimal conditions for adsorption. The pilot also includes 

active regulation of the three main fans, which in total can consume up to 3,6 MW when on max load. 

By regulating these fans based on the present operating conditions and an even mass flow of off gas 

from the electrolysis process, one can save energy, here stipulated to 5% reduction compared with 

today. The Hydro pilot has been built on three cases, and the results from these can be seen below: 

Case I; has resulted in a digital twin predicting HF evolvement, hence able to optimise the feed of 

primary alumina to the GTC accordingly. The twin utilises data’s from process system, meteorological 

servers and also from the flow control/measurement in Case III. The twin is based on a first-principles 

dynamic model. This model has been extended to be partially data-driven (hybrid), and lastly 

operators’ experience has been incorporated into the optimisation system, i.e. a cognitive element. 

Case II; the case of temperature regulation has, for all practical purposes met its objective, i.e. keeping 

the temperature in the reactor 90± 5°C. The achieved range was 91.8± 5,9°C – a huge improvement 

over non-optimised performance and very much within the prefferred range for HF adsorption in GTCs. 

Case III; has demonstrated its value in saving energy simply by harvesting the changes in temperature. 

The savings during testing/measuring were found to be 7%. Moreover, the control of the main fans 

enables the suction rate to be lowered down towards the leakage limits of the cells, resulting in a 

further 15% potential reduction of energy use. The case targets have therefore been met. 

Hydro consists of several production sites and will be able to bit-by-bit include elements from the pilot 

in all of our plants after COGNITWIN ends. Moreover, the methodologies developed/refined in 

COGNITWIN Hydro pilot will also applied to other purposes; for example, meteorological data will be 

used for pot room ventilation measurements, which is a vital part of emission control. 

In the Elkem pilot, the main goal is to develop an online model for refining of ferrosilicon alloys 

combining state-of-the-art sensors and a dynamic model for mass balance and heat transfer. By 

adjusting to real-time measurements, the refining and alloying of liquid ferrosilicon will be more 

precise, and this will eventually lead to higher yield, improved accuracy and lower specific energy 

consumption. The development and implementation of a cognitive twin will help to reduce the process 

variations caused by human interpretation as well as well as enhancing the decision support for the 
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operators. Furthermore, the installation of 3 infrared cameras at different locations in the process line 

will enable additional measurements of the process and give valuable information that can be 

automatically processed and fed into the online model for improved predictive capability. 

 

D1.4 adds the following 

This report is the result of the second stage (M30-M36 (M42)) of the project development and builds 

in particular on the previous confidential deliverables "D1.2: A Database and digital platform for the 

Non-ferrous pilots", and “D1.3: Hybrid models with cognitive elements for the Non-Ferrous pilots” In 

particular. Following the revision of D1.3, D1.4 is a public deliverable that adds the following: 

For the Hydro pilot 

• Improved data quality and new data measurements used by the pilot in M18-M30 

• Online architecture of Hybrid Digital Twin now running on plant servers 

• Current and planned Digital Twin functionalities 

• Status and further deployment plans for automation 

• Final public Demonstrator video for Hydro 

For the Elkem pilot 

• A description of the IoT platform and pipeline of data, model and application components 

• Installation of IR camera for tapping and casting processes. 

• Streaming of live video from cameras 

• Status and plans for further deployment 

• Final public Demonstrator video for Elkem 
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1 Hydro pilot 

Some of the information in this chapter was introduced in the confidential deliverables D1.1, D1.2. and 

D1.3.  It is also included here for the readability and context of this D1.4 public deliverable. 

1.1 Introduction to Hydro & Process description 

1.1.1 Hydro & Process description 

The raw materials for electrolysis of Aluminium are Aluminium oxide (Al R2ROR3R), anode carbon (C), 

Aluminium fluoride (AlFR3R), and electrical current. The electrolysis process with its Gas Treatment 

Centre (GTC) consists of two major material flows, a gaseous flow from the cell, and a bulk solids flow 

to the cell. In Figure 1 a sketch of the process flows is given. The alumina is discharged from a buffer 

or main storage (A) and fed to the dry scrubber reactor in the GTC (B). Here it adsorbs the HF and some 

SOR2R and the alumina is separated from the gas in a filter and collected in the filter house hopper (C). 

From this hopper the reacted alumina (secondary alumina) is sent to the electrolysis cell (D), either 

directly or via buffer storages before and after alumina distribution to individual electrolysis cells. The 

gas is collected from the electrolysis cell by means of suction (1), then drawn through the reactor (2) 

where it is mainly stripped for the HF gas (~95%) and moved further to the filter bag house where the 

filter cake adsorbs the rest of the HF gas. In total the efficiency of HF removal by the dry stage is 99.9%. 

After the dry stage the gas is pulled further by fans placed after the dry scrubber (3). The gas is after 

the fans pushed either directly to a stack (4), or into a wet scrubber stage for removal of SO R2R and rest 

HF. The wet scrubber stage uses either sea water or NaOH+HR2RO solution. The liquid absorbing the SOR2R 

and rest HF is returned to sea (5), often via make-up and conditioning and settling basins. 

 

 

 

Figure 1. Flow Sketch of aluminium electrolysis process, with Gas Treatment Centre (GTC). 
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GTCs will vary in size. The capacity depends on the number of electrolysis cells it is set to serve. This 

can vary from a few cells (6-20), and all the way up to several hundreds, meaning that the capacity 

might go from gas capacities of ~200 000 NmP

3
P/h to ~2 000 000 NmP

3
P/h at 80 °C. 

The GTC facilitating the Hydro pilot for the COGNITWIN project consists of 9 chambers of GE (now 

REEL) type ABART 600 with internal heat exchangers (IHEX). This gives a capacity of approximately 

710 000 NmP

3
P/h at 90 °C, and an alumina feed capacity above 20 t/h. 

1.1.2 Hybrid and Cognitive Digital Twins for the Hydro Pilot 

The COGNITWIN key phrases “Digital Twin”, “Hybrid Twin” and “Cognitive Twin” take on specific 

meanings in the scope of the Hydro pilot. 

- “Digital Twin” is a basic analytical model representing the process – in the Hydro pilot context, 

this refers to the first-principles model first presented in D1.2 and updated in section 1.4.2 

- “Hybrid Twin” is a data-adjusted analytical model to fit the actual process response and 

sensitivity – in the Hydro pilot context, this refers to the specific tuning and adjustments made 

to represent KTP data as well as the online model adaptivity (via data-driven state and 

parameter estimation) discussed in section 1.4.3. 

- “Cognitive Twin” is an extension of a Hybrid Twin capable of recognising manual corrections 

and/or pre-learned feed forward information resulting in early onset of corrective actions – in 

the Hydro pilot context, this refers to the nonlinear model predictive control capabilities 

discussed in 1.5.1 and 1.5.2, which result in corrective actions in order to avert anticipated 

disturbances to the target variable (HF-content in secondary alumina).  

1.2 Overview case status and current challenges 

The Hydro pilot consists of 3 cases (as indicated with roman numbers in Figure 2. 

 

Figure 2. Hydro pilot Cases. 

Each case hase its own target. Each of the targets aim to optimise stability in electrolysis, and overall 

through this reduce energy consumption. 
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Case 1. Matched and even distribution of HF to primary alumina feed, by demonstrating 

primary feed matching HF mass flow (calculated from logged operational data). 

Case 2. Keep constant temperature for best possible adsorption, i.e. 90°C ±5°C (from logged 

data) 

Case 3. Reduce the power consumption on the 3x 1 200 kW fans by 5%, measured by logged 

energy consumption from fans before and after activation of Case 3.  

The common factor in all of our cases is the meteorological data, humidity and temperature. 

1.2.1 Case I – Match primary alumina feed to HF content in alumina 

Aluminas used for fluoride recovery in electrolysis, so called Smelter Grade Alumina (SGA), will vary in 

quality. The parameter called LOI (Loss of Ignition) is defined at 300-1 000 °C, and represents the 

weight fraction that escapes (evaporates or sublimates from) a heated sample. This means effectively 

the crystalline water in the alumina that is released when entering the electrolysis cell. Water, in the 

alumina and free moisture from the ambient air, is the main cause of HF evolvement from the cell. The 

rate of HF will, in turn, affect the saturation of fluoride in the alumina from the GTC. By predicting and 

measuring the fluoride content in the raw gas and controlling the primary alumina fed to the GTC, we 

aim to distribute the fluoride evenly in the alumina returned to electrolysis. 

In Figure 2 we see an example of this HF evolvement and how the concentration in the raw gas changes 

through time/ seasons and alumina type used. 

 

 

Figure 3. Raw gas HF concentration from a production site (not pilot case) 

As mentioned, the variables found to influence the evolvement of HF gas from the pot room are: 

• LOI Crystalline water in the alumina, released between 300-1 100 °C 

• MOI Moisture adsorbed during handling of alumina in transport and GTC operation, mostly 

from ambient air or compressor/blower air 
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• The amount of secondary alumina feed to the electrolysis cells 

 

 

Figure 4. Covariation between LOI and HF evolvement 

Allthough not directly correlated, the covariation between the absolute humidity in the air and the 

evolved HF in the raw gas can be seen in Figure 5 below. This indicates a linking influence from MOI on 

the HF evolvement. 

 

Figure 5. Absolute humidity in the ambient air covariating with HF concentration in raw gas from electrolysis. 

Based on variables such as ambient humidity, LOI from alumina certificate, gas flow and alumina feed 

combined with literature on the topic, the digital twin will be able to predict the amount of HF to be 

adsorbed into the secondary alumina returned to electrolysis (see 1.4) 
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1.2.2 Case II – Temperature control 

When the raw gas enters the reactor of the GTC, it meets a mix of primary and re-circulated alumina. 

