

Modelling the hydrothermal liquefaction process

Associate professor Thomas Helmer, AAU, Denmark April 20nd 2021

AALBORG UNIVERSITY DENMARK

This project has received funding from the European Union's Horizon 2020 research and innovation

programme under grant agreement No 727531.

What is HTL – the simple version

Mimics the natural process for crude oil production.

Time reduction: 100 mio. yrs vs. 15 min!

Biocrude \neq crude oil

Biocrude yield and quality

- Biocrude composition dedicated by the feedstock.
- Energy ratio, $r = \frac{HHV_{bc}}{HHV_{feed}}$, follows isolines, determined by the feedstock
 - High *HHV_{feed}*; low energy ratio
 - Low *HHV*_{feed}; high energy ratio
- Yields can be greatly influenced by the process implementation

4refinery - Scenarios for integration of bio-liquids in existing REFINERY processes *European Union's Horizon 2020 research and innovation programme, GA No. 727531*

Energies 2018; doi:10.3390/en11113165

HTL process implementation

- Gas phase is combusted for internal heat recovery
- Bio-crude is demineralized and hydro-processed to fuels
- Aqueous organics can be recycled, waste water is processed by e.g. AD or HTG
- Important: Based on design data HTL is not commercial!

Biocrude yield and quality

- Higher temperature, higher HHV
- Alkali agents (cat) increases carbon and mass yields
- Recirculating the aqueous phase organics increases biocrude yield.
- Energy recovery, $ER = Y \cdot \frac{HHV_{bc}}{HHV_{feed}}$, governed by the biocrude yield

https://doi.org/10.1016/j.biombioe.2021.10603

HTL modelling in ASPEN+: General consideration in energy calculations

- The HTL chemistry of biomass is simply too complex to model!
- The pragmatic approach:

 Yield approach, eventually coupled with predictive yield models calibrated by experimental data.

Modelling of biomass (in ASPEN+)

Non-conventional solid (coal based, approx. 140 samples)

4refin

Enthalpy and density models need to be specified:

 $\mathbf{h}_{\text{wood}}^{\text{T,P}} = \mathbf{h}_{f}^{0} + \Delta h = \mathbf{h}_{f}^{0} + C_{p}(T) \cdot \Delta T$

- Heat of formation
- Heat capacity
- Heat of formation via the heat of combustion

Option Code Number 1 Heat o	Option Code Value† of Combustion	Calculation Method	Parameter Names	Component Attributes	Option Code Number 2 Standard	Option Code Value† Heat of Forma	Calculation Method tion	Parameter Names	Component Attributes
	1 2	Boie correlation	BOIEC	ULTANAL SULFANAL PROXANAL ULTANAL SULFANAL PROXANAL ULTANAL SULFANAL PROXANAL		1	Heat-of- combustion- based correlation	-	ULTANAL SULFANAL
		correlation				2	Direct	HFC	
	3	Grummel and Davis correlation	GMLDC				correlation		PROXANAL
	4	Mott and Spooner correlation	MTSPC	ULTANAL SULFANAL PROXANAL	Option Code Number	Option Code Valuet	Calculation Method	Parameter Names	Component Attributes
	5	IGT correlation	CIGTC	ULTANAL PROXANAL	3 Heat Cap	acity			
	6	User input value	HCOMB	ULTANAL		1	Kirov correlation	CP1C	PROXANAL
	7	Revised IGT correlation	CIGT2	PROXANAL ULTANAL PROXANAL		۷	temperature equation	CPZC	_

Modelling of biomass

• Calculating the enthalpy of formation, $\Delta h_{f,biomass}^{0,daf}$

Stoichiometric balancing the complete combustion reaction:

$$C_{\varphi}H_{\alpha}O_{\beta}N_{\gamma}S_{\delta} + \left(\varphi + \frac{\alpha}{4} - \frac{\beta}{2} + \gamma + \delta\right)O_{2} \rightarrow \varphi CO_{2} + \frac{\alpha}{2}H_{2}O + \gamma NO_{2} + \delta SO_{2}$$

