

Contaminants in fast pyrolysis

R.H. Venderbosch

BTG Biomass Technology Group B.V.

March 10 2022

Workshop – webinar

Valorization of organic waste

Fast Pyrolysis – development timeline BTG

The Bioliquid Refinery

...

Contaminants in fast pyrolysis

Developments in fast pyrolysis are largely trial-and-error:

Clean wood is relatively well understood
 65 -70 wt.% yield, 15-20 wt.% gas ; 15-20 wt.% char
 High overall energy efficiency, >85% of biomass ends up in useable products (liquids; heat)

https://www.cocosimulator.org/

Pyrolysis does not yield an oil ≠ crude oil

- Focus on industrial feedstocks
 - High alkali ash content;
 - higher contaminants (S; N) contents;
 - other oxygenates (type of lignin; type of defragmented carbohydrates; effects of nitogen containing compounds)

Effects Contaminants in fast pyrolysis

Primary pyrolysis process

Challenges to overcome in diversifying feedstocks

- Gain know how in effects of contaminants in fast pyrolysis processes
- Role and fate of alkali (char; combustion; piping,)

Liquid conversion processes

- Challenges /opportunities of these compounds in routes to chemicals and fuels
 - Role of such alien materials in further catalytic processing: cracking / repolymerization, hydrotreatment

Analysis

- standardization
- specifications

Contents lists available at ScienceDirect

Journal of Analytical and Applied Pyrolysis

journal homepage: www.elsevier.com/locate/jaap

Measuring inorganics in biomass fast pyrolysis oils

Charles-Philippe Lienemann, Alain Quignard *, Nathalie Texier, Nadège Charon

IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP3, 69360, Solaize, France

Table 5

Contents of major inorganics in a bio-oil (sample A) determined according to several analytical methods (mean values are reported except for significantly different results).

Element	Contents measured from the bio-oil analysis [mg/kg]		Contents calculated from the ashes analysis [mg/ kg]	
	ISO 16967 protocol	Wondimu protocol	ICP-OES	WXRF
Fe	952.0 ± 95.2	812.0 ± 81.2	734.0	682.0
Si	271.0 ± 27.1	45.3 ± 4.5	292.0	291.0
К	159.0 ± 15.9	176.0 ± 17.6	136.0	134.0
Ca	59.0;235.0	238.0;94.3	97.3	109.0
Р	10.3;132.2	160.0 ± 16.0	2.9;2.3	5.0
S	not measured	117.0 ± 11.7	46.3 ; 40.2	35.0
Al	22.3; 19.8	37.6; 78.6	15.2	12.0
Na	13.5; 17.6	13.8 ± 1.4	10.2	7.0
Mg	$\textbf{16.0} \pm \textbf{0.2}$	<25.0	14.0	12.0
Pt	not measured	<12.5	1.6	15.0

energy&fuels

pubs.acs.org/EF

Results of the International Energy Agency Bioenergy Round Robin on the Analysis of Heteroatoms in Biomass Liquefaction Oils

Article

Method
Combustion/IC
Combustion/ISE
D4929/D5808
Digestion/IC

Contents lists available at ScienceDirect

Journal of Analytical and Applied Pyrolysis

journal homepage: www.elsevier.com/locate/jaap

Measuring inorganics in biomass fast pyrolysis oils

Charles-Philippe Lienemann, Alain Quignard *, Nathalie Texier, Nadège Charon

IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP3, 69360, Solaize, France

Primary pyrolysis process

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 818120.

9

Primary pyrolysis process

Water (left) and organic yield (right), both in $kg/kg_{drybiomass}$, versus the ash content in the biomass.

Less ash:

Carbohydrate:

Less dehydration- and cracking reactions: higher monomeric carbohydrates Overall 'oil' yield higher and some 'quality' aspects better (less water)

Lignin:

- Less lignin cracking likely
 - As a general observation washing alkalis from biomass leads to operational problem due to fouling of bed material, clogging of the sand due to 'lignitic melts'

Washing prior to pyrolysis Hot vapor filtration

3. Ex-situ decontamination

- Filtration
- Desulphurisation
- Ion-exchange

Ex-situ decontamination (W2R)

- Desulfurization
 - Absorbentia (various types used)

Feeds: bio-liquids from fast pyrolysis, clean / dirty Long runs, several hundred hr Elevated temperatures and pressures with H₂

- De-metallization
 - Amberlyst or any other anion and cation exchange.

Feeds: bio-liquids from fast pyrolysis, clean / dirty Long runs, several tenths hr Ambient pressures and slightly elevated temperatures (to reduce viscosity)

Key messages

□ Contaminants crucial importance in commercializing fast pyrolysis

□ Identify key elements:

- Organic (sulphur; nitrogen, phosphor)
- Inorganic (alkali; iron, heavy metals ...)
- OXYGENATES (type of lignins, types of defragmented carbohydrates, acids, ...?)
- □ Understanding role of contaminants better, in pyrolysis and in subsequent processing
 - Pyrolysis process: we need them
 - Subsequent (catalytic) processing processes: we may allow some, but too some extent Gasification; hydrogenation; catalytic cracking; ...
- □ Analysis we need standardized analysis techniques
- □ Specifications (alkali, Cl, S each < 10 ppm)

Thanks for your attention

Any questions?