The gaseous fluoride is then adsorbed to the alumina, this adsorption process is very temperature and 

humidity dependant, see Figure 6. Hence, control of the conditions is essential. By using the described 

IHEX’s the temperature is controlled, and later the internal re-circulation of alumina will be used to 

compensate for varying humidity. 

 

Figure 6. Adsorption capacity for SGA as function of humidity and temperature [1] 

To measure the success in optimising the adsorption the reactor temperatures have been logged and 

are shown in Figure 7. 

 

Figure 7. Measured filter reactor temperature for GTC facilities. 
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As can bee seen in Figure 7, the temperature drops towards the end of the shown period. This is due 

to production curtailing due to the energy situation in Norway/Europe. This reduction in production 

leads to less energy to generate heat in the raw gas. 

 

Figure 8. Normal distribution of reactor temperatures in GTC. 

Figure 8 shows the normal distribution for the measured average temperature in the filter chamber 

reactors. The target was set to be 90°C  ± 5°C. The range achieved was 91.8°C  ± 5.97°C. Keeping in 

mind the harshness and volatility of the electrolysis process, this is great step forward. Moreover, from 

the measured data one can calculate that 96% of the sample population of temperatures measured in 

the analysed period is within the range of 80-110°C. This range is significant to the process because: 

1) at prolonged temperatures below 70°C one runs the risk of condensation of acidic gasses, leading 

to corrosion of gas ducts and all other steel material, and 2) above 110°C, the adsorption capability of 

the primary alumina becomes much less effective. 

 

Figure 9.  Adsorption capacity for SGA as function of humidity and temperature [1], with indicated (red ellipse) operational 
area for Hydro Pilot 
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As can be seen from Figure 9, the measured temperature range in combination with standard ambient 

conditions (absolute humidity) corresponds to an expected high adsorption potential, which is the 

desired target. 

1.2.3 Case III – Main fan control 

The main fan control is dependent on actual online gas flow measurements. This is further developed 

into the COGNITWIN system seen in 1.2.3.1 below. 

1.2.3.1 Gas flow sensor system 

The basic system of simplified gas flow measurement is done by utilising the basic equation given 

below: 

∆𝑝 =
1

2
∙ 𝐶 ∙ 𝜌 ∙ 𝑣2 

Where: 

• ∆p pressure difference measured [Pa] 

• 𝜌  The density of gas/ air at a given temperature [kg/m³] 

• v The velocity of gas/ air [m/s] 

• C A constant, typically representing a resistance in the system 

 

From this and the geometry of the duct, the gas flow will be found by equation below: 

𝑞 [
𝑚3

ℎ
] = 𝑣 ∙ 𝐴 ∙ 3600 

Where: 

• q Gas/ air flow [m³/h] 

• v The velocity if gas/ air [m/s] 

• A Cross sectional area of gas duct [m²] 

In the delivered GTC system there is already a large number of sensors and estimators, including an 

estimator for the total gas flow. Gas flows are in general trivial to measure and monitor. However, in 

the sized ducts, with short distance to and from the last bend, it becomes more cumbersome. As an 

addition to the built-in estimator for flow, an added sensor system comprised of dP-cell and 

temperature has been installed and combined with Computational Fluid Dynamics (CFD) models to 

check the validity of the estimator. Figure 10 shows the drawing a), and the geometry b) used for CFD 

simulations. 
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a) b) 

Figure 10. Left, a), 3D drawing of main raw gas duct, right b), CFD model geometry. 

Below, in Figure 11, the predicted results for the pressure and flow in the main raw gas duct are used 

for placing the connection points of the dP cells, and the temperature sensors. The model results are 

then used to establish the relations between measured pressure differences, temperatures and gas 

mass flow rates. The same methodology will be applied for the three intermediate gas ducts after the 

dry scrubber. 

 

Figure 11. Placing the dP and temperature points by utilising the CFD simulations. 

In Figure 12 below the full GTC is shown and the placement for the new dP based gas flow installation 

is pointed out in the main intermediate gas ducts. This will grant the opportunity to control the gas 

flow to each of the SO₂ scrubbers at the same time as one have the total flow available. 



 DT-SPIRE-06-2019 (870130) Deliverable D1.4  

Classification Public Page 19 of 58 

 

Figure 12. Placement and installation of dP sensor and HF laser (red circle) in main raw gas duct in the GTC. 

For the new placement of the gas flow measurement, a CFD simulation is carried out to determine the 

respective resistance constants Ci as shown in Figure 13 below. 

 

 

Figure 13. Result of CFD calibration of gas flow measurement system 

Each of the fans at the pilot plant are controlled by frequency converters, making it possible to adjust 

to operate around a given set point for Normal Cubic Meter flow, which is a defined mass flow rate of 

gas. 

1.2.3.2 Results of main fan control 

 

 

 

New placement of dP 

based gas flow 

measurement 
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When exhausting the electrolysis cells, a constant extraction of air mass flow is desired, since it is the 

air mass flow that conveys energy. Since fans operate with volumetric flow and not mass flow 

(measured in normal cubic meters), a fixed load on the fan will give variation in energy flow, due to air 

density varying with local weather conditions. 

The accumulated energy savings is the integral of the blue curve in Figure 14. Thus there is fan energy 

to be saved if one could follow suit with the temperature. 

 

Figure 14.  Generated example of surplus energy usage of constant mass flow (Nm3/h) with set point at 15 °C ambient 
temperature. 

 

Figure 15. Main fan control, gas flow and corresponding set point. 

For the main fans control, one can see long term data in Figure 15. If zooming in to check the measured 

gas flow follow the set point (see Figure 16), one can see that the gas flow follows the set point fairly 
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accurately. The rapid change in set point is due to ongoing maintenance and up-grade work in the GTC 

in general. 

 

Figure 16. Zoomed period of main fan regulation, gas flow versus set point. 

As reported in D1.2 (Figure 17), by fixing the mass flow through set fixed normal cubic meter (Nm3/h), 

the saved power consumption are reduced by ~7%. 

 
 

a) Comparing fan power with and without fixed 
mass flow of gas (fixed Nm3/h) 

b) Comparing fan power with and 
without fixed mass flow of gas (fixed 
Nm3/h), average over 790 h. 

Figure 17 Sum of energy usage from 4 main fans. Red, with manual load adjustment. Green, autoregulated with flat normal 
cubic meter flow (Nm3/h].  

From the above, the calculation of what this would mean for Hydro as a whole can be done. Main fans 

in Hydro Norway adds up to a nameplate effect of 52.4 MW, these are typically set to operate on ~70%, 

giving a constant effect of 37.4MW. By saving 7% of this the saving becomes 2.62 MW. For the full year 

it ads up to ~23 GWh.  

The control of main fans also enables the operation of the electrolysis cells closer to limits for gas 

leakages. This due to knowing and controlling the gas flow opens for active adjustsments.  As a result, 

the gas suction from the cells can be reduced by at least 15%. Since the effect used by the fans are 

directly proportional (see equation below) with the gas flow (in m³/h), this reduction in energy 

consumption can be added to the savings. 
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𝐸 =
∆𝑝𝑡𝑜𝑡𝑎𝑙 ∙ 𝑞𝑡𝑜𝑡𝑎𝑙

𝜂
 

Where: 

• E  is the power used [W] 

• ∆𝑝 is the total pressure drop met by the fan [Pa] 

• q is the total gas flow [m³/s] 

• 𝜂 is the efficiency factor for the fan [-] 

When considering the energy situation of late, this is valuable energy that can be released to other 

business or private consumption, and that is when only considering the main fans in Hydro Aluminium 

Norway. The results from COGNITIWN can apply to many large-scale fans in Europe. 

1.3 Development of data connectivity and system architecture 

1.3.1 Digital twin migration to new permanent Hydro server 

Previously, the GTC digital twin was installed and run on a backup server for other soft-sensor 

applications where it lacked continuous access to internet-based weather data. This installation was 

always intended as a temporary solution while Hydro’s KTP infrastructure was upgraded and 

designated GTC resources were made available. These milestones were reached during the summer of 

2022 – in June, the digital twin and associated infrastructure were migrated to a permanent server 

that is both within Hydro’s closed process network and is up-to-date with current Hydro KTP 

technology standards. Updated data connectivity to the digital twin is described in 1.4.1; the solution 

for accessing weather-based data from within the process network is described in 1.3.2. 

1.3.2 Virtual PC for running MET Norway weather interface 

Previous deliverables have described the development of the MET-API Interface (MAPI) in order to 

retrieve historical weather measurements and weather forecast data. At the end of 2021, MAPI was 

integrated into a Python service that continuously retrieves weather data and prepares a file 

containing the most recent weather measurements and the up-to-date weather forecast for use by 

the digital twin. 

Since MAPI requires internet access, collecting weather data and then making it available for the digital 

twin running on Hydro’s closed process network has been an ongoing and looming challenge. The 

original, temporary solution during the initial phase of online digital twin testing was to run the MAPI 

Python service on a network PC and then transfer a file including the weather data to the server 

running the digital twin. In June 2022, a permanent solution was established: MAPI is run on a virtual 

PC within the process network where the firewall allows access to data from the Norwegian 

Meteorological Institute’s web servers. The current weather measurement and forecast is then read 

and made available for the digital twin by Cybernetica’s OPC UA server. 
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Figure 18: Schematic showing the retrieval and parsing of raw data by the MAPI interface, the preparation and formatting of 
the data by the Python service and the transfer of the data to the digital twin via Cybernetica OPC UA server. 

