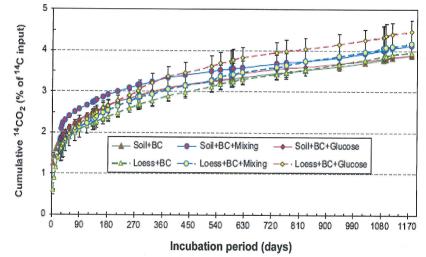

NG

VOW – Valorization of Organic Waste as Biochar for the Cleanup of Water, Soil and Air

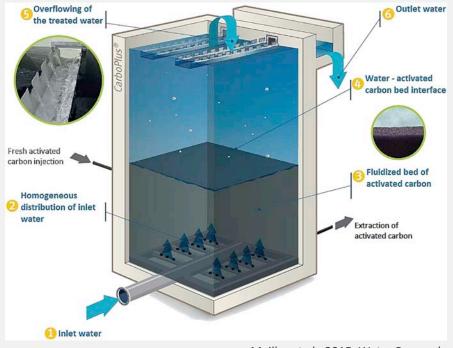
Valorization of Organic Waste, WASTE2ROAD Webinar, March 10th 2022 Erlend Sørmo and Gerard Cornelissen, NGI

VOW: <u>Valorization of Organic Waste into Sustainable</u> Products for Clean-up of Contaminated Water, Soil, and Air


Vesar AVFAIL SSELSKAPET I VESTFOLD

Pyrolysis – the basics

- Heating of organic matter residues in an O₂-free environment produces a carbon-rich charcoal material biochar¹
- When biochar is added to soil, it remains stable for a long time = carbon storage¹
 - \rightarrow Half life of 1400 years²
 - \rightarrow MRT 2000 years²

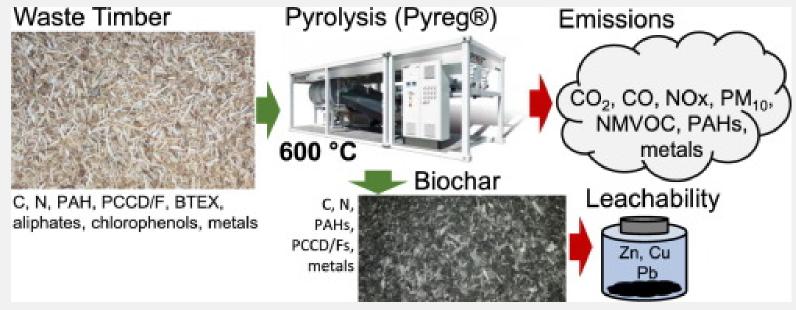

Kuzyakov et al (2009) Soil Biol. and Biochem.

What is a sorbent?

- A material that absorbes/adsorbes a contaminant strongly
 - Ion exchange resins
 - Metal oxides
 - PP-fibers/Cellulose fibers
 - Activated carbon (AC)
 - Biochar
- Some current uses:
 - Waste water treatment plants
 - Landfills
 - Water purification
 - Oil spill clean-up
 - Industrial air filters
 - Gas masks

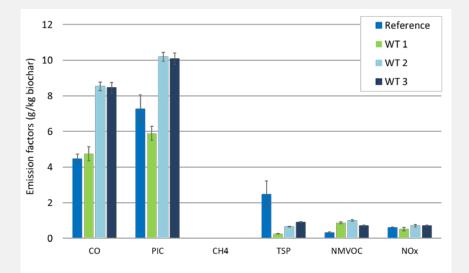
NG

Remediation of soil and sediment


Waste timber (WT)¹

- Discarded wood and wood products
 - Wooden beams, panelling and flooring
 - Pallets, furniture and other wooden objects
 - Hard- and softboard
 - 750 000 t/y
- Lightly contaminated
 - Paint residues
 - Binders
 - Metals (remains of nails, hinges etc.)
 - No impregnated wood!