Consider the energy energy:

$$HHV = \Delta h_{f,biomass}^{0} + \left(\phi + \frac{\alpha}{4} - \frac{\beta}{2} + \gamma + \delta\right) \Delta_{f} h_{O_{2}}^{0} - \phi \Delta_{f} h_{CO_{2}}^{0} - \frac{\alpha}{2} \Delta_{f} h_{H_{2}O}^{0} - \delta \Delta_{f} h_{SO_{2}}^{0} - \gamma \Delta_{f} h_{NO_{2}}^{0} \left[\frac{J}{kg}\right]$$

Isolating and converting from molar to mass basis:

$$\Delta h_{f,\text{biomass}}^{0,\text{daf}} = \text{HHV}^{\text{daf}} - \left(3,278 * 10^5 \text{ w}_{\text{C}}^{\text{daf}} + 1,418 * 10^6 \text{w}_{\text{H}}^{\text{daf}} + 9,264 * 10^4 \text{ w}_{\text{S}}^{\text{daf}} - 2,418 * 10^4 \text{ w}_{\text{N}}^{\text{daf}}\right) * 10^2 \left[\frac{\text{J}}{\text{kg}}\right]$$

Modelling of biomass

Indirect methods in ASPEN+:

 $\Delta h_{f,\text{biomass}}^{0,\text{daf}} = \text{HHV}^{\text{daf}} - (3,278 * 10^5 \text{ w}_{\text{C}}^{\text{daf}} + 1,418 * 10^6 \text{w}_{\text{H}}^{\text{daf}} + 9,264 * 10^4 \text{ w}_{\text{S}}^{\text{daf}} - 2,418 * 10^4 \text{ w}_{\text{N}}^{\text{daf}}) * 10^2 \left| \frac{\text{J}}{\text{kg}} \right|$

- HHV is estimated from multiple empirical correlations, e.g. BOIE or DULONG formula
- Direct methods in ASPEN+:

$$\Delta h_{f}^{0,daf} = \left[\left(a_{1} w_{C}^{dm} + a_{2} w_{H}^{dm} + a_{3} w_{H}^{d} \right) 10^{2} + \left(a_{4} \left(w_{C}^{d} - w_{FC}^{d} \right) + a_{5} w_{VM}^{d} \right) 10^{2} \right]$$

• $\Delta h_{f,biomass}^0$ is estimated from proximate and ultimate analysis, solely, from an empirical correlation.

Modelling of biomass

- Verification using 20 different wood samples (Phyllis data base)
- -3 Ο BOIE • All direct and indirect methods perform \triangleleft DLNG -3.5 GMLD MTSP unsatisfactory. IGT Δ IGT2 \triangleright h_f Calc [MJ/kg] -2--2:2:2 DC <1 LZN data1 The solution: Fit your own *direct method!* A 0 Note: Correlation parameters can easily be imported -6 to ASPEN+. -6.5 -7 -6.5 -5.5 -3.5 -7 -6 -5 -4.5 -3

4refinery - Scenarios for integration of bio-liquids in existing REFINERY processes *European Union's Horizon 2020 research and innovation programme, GA No. 727531* 10.1016/J.APENERGY.2019.113654

h, Exp [MJ/kg]

 $\mathbf{h}_{\text{wood}}^{\text{T,P}} = \mathbf{h}_{f}^{0} + \Delta h = \mathbf{h}_{f}^{0} + C_{p}(T) \cdot \Delta T$

Modelling of biomass

Specific heat capacity of wood is NOT accurately calculated by the standard ASPEN+ correlation

Gas phase considerations

- The gas phase is mainly CO₂. Modelled by a cubic equation or similar.
- Note; gas cooling at high pressure can initiate a VLE-situation.