The virtual PC-solution securely accesses data from the internet without exposing the Hydro process 

network to risks. The virtual PC is included in the network connectivity schematic in 1.4.1 

1.4 Online hybrid digital twin 

1.4.1 Data connectivity and system architecture 

The digital twin and its supporting COGNITWIN toolbox components have been established on a server 

located within the process network at KTP. Most of the input data to the digital twin originates on 

Hydro plant servers (Hydro OPC UA, GTC OPC UA). A notable exception is the weather measurements 

and forecast. The MET-API Interface (MAPI) requires internet access in order to retrieve weather data 

and is therefore, due to security concerns, normally not accessible from within the process network, 

posing a challenge to the pilot as weather data is necessary for real-time digital twin operation. As 

described in 1.3.2, a permanent solution using a virtual PC with a selectively opened firewall has been 

implemented. This data retrieved by MAPI is processed by a toolbox component (Cybernetica OPC UA 

server, with a custom weather data extension) and the data is made available on OPC UA tags to be 

read by the digital twin. The data flow schematic in Figure 19 has been updated to reflect the 

permanent installations. 
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Figure 19: Data flow (including external sources) to the server running the digital twin. 

Figure 20 was introduced in previous deliverables and shows the interconnectivity and handling of data 

by COGNITWIN toolbox components. 

 

Figure 20: IoT architecture for the Hydro pilot showing interconnectivity of data and toolbox components. 

1.4.2 First-principles model 

A dynamic model for the GTC was introduced in Deliverable 1.2. This model was developed for online 

implementation as part of the pilot work in order to address the need for accurate real-time 

predictions of HF emissions. This model is written in C/C++ and is a continuous time model formulated 

as a set of differential equations for the evolution of dynamic states. As the model is intended for use 

in online digital twin-based optimization and control, the model must necessarily be fast to evaluate 

as well as numerically smooth (continuously differentiable). 
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Figure 21 shows a diagram of the control volumes and process flows included in the dynamic model. 

Conceptually, the model can be divided into main components that capture different phenomena: 1) 

the fumes, where HF evolution takes place, 2) the filter chamber (adsorption reactor and bag filter), 

where HF adsorption takes place, and 3) the alumina silos, which account for most of the time delay 

in the GTC. The model for the fumes is a combination of earlier literature modelling [2], experimental 

[3, 4] studies of HF evolution and representations of GTC components developed as part of this case. 

 

Figure 21: Diagram of dynamic GTC model control volumes and process flows. Alumina flows are shown in black (low fluoride) 
and green (high fluoride). Gas flows are shown in red (high fluoride) and blue (low fluoride). Control volumes are 
marked with dashed lines. 

The model currently contains 51 dynamic states and is configured to run with the CVODE solver for 

ordinary differential equations. These combined improvements from the previous version (86 dynamic 

states with Forward Euler integration) lead to a 50X+ model speed-up. Three dynamic model 

parameters have also been included (discussed in section 1.4.3) 

1.4.3 Hybrid digital twin - model adaptivity 

Deliverable 1.3 introduced the estimation strategy used by the hybrid digital twin to achieve self-

adaptive behavior and best follow process data. The following text describes the current status and 

highlights updates to the augmented Kalman filter used for state and parameter estimation. Three 

measurements are used by the Kalman filter in order to adapt model parameters to best follow process 

data. 

The parameter with the most direct importance to model results is related to the Loss-on-Ignition (LOI 

– structural water in alumina). Currently, the LOI information fed to the digital twin is static as the 

alumina certificate has not been fully integrated with the online data flow. Figure 22 shows digital twin 

results when the first-principles model is configured to run with the Kalman filter enabled – the change 

in the anonymised LOI-related estimation parameter is shown in the bottom panel. Specific logic has 

been coded into the model software in order to enable the Kalman filter to handle the 

missing/anomalous data described above. Significant improvement is seen in the model’s prediction 
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of the most relevant process measurement (HF concentration in gas leaving pot fumes). Tested and 

compared over the same period, the digital twin with enabled Kalman filter achieved a prediction-

measurement correlation for this time period of 0.797 compared to 0.605 achieved by the ballistic 

digital twin (model run without adaptation). 

 

Figure 22: Dynamic model results for several weeks in January 2023 with adaptive LOI-parameter estimation. 

The augmented Kalman filter also includes the following measurement/parameter pairs: 

• (measurement) HF emissions from the GTC / (parameter) saturation concentration of HF in 

alumina 

• (measurement) secondary silo height / (parameter) additive bias parameter for primary 

alumina feed to the GTC  

Model predictions vs. online data for these two measurements as well as adaptive parameter 

estimation to best capture their behaviour are shown in Figure 23 and Figure 24, respectively. Model 

adaption to capture HF emissions levels from the GTC is relevant for ensuring the correct fraction of 

HF uptake. Model adaption to silo level measurements is important for capturing the correct residence 

time of HF and moisture through the GTC. Since the introduction of model adaption in Deliverable 1.3, 

the silo parameter has been modified to represent an additive bias to the primary alumina feed instead 

of the feed itself. This change improves the predictivity of the hybrid digital twin and was made 

possible by new GTC data from the primary alumina feeders. 
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Figure 23: Model predictions vs. measurements of HF emissions from the GTC with adaptive parameter (saturation 
concentration of HF in alumina) estimation. 

 

Figure 24: Model vs. sensor predictions of mass in the secondary alumina silo with adaptive parameter (primary alumina input 
to the GTC) estimation. 

All three measurements used by the Kalman filter are prone to anomalous and/or invalid data readings. 

Anomalous readings are problematic when used by the Kalman filter to influence model states and 
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parameters. The following measures have been taken in order to minimise the impact of invalid data 

readings on the application performance: 

• Upper and lower bounds for data readings have been defined for all three measurements 

• If data readings are missing or out of bounds, a warning status for the affected measurement 

is triggered 

• If a measurement remains in warning status for a specified number of samples (defined per 

measurement), an invalid status is triggered 

• If model adaptivity based on a particular measurement is defined as critical and this 

measurement has invalid status, an invalid flag for the overall application is triggered, 

signaling for manual control and intervention to fix the problematic measurement. 

1.5 Cognitive digital twin 

1.5.1 Optimisation to match primary alumina feed to HF-content in alumina 

Nonlinear model predictive control (NMPC) has been implemented to stabilise the HF-content in 

secondary alumina by optimising the primary alumina feed. The NMPC control scheme has been 

implemented in the Cybernetica CENIT toolbox component, where the optimisation takes the form of 

minimising the objective function J evaluated at specified intervals over a predictions horizon: 

𝐽 =  
1

2
(𝑍 − 𝑍𝑟𝑒𝑓)

𝑇
Q(𝑍 − 𝑍𝑟𝑒𝑓) +

1

2
∆𝑈𝑇S∆U + 𝑅𝑇𝜀 

The first term in the objective function represents deviation of the controlled variables (CVs) Z from 

their set points Zref penalized by weights found in the diagonal of matrix Q. The elements of the CV-

vector Z are: 

- Z1 or CV1: HF-content in secondary alumina (mol/kg) 

o Evaluated multiple times during the predictions horison 

o Set point based on operator experience 

- Z2 or CV2:Cumulative variance of HF-content in secondary alumina (mol / kg)2 

o Evaluated at the end of the predictions horizon 

o Set point is zero (minimisation) 

The result of tuned optimisation with these two CVs is to achieve a balance between reaching the set 

point for HF in secondary alumina and keeping the HF-content stable over the evaluated predictions 

horizon. 

The second term in the objective function represents changes to the manipulated variables (MVs) U 

penalized by weights found in the diagonal of matrix S. The elements of the MV-vector U are: 

- U1 or MV1: Primary alumina feed to the GTC (tonne/hr) 

The result of penalizing the MV changes by weights S is to ensure that the NMPC proposes balanced, 

stable step changes to the primary alumina feed in order to achieve the CV-set points. 
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The third term in the objective function represents maximal constraint violations  penalized by linear 

weights R. The elements of the constraint vector  are: 

- 1: Static maximum/minimum allowed secondary alumina silo levels (mm) 

- 2: Cyclical maximum/minimum allowed secondary alumina silo levels (mm) 

The result of implementing the above constraints is to ensure that the NMPC proposes a solution that 

always adheres to operation requirements. The cyclical silo level constraints will be discussed more in 

1.5.2. 

The NMPC uses the following pieces of information to evaluate the predictions horizon: 

- Current process operating conditions 

- Anticipated future operating conditions (weather forecast, other known process disturbances) 

- First-principles model predictions (past and future) of GTC states 

The online GTC application is currently configured with a 3.5-day long predictions horizon. 

1.5.2 Cognitive silo level constraint for avoidance of segregation effects 

Experience-based manual GTC operation involves taking measures to minimize negative consequences 

of alumina segregation in the secondary silo. This is in practice achieved by periodically increasing and 

decreasing the silo alumina level. Because the flow of alumina to the electrolysis process is relatively 

constant, the need to vary silo levels introduces an inherent constraint on the primary alumina feed. 

By defining cyclical constraints for the alumina silo levels, the experience-based operation profile can 

be introduced to the digital twin optimisation solution. 
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Figure 25: Schematic of cognitive (cyclical) silo level constraint. The total period for a silo cycle is configured to last for 28 
days. 

Figure 25 shows a schematic of the cyclical silo level constraint. Static maximum and minimum values 

for the silo level are defined and are always active during the optimisation in addition to the cyclical 

constraints. Cyclical upper and lower bounds are then calculated based on the static 

maximum/minimum and an allowable bound. The optimisation is then allowed to propose primary 

alumina feed solutions that result in silo levels between the upper and lower bounds. A larger 

optimisation region gives the optimisation more degrees of freedom when attempting to match the 

primary alumina feed to the HF-content in alumina. 