Emission budget for the pyrolysis of waste timber biochar

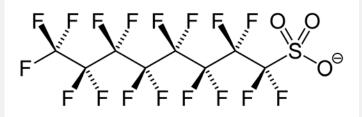


Sørmo et al 2020, STOTEN, 718, 137335

Main findings¹

- Organic contaminants present are destroyed during pyrolysis
- Some heavy metals accumulate in the biochar (Cu, Pb, Zn), but do not leach to water at ambient pH
- Pyrolysis emission data show promising results for setup with combustion of pyrolysis gasses
- Optimization needed

NG

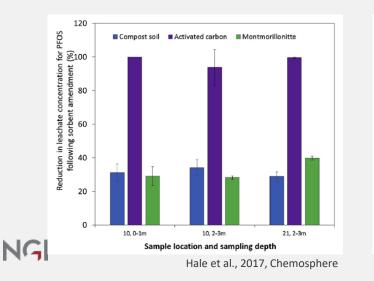


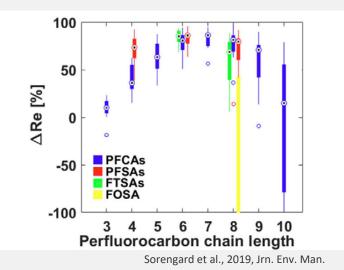
CO = carbon monoxide, PIC = products of incomplete combustion, CH4 = methane, TSP = total suspended solids, NMVOC = non-methane volatile organic carbon, NOx = nitric oxides Where is our waste timber biochar best applied as a sorbent and will it work?

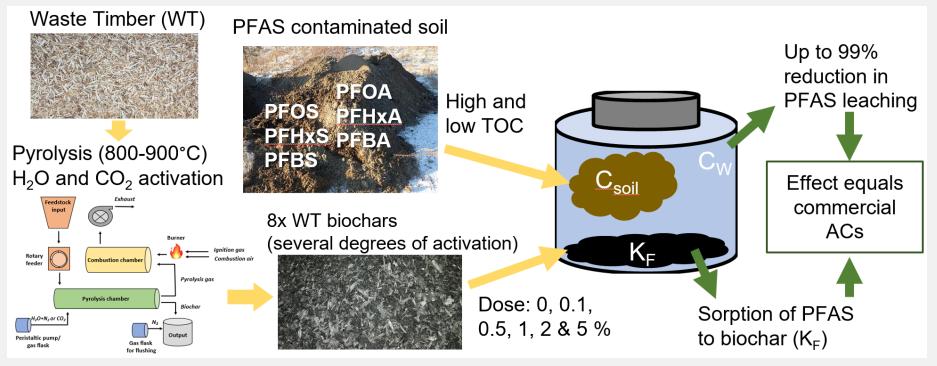
Per- and polyfluoroalkyl substances (PFAS) – a threat to our food and drinking water

- PFAS belong to the PMT-class of chemicals
 - Persistent, mobile and toxic (PMT)
- **•** Where do they come from?
 - Fire fighting foam, GoreTex[®] clothing, Teflon[®] cookware, paper products (non-stick surfaces), industrial applications
- How do they end up in our drinking water and food?
 - Point source release, atmospheric transport, bioaccumulation
 - Fire fighting training sites, sewage sludge fertilizer, industry

Perfluorooctanesulfonic acid (PFOS)



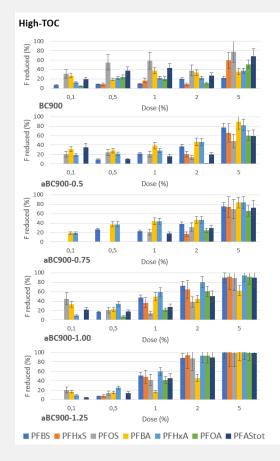

Source: Wikipedia

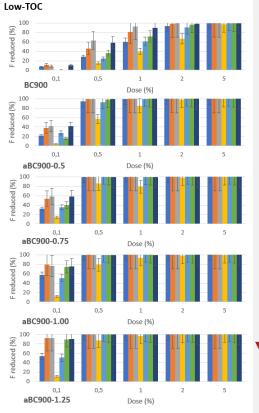

AC has been used to remove PFAS from soil solutions

- AC suited for PFOS sorption
- Hydrophobic interactions the dominant mechanism
- Varied effects for other PFAS congeners

Stabilizing PFAS-contaminated soil with activated waste timber biochar

NG


Sørmo et al (2021) STOTEN, 763, 144034


Main findings¹

- Effect depends on PFAS congener and soil type
 - High TOC soils more difficult to treat
 - Short chain PFAS more difficult to retain

1) Sørmo et al (2021) STOTEN, 763, 144034

NG

■ PFBS ■ PFHxS ■ PFOS ■ PFBA ■ PFHxA ■ PFOA ■ PFAStot

ncreasing degree of activation

Great, this might actually work! Now what about other organic waste streams?