European Union's Horizon 2020 research and innovation programme, GA No. 727531

Modelling of HTL biocrude

- Biocrude modelling is typically by a model cpound approach
- "Finger printing" the biocrude by e.g. GC-MS analysis has limitations.

	mg/g of biocrude	Norm. Mass fraction
2-Cyclopenten-1-one, 2,3-dimethyl-	1.13	2.2%
Phenol	0.92	1.8%
2-Cyclopenten-1-one, 3,4,4-trimethyl-	1.27	2.5%
Caproic acid	0.50	1.0%
2-Cyclopenten-1-one, 3,4,4-trimethyl-	1.13	2.2%
2-Cyclopenten-1-one, 2,3,4,5-tetramethyl-	0.52	1.0%
2-Methylphenol	1.02	2.0%
Phenol, 4-methyl	2.29	4.5%
Heptanoic acid	0.91	1.8%
2,5-Dimethylphenol	1.07	2.1%
2,3-Dimethylphenol	2.76	5.4%
Phenol, 2,6-dimethyl	1.28	2.5%
Octanoic acid	1.09	2.1%
4-methyl catechol	7.20	14.1%
Benzeneacetic acid, 3-hydroxy	2.94	5.8%
Palmitic acid	4.92	9.6%
Myristic acid	2.38	4.7%
Octadecanoic acid	8.53	16.7%
SUM =	51.00	100%
% identified of the whole biocrude	5%	

Modelling objectives

Bulk biocrude	Sum of model compounds
$HHV_{exp} - \sum$	$\sum_{i=1}^{n} x_i HHV_i = 0$
$C(wt\%) - \sum_{i=1}^{n}$	$\underset{i=1}{x_i} C_i(wt\%) = 0$
H(wt%) $-\sum_{i=1}^{n}$	$\underset{=1}{\operatorname{x}_{i}}\operatorname{H}_{i}(\operatorname{wt}\%)=0$
0 (wt%) $-\sum_{i=1}^{n}$	$x_i O_i(wt\%) = 0$
$\rho_{exp} - \sum_{i}$	$\begin{array}{l} {}^{n} \\ {}^{x_{i}} \rho_{,i} = 0 \\ {}^{i=1} \end{array}$
$Cp_{exp} - \sum$	$\int_{i=1}^{n} x_i C_p = 0$

Modelling of HTL biocrude

0

[wt.%] (daf)

11.00

18.38

67.12

12.48

13.41

13.34

21.23

Density

[kg/m3]

1050.67

1007.19

1051.63

1047.83

0.27

0.09

4.14

Model compounds approach – selection of compounds

The optimization routine is freely available from the authors:

HHV

[MJ/kg]

35.90

34.04

37.75

5.14

37.39

4.15

5.18

С

80.00

72.46

9.42

77.16

3.55

76.39

4.52

[wt.%]

8.40

9.15

8.95

10.36

23.36

10.28

22.37

(daf)

[wt.%]

(daf)

Δh_f

[MJ/kg]

-2.22

-2.69

20.99

-2.24

0.83

-2.22

0.00

Sanchez, E. M. L., Rosendahl, L., & Pedersen, T. H. (2019). Modeling of thermochemically liquefied biomass products and heat of formation for process energy assessment. *Applied Energy*

HHV Density = Element balance = Cp

HIGHTELY - SUCHARIOS FOR INCEGRATION OF DIO-liquids in existing REFINERY processes

Reference

weights)

constraint)

Initial values

Relative error [%]

Optimized (equal

Relative error [%]

Optimized (Δh_f hard

Relative error [%]

European Union's Horizon 2020 research and innovation programme, GA No. 727531

Cooler

Some modelling results and considerations

Case study: HTL integrated with refineries

Sewage sludge

4refinery - Scenarios for integration of bio-liquids in existing REFINERY processes *European Union's Horizon 2020 research and innovation programme, GA No. 727531*

<u> ♦4refinery</u>

Case study: HTL integrated with refineries

Wrapping up

- The non-conventional solid approach is feasible for biomass modelling with fitted correlation parameters.
- Accurate enthalpy of formation calculations are of high importance.
- Cp correlations should be used with care. Always verify with experimental data.
- The model compounds approach with optimized bio-crude composition can accurately model bio-crude properties.
- Also be critical to your model results. ③

Thank you for your attention!

Contact: thp@et.aau.dk

This project has received funding from the European Union's Horizon 2020 research and innovation

programme under grant agreement No 727531.