The cyclical silo constraint is related to operator experience and process knowledge beyond the scope 

of the first-principles model. As such, it can be considered as a cognitive element of the digital twin.  

1.5.3 User interface / dashboard 



 DT-SPIRE-06-2019 (870130) Deliverable D1.4  

Classification Public Page 31 of 58 

 

Figure 26: Preview (screenshot) of web-based dashboard for the Digital Twin operator interface. 

In order to facilitate oversight and utilisation of the digital twin application by operators, a custom 

graphical user interface (digital twin dashboard) has been developed. Figure 26 shows screenshots of 

the main page of the dashboard (with Norwegian language text). This page is accessible for operators 

via web server. 

Descriptions of the data displayed in the operator dashboard: 

- Top left: Model and sensor silo levels, as well as future upper and lower limits for silo levels 

(grey dashed lines) for comparison 

- Top right: Model and monitor results of the main pilot measurement (HF concentration in raw 

gas into GTC) 

- Bottom left: Recorded and optimised primary alumina feed input 

- Bottom right: Model results of the variable to be stabilised/controlled (HF content in 

secondary alumina) and the variable set point (blue dashed line) for comparison 

In all four plots, the black vertical line divides measured and modelled historical data from anticipated 

future model predictions. Variations in future data is based on a combination of the weather forecast 

and the model’s prediction for dynamic GTC states based on current and optimised process inputs. 

In addition to displaying historical and future data application data, the digital twin dashboard also 

includes functionality for the operator to change controlled variable setpoints and enable/disable 

digital twin optimisation. 

1.5.4 Autoencoder for anomaly detection 

Toward the end of the COGNITWIN project, SINTEF developed a prototype model for anomaly 

detection. The basis of this work has been the data analysis carried out on the HF-gas measurements, 

together with Hydro, and resulted in an autoencoder structure that can detect anomalies in the sensor 

data coming from the HF laser. 
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Autoencoders are a particular type of architecture used in neural network-based machine learning 

characterised by a strong dimensionality reduction in the middle of the network; an example is shown 

in Figure 27. As such, an autoencoder is constructed by several layers of varying size (number of 

neurons or cells in each layer, i.e. the width of the layer), with the characteristic that at least one layer 

in the middle sports a width much smaller than that of the input or output layers, forcing the data 

streaming in the network through this “bottleneck”. Autoencoders are trained to replicate in the 

output layer exactly the same data that was provided as input (hence the auto- part of the name). This 

training, coupled with the bottleneck structure in the middle, forces the network to learn a meaningful 

representation of the data, which must be expressive enough to allow the correct reconstruction of 

the data toward the output layer, but compact enough to fit into the smaller size of the bottleneck 

layer. Typically, the part of the network before and including the bottleneck layer is called the encoder, 

and the part after the bottleneck is called the decoder. Since the decoder needs to perform the inverse 

operation of the encoder, it is also customary that the two parts have symmetrical structure about the 

bottleneck. 

 

Figure 27. Example of the layers' structure in an autoencoder. 

This particular structure and training makes autoencoders particularly suited for anomaly detection 

tasks: By training it only on data corresponding to normal operation, the network will have poor 

reconstructive performance when encountering data that deviates from the normal. The higher 

reconstruction error can then be used to flag anomalous data inputs. Further, use of autoencoders on 

time series permits tracking the reconstruction error over time, which can provide an indication of 

when the conditions are starting to deviate from the normal, thereby enabling a "warning" to be issued 

before an anomaly is actually encountered. 

SINTEF developed and trained an autoencoder on the HF measurements from the laser, and tested it 

on data not used for training, as is normal in ML operations. An application of the autoencoder in a 

period of the data is show in Figure 28, where we see some anomalies being detected (shaded red 

areas). Indeed, in those periods we notice not only abrupt changes in the monitor values, but also the 

difference between the monitor and the model developed by Cybernetica (indicated as Model in the 

figure), which is a further confirmation. Note that the values from Cybernetica's model are not used 

by the autoencoder; they are included in the figure just as a "second opinion" to evaluate the 

autoencoder's performance. 



 DT-SPIRE-06-2019 (870130) Deliverable D1.4  

Classification Public Page 33 of 58 

 

Figure 28. Detection of anomalies in the HF laser measurements (Monitor). The shaded red areas are the ones flagged by 
the autoencoder as anomalies. The reconstructed monitor data is also shown, together with the model data from 
Cybernetica's model (here dispayed only for comparison, the Model data is not used by the autoencoder). We 
see that the autoencoder flags areas where the Monitor data behaves unexpectedly, and significantly differs 
from the model data. 

Later, estimations of the HF-laser signal's status became available. This quantity, based on the 

transmission's strength of the laser, can assume three discrete values: 2 = trustable signal, 1 = unsure 

signal, and 0 = not trustable signal. The autoencoder was tested in this new situation, again by training 

it to reconstruct the Monitor signal, but without using any information from the signal's quality 

estimation. Results over a period of the data where the HF-laser lost connection are show in Figure 29. 

 

Figure 29. Detection of anomalies in the HF laser measurements (Monitor). The shaded red areas are the ones flagged by 
the autoencoder as anomalies. We notice that the autoencoder correctly flags the moment the HF-laser loses 
connection. 
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Here we see how the autoencoder correctly flags the moment where the laser loses connection, which 

is also confirmed by a signal status of 0 (black line, right vertical axis). Cybernetica's model also does a 

perfect job of adjusting for the lost connection. 

1.6 Future work (post-COGNITWIN) 

1.6.1 Testing of automatic control 

The GTC digital twin has been using the Cybernetica CENIT platform to run in advisory optimization 

mode since the summer of 2022: operators can follow the primary alumina feed suggestions and can 

choose to implement them. This man-in-the-loop control strategy is valuable for testing the stability 

and general behavior of the digital twin, but loses the precision of closed-loop control. 

The next step for advancing the contributions of the digital twin will be to test closed-loop control by 

allowing the digital twin to update the primary alumina feed at regular time intervals. This step is 

planned to continue during 2023 and 2024. 

1.6.2 Container solutions 

Container solutions are becoming increasingly popular in the deployment of digital applications. By 

standardizing the application’s runtime environment, containers offer a number of important 

advantages, including: 

- Faster deployment of new applications/rapid migration of existing applications to new servers 

- Simplification of application maintenance, especially in the case where many similar 

applications are running online 

- Overseeable control over data streams to/from the container workspace 

Hydro and Cybernetica are underway with developing a workflow for deployment of Cybernetica CENIT 

applications via container solutions (Docker/Kubernetes). 

1.6.3 Integration of Autoencoder 

The autoencoder for anomaly detection in the HF-laser signal as described in Section 1.5.4 has been 

developed by SINTEF and tested on the available data. However, due to time constraints within the 

project, it has not yet been integrated in Hydro's systems or put in online functioning. 

In order to achieve online operability, the development of appropriate software connections layers is 

required; this in order to manage an online stream of data, as opposed to offline deployment as of 

present. In addition, testing on more recent data (the one used in the development is from early 2022) 

would be appropriate. 

With the above done, which is not expected to require long time, the autoencoder could be put into 

online service, integrated with Cybernetica's model and Hydro's data systems. This would enable the 

following: 

1. The autoencoder would work as a secondary process control tool in parallel to Cybernetia's 

model, being able to detect when the HF-laser measurements could diverge from the model's 

predictions due to anomalies in the sensor; 
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2. Warnings to the operators could be issued when the autoencoder detects an anomaly in the 

HF-laser sensors, informing the engineers of possible sensors malfunctions or that the 

measurements are not to be trusted. This type of information is important both with respect 

to deciding on manual process steering vs automatic process steering, and maintenance of the 

sensor. 

3. By integrating the autoencoder model into both Cybernetica's model and Hydro's data 

systems, it would add an additional element of cognition to the digital twin developed in this 

project, enhancing data-driven decision support. 

 

1.6.4 Follow-up on KPIs 

By the end of the project we see that the following effects can be possible: 

Table 1 Summary of KPI for the Hydro pilot case 

Hydro -  Gas Treatment Centre (GTC)  

K
P

Is
 

Target KPIs Achieved/achievable result 

• Reduce suction rate overall by 10%, i.e. 
for the pilot in question, 1500 MWh/y 
saved fan work, and increased available 
recovered thermal energy of 13500 
MWh/y (Achieved) 

• Achieved targets 

• Reduce energy consumption in GTC by 
15% Achieved 10% 

• Achieved 10% reduction 

• Decrease process disturbance by 
preventive maintenance by 5%(Achieved 
4%) 

• Achieved 4% reduction 

• Maintain balanced flow distribution to 
different filter compartments within ±5% 

• Achieved target 

 

2 Elkem Pilot 

Some of the information in this chapter was introduced in the confidential deliverables D1.1, D1.2. and 

D1.3.  It is also included here for the readability and context of this D1.4 public deliverable. 

2.1 Introduction and background 

2.1.1 Motivation 

The goal for this project is to develop a dynamic, on-line model for a complete mass/energy balance 

for the post tap hole processing of liquid ferrosilicon, utilizing measured process data in real-time and 
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continuously updating the optimal process route. The model should consider cost of raw materials, 

product pricing as well as energy cost and optimize with respect to maximizing the profit. During the 

latest reporting period, the main focus for the pilot has been to install an infrared camera for the 

tapping station, develop algorithms for temperature and slag measurements from the refining station 

IR camera as well as further development of the digital twin. 