Organic waste in Norway¹

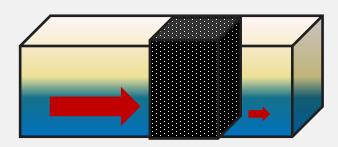
- ▼ Waste timber 750 000 t/y
 - Heavy metals, traces of organic contaminants from binders, paint etc.
- - Heavy metals, plastics (plasticisers), pesticides
- ▼ Food/biological waste 470 000 t/y
 - Plastics (plasticisers), PFAS
- Sewage sludge 260 000 t/y
 - Heavy metals, plastics (plasticisers), PAH, PCB, PFAS, phenols

Unanswered questions being tackled in 2022-2023

- Making biochar from waste feedstocks
 - Will the biochar be clean enough?
 - What feedstocks will result in proper sorbents?
 - What pyrolysis conditions/modifications are needed?
- Residual contaminants
 - Some metals are enriched in the biochar and PAHs created during pyrolysis
 - Will use as sorbent add contaminants to the soil that are available for leaching or uptake in plants?
- Does this all make sense in a life cycle perspective?

To be continued.....

Thank you for your attention!

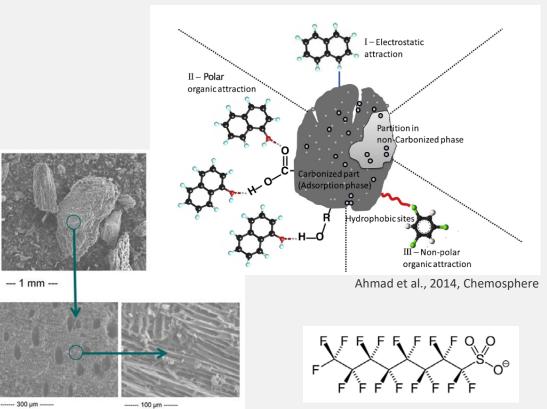

NORGES GEOTEKNISKE INSTITUTT NGI.NO

How can we use sorbents for contaminated soil?

- In landfills
 - Ex situ stabilisation
 - Limits leaching
 - Reduces need for landfill leachate treatment
- Active barriers
 - Across groundwater flow path
 - Limit transport
- Mixed into top-soil

NG

- Limit uptake in plants
- Reduce effect on soil microorganisms
- Limits downward transport to groundwater



Can we use biochar as a sorbent for PFAS?

- **7** Yes!
 - It has been done
 - Sorption mechanisms similar to AC
- Pros:
 - Sustainable version of AC
 - Biochar properties more variable than AC
- **7** Cons:

NG

- Less efficient than AC
- Biochar properties more variable than AC
- What is needed?
 - Large internal surface area (>100 m²/g)
 - High degree of aromaticity
 - Modifications (?!)

Beesley et al., 2011, Env. Poll.

Properties of steam activated WT biochar

Sorbent	Molar ratio of oxidant to BC carbon (-)	Temp. (°C)	Biochar Yield (%)	N ₂ adsorption – pores >1.5 nm		CO ₂ adsorption – pores 0.3-1.5 nm		Elemental content	
				Surface area (m²/g)	Pore volume (cc/g)	Surface area (m²/g)	Pore volume (cc/g)	Total C (%)	Total O (%)
BC900	0	900	19.0	411	28 %	840	24 %	89	6.8
aBC900-0.50	0.50	900	12.2	550	45 %	744	22 %	91	5.9
aBC900-0.75	0.75	900	12.1	605	52 %	746	23 %	89	5.6
aBC900-1.00	1.00	900	8.9	713	83 %	750	24 %	88	8.0
aBC900-1.25	1.25	900	8.0	623	51 %	846	28 %	87	5.7

Sørmo et al (2021) STOTEN, 763, 144034