2.1.2 Process description 

The production of ferrosilicon (FeSi) requires multiple process steps that will be described briefly in 

the following. A schematic of the production route is given in Figure 30. 

 

 

Figure 30 - Production of ferrosilicon. The focus of this project is the treatment and control of liquid FeSi after tapping of the 
submerged arc furnace. 

 

The scope of the COGNITWIN project is to develop a digital twin with cognitive elements for the post 

taphole process (tapping-refining-alloying-casting), see Figure 31. 
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Figure 31 - Tapping, refining/alloying and casting of ferrosilicon. The ladle may (as here) or may not be equipped with a bottom 
plug for addition of oxygen/air. 

The output of the digital twin is a dynamic description of the status of the batch process. The minimum 

requirement is a continuous evaluation of chemistry and temperature. Based on this evaluation, the 

model should suggest future actions by the operator. The goal is to maximize the post tap hole yield 

(tonnage cast/tonnage tapped) and meet chemical specifications for every batch. In addition, slag that 

follows the metal during casting should be automatically detected so that the batch can be 

downgraded if necessary and not shipped to customer if the slag content is too high. Most customers 

have an upper tolerance for slag contamination of the product. Preferably we should be able to stop 

the casting process if slag is detected and make necessary adjustments, for example by checking and 

modifying the temperature. High temperature during casting will result in a less viscous slag that will 

have a higher tendency to follow the metal.  

2.2 Use case and challenges 

Table 2 – Use case and challenges. 

Use Case Template Description 

Use Case Name Temperature in tapping stream 

Use Case ID Elkem-UC-1 

User story expression of use 

case 

As process responsible for furnace operation, I want to be 

able to measure the temperature of the tapped ferrosilicon 

to establish a link between output and furnace operation 

and adjust operation as necessary when the temperature 

gets too low. 

Goal Automated temperature measurement of tapping stream 

Measurable KPIs for the goal  

(if any) 

Post-taphole yield 

Actors and stakeholders 

involved 

Furnace operators, process owners 

Input data Infrared images 
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Output data / actions Temperature of tapping stream 

Summary description – Main 

success scenario 

Installation of IR camera – programming – recording of data – 

development of algorithm to determine temperature – visual 

output to operator/process owner 

Extensions, exceptions, 

variations 

  

Possible generalisation of use 

case 

Setup and methods can be applied to all plants 

Use case analysis – related to 

which Digital Twin pipeline 

steps 

This use case will be supported through the following Digital Twin 

pipeline steps:  Digital Twin Data Acquisition, Digital Twin 

Representation, Hybrid/Cognitive Digital Twin Generation,  

Use Case Template Description 

Use Case Template Description 

Use Case Name Slag in refining ladle 

Use Case ID Elkem-UC-2 

User story expression of use 

case 

As process responsible for refining and alloying, I want to know 

the amount of slag that accompanies the liquid metal at the start 

of the refining process so that proper adjustments to the operator 

decision support can be made 

Goal Quantify the amount of slag per ladle 

Measurable KPIs for the goal  

(if any) 

Product quality, post taphole yield 

Actors and stakeholders 

involved 

Refining operators, post taphole process owner 

Input data Infrared images of liquid metal surface in refining ladle 

Output data / actions Kilogram slag per tap – modification of total metal weight 

Summary description – Main 

success scenario 

Installation of IR camera – programming – recording of data – 

development of algorithm to determine slag coverage and 

thickness – visual output to operator/process owner 

Possible generalisation of use 

case 

Setup and methods can be applied to all plants where slag amount 

in ladle is important for correct liquid metal processing 



 DT-SPIRE-06-2019 (870130) Deliverable D1.4  

Classification Public Page 39 of 58 

Use case analysis – related to 

which Digital Twin pipeline 

steps 

This use case will be supported through the following Digital Twin 

pipeline steps:  Digital Twin Data Acquisition, Digital Twin 

Representation, Hybrid/Cognitive Digital Twin Generation,  

  

Use Case Template Description 

Use Case Name Slag in refining ladle 

Use Case ID Elkem-UC-2 

User story expression of use 

case 

As process responsible for refining and alloying, I want to know 

the amount of slag that accompanies the liquid metal at the start 

of the refining process so that proper adjustments to the operator 

decision support can be made 

Goal Quantify the amount of slag per ladle 

Measurable KPIs for the goal  

(if any) 

Product quality, post taphole yield 

Actors and stakeholders 

involved 

Refining operators, post taphole process owner 

Input data Infrared images of liquid metal surface in refining ladle 

Output data / actions Kilogram slag per tap – modification of total metal weight 

Summary description – Main 

success scenario 

Installation of IR camera – programming – recording of data – 

development of algorithm to determine slag coverage and 

thickness – visual output to operator/process owner 

Possible generalisation of use 

case 

Setup and methods can be applied to all plants where slag amount 

in ladle is important for correct liquid metal processing 

Use case analysis – related to 

which Digital Twin pipeline 

steps 

This use case will be supported through the following Digital Twin 

pipeline steps:  Digital Twin Data Acquisition, Digital Twin 

Representation, Hybrid/Cognitive Digital Twin Generation,  

 

 

 

2.3 Installations of IR cameras in production line  



 DT-SPIRE-06-2019 (870130) Deliverable D1.4  

Classification Public Page 40 of 58 

All planned installations of IR cameras are now completed. A brief description of the process, typical 

process conditions and integration with process control are given below for the three main sub-process 

related to post taphole processing of liquid ferrosilicon.  

2.3.1 IR-camera – refining 

After completion of the tapping process, the ladle is transported with truck to the refining station. 

Depending on the target specification, several elements can potentially be added to the ladle by an 

automatic silo-and weighing system. Because of this automatic system, there has been added a logic 

so that the IR camera does not interfere with automatic adding of the alloying and refining elements. 

There is limited amount of space and therefor the IR camera with its housing and air cooling is mounted 

on a pneumatic arm that works in harmony with automatic silo-and weighing system in order to avoid 

collision with other moving parts. Currently images are gathered on a virtual machine for offline 

analysis and live view is also available using manufacturers SDK through Cybernetica InSight, a custom-

made software for thermal imaging from Cybernetica.     

2.3.2 IR camera – tapping 

Liquid ferrosilicon is tapped from the submerged arc furnace at fixed intervals depending on the 

production rate. The temperature of the metal is 1800-2000 °C when it leaves the furnace, 

accompanied with significant amounts of hot gases and smoke. These conditions are quite extreme 

and severely limits opportunities to measure key process parameters such as temperature. For this 

purpose, Infrared camera have been installed for the tapping station. This has required some 

infrastructure modifications such as electrical cabling and air supply for cooling. We have also built a 

custom housing for the camera with a mechanical shutter to protect the camera lens when it is not in 

use. Currently images are gathered on a virtual machine for offline analysis and live view is also 

available using Cybernetica InSight.     

2.3.3 IR camera – casting 

The ladle is transported to a tilting chair which offers both manual and automatic control of the tilting 

speed.  The ladle is slowly emptied into a runner which leads the liquid metal to a caster which consists 

of multiple rectangular molds where the typical cast amount is 20 kg/mold. The molds are fixed to a 

moving belt. In this last part of the production process, the main emphasis is stable quality, which is 

achieved by keeping the casting thickness constant in all molds. In addition, slag contamination can in 

some cases render the entire batch unusable for the intented product grade. Downgrading the batch 

means value loss for the plant.  

The installation of the camera was completed during 2022. A live image from the camera is available 

for the operator in charge of the casting. Remote access is available through the internal network.  

 

2.4 Image analysis and algorithm development 

2.4.1 Introduction and background 
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Sampling and data-acquisition are generally complex for metallurgical processes due to harsh 

environments for sensors, operators, and equipment in general. IR-cameras represent one of the 

currently available technologies suitable for these environments, allowing continuous measurements 

from afar. Though IR-cameras have previously been used for temperature measurements in ELKEM, 

other critical process information may be attained by analyzing the video-feeds by computer-vision 

algorithms. This work concerns itself with gaining access to previously unavailable process information, 

namely the estimation of furnace and refining slag, while additionally attaining a reliable temperature 

measurement during tapping and refining of liquid Si/FeSi alloys.  

Prototype algorithms have been created, distinguishing between different phases by identifying 

transitions, also known as edges, in various parameters, like observed temperature and color. Sharper 

transitions create more easily identifiable edges, and as such, the greatest portion of this work 

dedicated to filtering out enough process noise to enable standard computer-vision methods. A large 

portion of this noise is attributed to effects which distort the intensity of IR-radiation reaching the 

camera. The temperature given to any given pixel is calculated from the intensity it is exposed to, with 

various effects like emissivity, reflectance, surface roughness, curvature, and viewing angle, altering 

the emitted intensity to appear hotter or colder. This is analogous to how shadows and powerful 

illumination may change the apparent color of an object, how creases and folds in a garment changes 

its appearance, and how various metals begin to glow at different temperatures. Thus, waves and 

ripples in the liquid alloy creates the illusion of massive temperature gradients, while slag and alloy 

measured at similar temperatures are observed to be hundreds of degrees apart. Attaining reliable 

temperature measurements is therefore not trivial, but while these distortions create a high degree of 

noise, they also create opportunities. Differences in emissivity between slag and alloy creates easily 

detectable transitions between the two phases, a feature exploited heavily when looking for slag in 

liquid alloy. 

 Algorithms outputting consistent temperature measurements and slag amounts have been created 

for both tapping and refining, with their methodology described below. 

 

2.4.2 Refining camera 

The objective was to provide an estimate on the amount of slag floating on-top of the liquid alloy, 

while providing a reliable temperature measurement of the liquid alloy. Algorithms for satisfactorily 

attaining both have been created and tested on the video-feeds made available. It should also be noted 

that good agreement between IR-camera measurements and mathematical modeling was found, 

allowing gaps in the video-feed to be filled in by the model. Refining requires a different set of solutions 

than tapping, as the camera looks down onto the refining ladle. Even at a slight angle, reflections from 

the wall necessitates removal of the visible ladle wall, with edge filtering made easier by knowing the 

rough ladle geometry.  
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Figure 32. Depiction of how the slag thickness is estimated, with a simplified view of how the system appears to the camera 
to the right. 

To estimate the amount of floating slag, information on the slag thickness is needed. The liquid alloy 

can be assumed a heat source, as its volume is order of magnitude greater than the floating slag, at 

constant temperature, changing with time. Heat flows from the liquid alloy to the slag and is 

transported through it, bleeding off heat-energy to heat the slag as it passes through. After passing 

through the slag, the remaining heat-energy will be emitted as radiation from the slag surface and 

picked up by the IR-camera. Therefore, the surface temperature at different parts of floating slag can 

help approximate the surface slag thickness if the liquid alloy temperature is known, as depicted in 

Figure 32. Figure 33 shows the algorithm being applied on a frame from an industrial video-feed. 

 

Figure 33. Surface slag divided into different temperature regions, with an uncalibrated volume estimate. 

While a wide range of methods have been tried, no consistent method for separating liquid alloy and 

floating slag has been found in this work. Texture analysis, liquid probability factors, and different edge 

detection algorithms to name a few, have all been found wanting. The main issue is that slag covers 

most, sometimes all, of the liquid alloy, and liquid alloy with waves and thin pieces of slag floating in it 

shares similar intensities and textures with parts of the slag. Dust on the lens, fuming, varying process 
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conditions, and viewing angle, mat additionally cause the liquid alloy to appear different within the 

same frame, adding far too many parameters to solve the problem. However, during refining floating 

slag gets swallowed by the liquid alloy due to a stirring current. It was found that a consistent liquid 

alloy temperature could be found at lower degrees of slag coverage. These measurements agree 

satisfactorily with the modelled temperature, which opens the possibility of substituting an initial 

measurement with the modelled liquid alloy temperature. The slag estimate can then be calibrated 

after the slag coverage is reduced and a temperature measurement is possible with the IR-camera. 

 

2.4.3 Tapping camera 

The objective was to locate slag-chunks and estimate their size, while providing a consistent 

temperature measurement. Algorithms for satisfactorily attaining both have been created and tested 

on the video-feeds made available. It was found prudent to limit the search space to only the initial 

tap-jet erupting from the tap-hole for improved performance. The initial tap-jet is thicker, lowering its 

curvature compared to the final tap-jet, with a viewing angle allowing high contrast between the liquid 

alloy jet and its surroundings. This highlights the importance of camera placement, where changing 

the viewing angle may make a feature easier or impossible to locate, much like in normal photography. 

  

Figure 34 - Infrared image from tapping furnace #2. 

While multiple methods were tried, the best results for both slag detection and temperature 

measurement were obtained by first locating the tap-jet boundary. Locating and updating this 

boundary is not trivial. Pure computer-vision methods were found lacking, instead locating geometric 

features of the tap-hole and jet in conjunction with fluid dynamics to estimate said boundaries. 

Combining images of the tap-hole without liquid alloy together with the IR video-feed was found to 

simplify this greatly. 
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Figure 35. Depiction of a slag-chunk within the liquid alloy flow field. Arrows indicate the image order. 

After locating the tap-jet boundaries, static features are masked out to focus on the dynamic parts of 

the frame. Slag-chunks are detected and measured by looking for high temperature features floating 

in the tap-jet, moving from the tap-hole to the runner and overlapping from frame to frame. Noise in 

the observed liquid alloy temperature signal is mostly due to flow dynamics and varying geometric 

shape. By following consistent streamlines, this variation may be limited as a streamline experiences 

similar flow dynamics along its path. A temperature profile over a streamline in a low curvature part 

of the jet, generally found towards its center, was found to be sufficiently consistent to fall within the 

confidence region of industrial measurements. Naturally, locating streamlines requires an 

understanding of the jet’s flow patterns, which requires knowledge of the tap-hole geometry, justifying 

the effort spent in locating the tap-jet boundaries.  

 

2.4.4 Casting camera 

At the time of writing this report, the IR camera installed at the casting belt is operational but the 

development of suitable algorithm for image analysis has been delayed due to technical issues. 

However, as shown in Figure 36, the IR camera gives the operator a much better view of the casting 

process. It is much easier to detect slag contamination just by observing the IR image.  

 



 DT-SPIRE-06-2019 (870130) Deliverable D1.4  

Classification Public Page 45 of 58 

  

Figure 36 - Casting process as viewed from the control room (left) and through IR camera (right). 

 

2.4.5 Infrared image analysis  

The IR cameras for tapping and refining are each delivered with a GUI application for visualization and 

performing measurements. The refining camera, delivered by Optris, connects to the PIX-Connect 

application, and the tapping camera, delivered by DIAS, connects to the PyroView application. 

Both of these environments provide several basic functionalities. Temperature may be sensed at single 

points, or across regions-of-interest (ROIs). From a ROI, the software can extract statistics such as 

maximum, minimum and mean temperature. Measured values may be logged at user-defined intervals 

to a text file (typically CSV-format) for uplink to the OPC server. 

The above solution, as supplied by the device manufacturers, provides the minimal functionality 

needed for the digital twin models: temperature measurements of the molten fluid. It is therefore 

likely that the first sensor data will be provided as described above. However, the solution has several 

drawbacks that the project should seek to address. 

Firstly, the PIX-Connect and PyroView platforms do not provide advanced or customized measurement 

functionality. Examples of advanced measurements that might be useful include: 

• Determining what parts of an image are fluid, slag crust, or ladle walls (segmentation) 

• Tracking of advected particles, e.g. for measuring flow velocity 

• Image stabilization 

• Measuring temporal and spatial gradients, e.g. for heat flux measurements and ladle condition 

monitoring 

The first item is especially important, as it pertains to the quality and reliability of measurements. The 

current solution puts strain on downstream data QA to determine which time-series values represent 

fluid temperature and which ones do not. At best, this will lead to incomplete time series; at worst, 

the digital twin will receive and process unreliable or garbage data. 

Secondly, the provided software environments are limited to data collection from one device at a time, 

and only from the manufacturer’s own cameras. As a plant seeks to expand its inventory of thermal 
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imagers, this will lead to a proliferation of drivers, applications, storage locations, VMs, and runtime 

environments. 

For these reasons, we envision the development of a purpose-built platform, with the ability to collect 

data from multiple cameras and manufacturers, and process images in a highly customizable machine 

vision environment. A schematic of this platform is shown in Figure 37 and comprises the “image/video 

processing” block of the overall system architecture. 

The COGNITWIN project will develop DAQ modules for each of the above-mentioned cameras; 

however, all above data layers will be generic to allow for easy introduction of new camera 

manufacturers. The DAQ modules will use a combination of available drivers and libraries, and new file 

parsers for interpreting proprietary files. 

 

 

Figure 37. Proposed IR camera architecture. 

The machine vision layer will provide at minimum the functionality offered by the manufacturer 

software: point- and ROI-measurement of temperature and logging to data files. In addition, we will 

implement at least one of the advanced functions listed above, and additional functions as need 

dictates. We expect a sub-architecture for this layer, with separate sub-layers for, e.g., resampling, 

analogue filtering, thresholding and binarization, morphological filtering, and data extraction. 

The frame grabber layer is planned to have three functions: 

• Fast processing of recorded data, e.g., for building training data sets. 

• Simulated real-time processing of recorded data, e.g. for testing processing speed and 

handling frame dropping. 
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• Real-time processing of live data from device. 

The operator layer will be defined toward the end of the development track, to reflect needed GUI and 

logging functionality based on the actual measurements developed. 

2.5 Online cognitive digital twin 

2.5.1 Data connectivity and system architecture 

An overview of the system architecture is shown in Figure 38. Manual analyses taken at the plant are 

not available on OPC, but in a plant database. A bespoke extension to the Cybernetica OPC UA Server 

has been created to extract data from the plant database and publish it to OPC, making it available for 

the other components. Images from the infrared cameras are captured, analysed and stored by 

Cybernetica InSight, and the results of the image analyses are available on OPC. The machine learning 

slag model described in Deliverable 1.2 will be trained with data from the IR-cameras before it is 

installed online. Unfortunately, due to various operational challenges as described in section 2.4.2, the 

images from the refining camera were not reliable enough to train this machine-learning model. The 

digital twin, i.e., the first-principles refining model is running online at the plant and is used by the 

nonlinear model predictive controller (NMPC) to calculate optimal recommendations for the 

operators. The results are stored in a PostgreSQL database and presented to the users by an operator 

support system (Cybernetica Viewer).  

 

Figure 38: An overview of the system architecture for the Elkem pilot. All components are currently installed at the plant and 
running online except the machine learning slag model.  

The digital twin pipeline for the Elkem pilot is shown in Figure 39. 
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Figure 39: Digital twin pipeline for the Elkem pilot. 

2.5.2 Digital twin 

The digital twin of the Elkem pilot is a first-principles model of the alloying and refining process. The 

model is based on an existing offline model of the refining processes at Elkem. The general offline 

model has been made specific to the Elkem pilot. This is described in more detail in Deliverable 1.2 

Considerable work has been done to include logics for initialization and handling signals specific to the 

pilot, as there are many manual operations for which there is no digital signal the model can utilize.  

In Deliverable 1.3 we described how two datasets, one for calibration and one for validation had been 

utilized to fit the model to plant data and validate results. The resulting error distribution of key process 

variables were wider than expected, and significant effort went into finding the sources for the 

discrepancies between the model and the measurements at the plant. The following investigations 

were carried out: 

• The signals for the amount of each addition fed to the ladle were delayed, meaning that they 

were received later in the real-time model than at the plant. After discussions with the plant’s 

automation personnel, an acceptable solution was found for the most important material 

addition, the amount of cooling FeSi. For the other materials, there is still a delay, albeit less 

significant than previously.  

• The amount of slag in the ladle after tapping can have significant variations and will affect the 

heat-loss of the liquid metal below the slag layer. Our goal was to estimate the amount of slag 

after tapping by combining images from the IR cameras and machine learning. Due to the 

unreliability of the refining camera, it was not possible to get an estimate of the slag amount. 

A simulation study was carried out to study the effect the amount of initial slag had on the 

metal temperature at the end of refining. This study showed that an increase of 60 kg in the 

amount of slag caused difference in the end temperature of almost 10 °C.  
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• Errors in the thermodynamic calculations for the added alloys due to unmodelled phenomena 

such as enthalpy of mixing, enthalpy of dissolution and intermediary phase transitions. A 

comparison between the model calculations and the thermodynamic calculation tool FactSage 

was carried out. The thermodynamic properties of certain alloys in the model were adjusted 

based on this comparison to account for the aforementioned unmodelled effects.  

• The pilot usually operates on a “one ladle” strategy, where the same ladle is reused for each 

tapping and refining. Thereby keeping the metal as warm as possible by avoiding the use of 

fresh, cold ladles. However, there are occurrences where a ladle has to been switched out due 

to operational problems or maintenance. A cold ladle will then be used for the tapping and 

refining, which cools the metal. This effect was previously not modelled, but has now been 

taken into account in the model.  

The result of the investigations carried out is that the standard deviation of the modelled temperature 

error has been reduced from 50 °C to 20 °C, which is close to the the standard deviation of the 

measurememnt itself. A histogram of the temperature error distribution is shown in Figure 40. Similar 

plots for the aluminium and calcium concentrations are shown in Figure 41 and Figure 42, respectively.  

 

Figure 40: A histogram of the error distribution of the modelled temperature.  
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Figure 41: A histogram of the error distribution of the modelled aluminium concentration. 

 

Figure 42: A histogram of the error distribution of the modelled calcium concentration. 

The digital twin is installed at the plant, and is running online. The digital twin calculates the current 

state of the refining, and provides predictions for how the refining will develop if the operator follows 

the recipe given in the control system. These predictions are shown to the operators by the Operator 
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Support System presented in section 2.5.5. The digital twin is also used by the nonlinear model 

predictive controller to calculate optimal recommendations for the operators, as described in section 

2.5.3. 

2.5.3 Hybrid digital twin 

The hybrid digital twin was planned to consist of the following components 

• The data-driven slag model 

• The image analysis algorithms 

• The digital twin extended with an online, recursive estimator, e.g. a Kalman filter or a moving 

horizon estimator 

Due to the IR camera installation delays, a data-driven slag model has not been possible to develop 

early in the project.  Image analysis algorithms have thus not been tested online during periods without 

problems. This is being handled in the internally funded extension to the project activities.  

The issues with the IR cameras have been resolved towards the end of the project, and will then further 

enable a data-driven slag model to provide an estimate of the initial amount of slag in the ladle to the 

digital twin. The amount of slag affects the equilibrium reactions in the model in addition to having an 

insulating effect. Having an estimate of this unmeasured variable will improve the accuracy of the 

digital twin with respect to the concentration and the temperature of the metal.  

The results of the machine vision algorithms will be used to train the data-driven slag model offline, 

and will provide inputs online. The results from the camera at the refining station will also provide 

online measurements of the temperature and slag coverage to an online estimator.  

By employing an online estimator such as a Kalman filter, the digital twin will be adapted to the 

conditions at the plant in real time, thereby reducing the discrepancy between the plant and the 

model. The estimator can be used to both mitigate discrepancies in the current batch and account for 

slow variations that happen over several batches.  

2.5.4 Cognitive digital twin 

The cognitive digital twin for the Elkem Bremanger pilot is an extension of the hybrid digital twin, with 

the possibility to calculate optimal recommendations for the operators. The nonlinear model 

predictive controller (NMPC) of Cybernetica CENIT will be used to calculate these recommendations.  

The NMPC is set up to achieve the specification of the current grade with respect to concentrations 

and temperature and utilize as much ferrosilicon fines for recycling as possible. The NMPC realises 

these goals by calculating the optimal amount of each addition to be added by the operator. The NMPC 

uses the digital twin to predict how additions will affect the temperature and the concentrations. The 

results from the NMPC are shown to the operators by the Operator Support System. 

 

2.5.5 Operator support system 
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The results from the Hybrid Digital Twin are presented to the operators by the Operator Support 

System. The Operator Support System is a graphical user interface developed with the Cybernetica 

Viewer framework. Figure 43 shows a conceptual mockup of the Operator Support System. 

The plots displayed in Figure 43 show the initial measurent taken before refining start as a light blue 

cross, and the model calculation as a continusous dark blue line. The vertical black line indicates the 

present, with past history to the left and future predictions to the right. Two predictions are shown 

together in the same plot, a ballistic trajectory from the digital twin (dark blue dashes), and an optimal 

trajectory calculated by the NMPC (green dashes). The band near the bottom of each plot indicate 

where the variable must lie at the end of the batch in order to meet the specification of the grade. By 

showing two different trajectories together the operator can quickly decide on whether to apply the 

recipe or to follow the recommendations from the NMPC.  

 

Figure 43: A mockup of the Operator Support System.  

 

2.6 Future activities after project ends 

The COGNITWIN project has opened up new opportunities for enhanced process control and 

production stability. Elkem will continue to build on the learnings from the COGNITWIN project, using 

state-of-the art sensor technology and advanced image analysis to record and visualize key process 

parameters for the production of ferrosilicon alloys.  

2.6.1 Camera installation 

Additions Rec. Recipe 

Al 20 kg 24 kg 

O 2 - source 160 kg 130 kg 

Fines 200 kg 150 kg 

Status 

Temp 1523  ° C 

Weight 5021 kg 

Al 0.4 % 

Ca 0.3 % 

t 

T 

Ca 
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A second I  camera for direct observation of the furnace’ taphole will be installed during Q2 2023. The 

installation will be done at another plant in the Elkem system. The image analysis algorithms developed 

during the COGNITWIN project will be adapted and optimized for the new location.  

2.6.2 Hybrid/cognitive twin 

The main element of cognition in this project is the process of using an IR camera at the casting belt 

for slag detection. A high amount of slag means that the batch must be downgraded, for an economic 

loss. Today, the operator determines whether the amount is acceptable or not by his/her visual 

observations and experience. Obviously, two operators can have a different opinion regarding what 

constitutes too much slag. In Cognitwin, the idea was to test the following solution: 

1. Determine suitable IR-camera technology 

2. Purchase and install camera in casting area 

3. Connect camera, optimize image and transfer video stream to local computer. 

4. Develop algorithms for detection of slag in cast metal. 

5. Perform image analysis to determine the amount of slag per batch. 

6. Compare actual decision by operator with slag amount decided by IR camera. 

7. Gradually implement cognitive decision making once proven reliable. 

Some of the items on the list was completed as planned during the project period. The main reasons 

for not being able to fully test the solution (i.e. complete item 6) were lack of personell combined with 

unexpected technical issues related to data transfer needs which required additional investments in 

the data infrastructure. It was necessary to resolve the technical issues in order to make any headway. 

As of now, the technical issue is in principle resolved but full integration in the plant’s control system 

still awaits support from local IT. The R&D department in Elkem will complete this part of the project 

so that the cognitive element can be added to the hybrid twin.  Elkem has allocated additional internal 

funding to COGNITWIN project partner Cybernetica to evolve and continue with the deployment for 

one more year – until summer 2024.    

 

2.6.3 Follow-up on KPIs 

In order to determine whether KPI-targets have been met successfully, it is required that the online 

model can be run continuously over a longer period of time (6-12 months). As the project comes to an 

end, the presumed positive effect of the completed camera installations combined with an online 

model for energy and mass balance will be evaluated further during the internal extended activities of 

the project result deployment. Individually, both of these have given valuable new information that is 

used on a daily basis. As of now, the goals (shown in 3) reads: 

 Table 3 – Summary of KPI for the Elkem pilot case. Numbers are relative, i.e. 100 = current average (%). 

 

 Table 3 ELKEM pilot KPIs summary ELKEM – 

Post taphole silicon yield 

 

 
Target Achieved 
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KPIs • Increase post taphole output by 

up to 1%  - for pilot plant this 

equals 400 MT/year for a gross 

value of 6.5 MNOK, or 

equivalent to an industry 

potential of 1.6 MEuro per 100 

000 metric ton produced. 

• Increase PTH yield from 100 to 

102 

• Increase hit rate on intended 

products from 100 to 102 

• Reduce energy consumption 

from 100 to 99 

• Increase lifetime of ladles from 

100 to 105  

1. Calculated additional output 120 MT, i.e. 

30% of the targeted value. 

2. PTH yield calculated increase equals 100.4, 

i.e. 20% of the targeted increase. 

3. Will be determined during the continued 

deployment activities until mid 2024. 

4. Calculated energy consumption by using 

online model is 99.6, i.e 60% of the targeted 

reduction. 

5. Cameras are able to collect data describing 

initial conditions that will be used to explain 

ladle lifetime.  

 

 

 

The collection of data to  further evaluate that these goals have been met  is continuing in the Elkem 

internally funded project until mid 2024.  

3 Conclusions 

3.1 Conclusions Hydro Pilot 

The COGNITWIN project seen from Hydro’s point of view has been very helpful in many aspects. It has 

very much clarified the digital level a process needs to be at to be able to harvest from digital twins 

and even further cognitive digital twins. 

There were 3 cases in with targets for this project: 

I) Case I – Match primary alumina feed to HF content in alumina 

a) To even out the fluoride into the secondary alumina sent to the electrolysis cells 

II) Temperature control 

a) To optimise the adsorbtion conditions of the HF into alumina 

III) Main fan control 

a) To reduce energy consumption in the GTC’s main fans 

All the cases have met their targets: 

Case I; has resulted in a digital twin predicting HF evolvement, hence able to optimise the feed of 

primary alumina to the GTC accordingly. The twin utilises data’s from process system, meteorological 

servers and also from the flow control/measurement in Case III. The twin is based on a first-principles 
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dynamic model. This model has been extended to be partially data-driven (hybrid), and lastly 

operators’ experience has been incorporated into the optimisation system, i.e. a cognitive element. 

Case II; the case of temperature regulation has, for all practical purposes met its objective, i.e. keeping 

the temperature in the reactor 90± 5°C. The achieved range was 91.8± 5,9°C – a huge improvement 

over non-optimised performance and very much within the prefferred range for HF adsorption in GTCs. 

Case III; has demonstrated its value in saving energy simply by harvesting the changes in temperature. 

The savings during testing/measuring were found to be 7%. Moreover, the control of the main fans 

enables the suction rate to be lowered down towards the leakage limits of the cells, resulting in a 

further 15% potential reduction of energy use. The case targets have therefore been met. 

Hydro consists of several production sites and will be able to bit-by-bit include elements from the pilot 

in all of our plants after COGNITWIN ends. Moreover, the methodologies developed/refined in 

COGNITWIN Hydro pilot will also applied to other purposes; for example, meteorological data will be 

used for pot room ventilation measurements, which is a vital part of emission control. 

Lastly, integrating the autoencoder capabilities into the current system will add an additional element 

of cognition to the digital twin developed in COGNITWIN, which will supply the operators and 

engineers with valuable information regarding the status of the HF-laser sensor. 

The final Hydro pilot demonstrator is shown in the COGNITWIN Toolbox [6] with the Hydro 

digital twin pipeline description [9] and the final Elkem demonstrator video [10] .  This is also 

further described in the final public deliverable D6.4 Best "Digital Twins" practices report [7]. 

 

3.2 Conclusions Elkem Pilot 

 

3.2.1 Cognitive twin vs hybrid twin 

The main element of cognition in this project is the process of using an IR camera at the casting belt 

for slag detection. A high amount of slag means that the batch must be downgraded, for an economic 

loss. Today, the operator determines whether the amount is acceptable or not by his/her visual 

observations and experience. Obviously, two operators can have a different opinion regarding what 

constitutes too much slag. In COGNITWIN, the idea was to test the following solution: 

8. Determine suitable IR-camera technology 

9. Purchase and install camera in casting area 

10. Connect camera, optimize image and transfer video stream to local computer. 

11. Develop algorithms for detection of slag in cast metal. 

12. Perform image analysis to determine the amount of slag per batch. 

13. Compare actual decision by operator with slag amount decided by IR camera. 

14. Gradually implement cognitive decision making once proven reliable. 
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Some of the items on the list was completed as planned during the project period. The main reasons 

for not being able to fully test the solution (i.e. complete item 6) were lack of personell, as described 

in D1.3 combined with unexpected technical issues related to data transfer needs which required 

additional investments in the data infrastructure. It was necessary to resolve the technical issues in 

order to make any headway. As of now, the technical issue is in principle resolved but full integration 

in the plant’s control system still awaits support from local IT. The  &D department in Elkem will 

complete this part of the project so that the cognitive element can be added to the hybrid twin.  

 

3.2.2 Summary of challenges 

In this section a summary will be given to explain the various challenges that came up during the 

project period. In general, any pilot project will experience unforeseen issues – this is the very nature 

of a pilot project. To some extent, the project plan did not sufficiently plan for failure but was rather 

ambitious which is acceptable and proper for research projects. Although unforeseen challenges came 

up during the project, Elkem is still planning to finish the tasks as stated in the plan – to the extent they 

were not fully completed and reported in the deliverables. 

3.2.2.1 Tapping camera 

This IR camera was installed in 2021 and came online, although with a temporary solution later that 

year. The initial testing showed promising results and the image analysis algorithms were progressing 

well. Some videos and examples of use have already been shared with the project. Early 2022, we 

experienced technical issues and lost contact with the camera. The lack of relevant resources at the 

plant caused ongoing delays with the troubleshooting. In this period, the plant faced several 

operational challenges as well, meaning that the repair of the camera system dragged on. During fall 

of 2022 the project engaged with resources from outside the plant to make some progress on this 

work, and the troubleshooting could be completed. This caused delays in terms of testing the system 

over an extended period of time – which also affects other tasks in the project. 

The project group determined that this technology was promising, but to ensure better access to 

resources a new camera was purchased and will be installed at a different plant in 2023. One advantage 

with the new plant is that the electric arc furnace is stationary as opposed to the furnace at Elkem 

Bremanger. The rotating furnace at Elkem Bremanger caused additional challenges as the taphole 

moves (albeit slowly).  

3.2.2.2 Camera at refining station 

This camera is installed and online. During the project, there were various challenges regarding 

connectivity as well as keeping the camera “alive” in a challenging industrial environment. We had 

issues with dust buildup on the protection glass in front of the camera, pieces of machinery crashing 

into the camera as well as data transfer limitations. All of this is fairly normal and to be expected for 

an industrial pilot project. The main delay caused by these issues was again related to resource 

availability, particularly for re-programming some of the control system. The project tasks would not 

be prioritized over operational challenges (these are decisions that are taken locally) which caused 

delays for the project. During 2022 we combatted this by engaging directly with the external supplier 
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of programming resources, which helped us resolving the issues. However, also for this camera an 

extended test period is required to conclude on the merits of the digital twin, and we could not 

complete sufficient testing within the project time. Therefore, Elkem will continue to test the hybrid 

model beyond the project. Additional internal funding has been secured to engage with our partner 

Cybernetica during 2023. The project now has access to a new trainee that will help out locally with IT-

related tasks, this will be of great help and we are optimistic that we can make significant progress. 

The data transfer issues have been resolved (in principle) by purchasing additional computational 

power, however, the installation has dragged on. Again, this relates to lack of internal resources and 

the prioritization of these.  

3.2.2.3 Camera at casting 

This camera was installed later in the project that originally planned, caused by delays with the other 

cameras as described above. It was decided that running too many tasks in parallel with the actual 

resource situation would be counter-productive. It was also recognized, based on the experience with 

the two other cameras, that a more robust setup for processing of data from the camera needed to be 

in place before there could be any progress on an online model for slag recognition during casting.  

The camera is online at the end of the project and the casting process can be viewed on a screen in 

the operator room. The operator can use this information to make a more informed decision about 

the quality of thw batch – this is one of cognitive elements of the Elkem pilot. What currently is missing 

is processing of the data such that a “slag number” can be attached to every batch.  ater, we can 

compare the operator’s actual decision vs “slag number” thereby allowing for a fully cognitive 

approach to casting of ferrosilicon.  

The next step is to transfer data to the dedicated computer for image analysis, and this is assisted by 

a new trainee that supports this work. The algorithms are developed and ready for testing with this IR 

camera. Elkem is moving forward with this project internally as this is seen as an important 

development project that could influence all other plants in the Elkem family, i.e. the ability to use a 

cognitive twin for detection of slag in the cast product.  

 

3.2.3 Summary and conclusive remarks 

The main goals for Elkem during this project were 

1) Install suitable infrared cameras for direct observation of the post taphole processing of liquid 

ferrosilicon 

2) Establish an online cognitive twin for improved decision support for the operator. 

Installation of 3 IR cameras has been completed according to the original plan. Video streaming from 

the cameras is available via remote access (all three cameras), and for two of them direct streaming is 

used during normal operation (refining and casting). It is anticipated that direct streaming from the 

tapping camera will be available during the internally extended project until mid 2024. This work was 

delayed due to installation of a new control room for tapping, which was not foreseen in the original 

plans. During the project, one of the main challenges has been the survival of equipment (both IR 
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cameras and infrastructure supporting the use). The industrial environment with high temperatures, 

smoke, flames and heavy machinery pose a continuous threat to sensitive equipment. Another 

challenge has been that the local data network does not have sufficient capacity to accommodate the 

large amount of data generated by the three IR cameras. In order to reach the full potential of the 

online cognitive twin, both of these issues must be properly resolved.  

The online model is using all available data from the existing process control system and runs the model 

in parallel. The information from the IR cameras will be made available for the online model.  

Elkem has taken the following planning steps for the further operational deployment of the ir cameras 

and COGNITWIN technologies:  Allocated additional internal funding from Elkem to COGNITWIN 

project partner Cybernetica to evolve and continue with the deployment for one more year – until mid 

2024.    

The final Elkem pilot demonstrator is shown in the COGNITWIN Toolbox [6] with the Elkem 

digital twin pipeline description [11] and the final Elkem demonstrator video [12] .  This is also 

further described in the final public deliverable D6.4 Best "Digital Twins" practices report [7]. 
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