

Fast pyrolysis of waste materials

Christian Lindfors, Anja Oasmaa, Taina Ohra-aho, Elmeri Pienihäkkinen, Alhalabi Tamer

Outline

- Fast pyrolysis
 - How, why
 - Fast pyrolysis technologies
- Fast pyrolysis of waste materials
- Metal reduction in bio-oil
 - Metal removal before fast pyrolysis by feedstock washing
 - Metal removal in the pyrolysis process by hot vapour filtration

Fast Pyrolysis

Fast pyrolysis technology:

- Thermal decomposition process at around 500 °C
- High heating rate in inert atmosphere
- Residence time about 1-2 s

Typical product distribution for bark-free wood:

- 64 wt % organics
- •12 wt % pyrolysis water
- •12 wt % char
- •12 wt % product gas

Why Fast Pyrolysis

- Production
 - Feasible at relatively small scale
- Transport, storage
 - Fluid product for easy logistics
 - Energy density
- Utilisation
 - Replace heavy fuel oil in burners
 - Potential for upgrading to higher value products

Bio-oil Properties

- Contains 45-50 wt- % oxygen
- Contains 20-30 wt- % water
- Low heating value (14,5-17 MJ/kg)
- Low pH (2-3)
- Unstable during storage and especially when heated
- Contains solids, typically < 0.5 wt-%</p>

Bubbling fluidized bed (BFB)

Circulating fluidized bed (CFB)

Karlsruhe institute of technology Bioliq process

- Synthetic fuel by pyrolysis and gasification
- In the concept bio-oil and char is produced in decentralized plants, which is transported to a centralized gasification plant
- Feed capacity of the unit 500 kg/h

Status of pyrolysis plants

				Processing			
Company	Technology	Location	Feedstock	capacity, kg/h	Production capacity	Start-up	Status
Red Arrow (5 plants),						1995, 2002,	
nowadays Kerry group	RTP (Ensyn)	Wisconsin (USA)	Wood residues	1750		2014	Operational
BTG - BTL and Genting							
Sanyen Bhd	RCR (BTG)	Malaysia	Palm oil industry residue	2000	1200 kg/h	2005	Shut down
Dynamotive Energy							
System	BFB	West Lorne (Ontario Canada)	Wood residues	4150		2005	Shut down
Kerry group (Ensyn)	RTP (Ensyn)	Renfrew (Ontario Canada)	Wood residues	3500	12 ML/year	2006	Operational
Dynamotive Energy							
System	BFB	Guelph (Ontario Canada)	Wood residues	8300		2008	Shut down
	Twin-screw						
KIT (Bioliq)	mixing reactor	Karlsruhe (Germany)	Agriculture residues	500	2 ML/year	2010	Operational
Savon Voima	CFB	Joensuu (Finland)	Wood residues	10000	50 ML/year	2013	Operational?
Twence (Empyro)	RCR (BTG)	Hengelo (Netherlands)	Wood residues	5000	20 ML/year	2015	Operational
Ensyn, Arbec Forest							
Products and Groupe							
Remabec (Cote Nord)	RTP (Ensyn)	Port-Cartier (Quebec Canada)	Wood residues	9000	40 ML/year	2018	Operational
Green Fuel Nordic	RCR (BTG)	Lieksa (Finland)	Wood residues	5000	20 ML/year	2020	Operational
Pyrocell, (Preem and		Kastet sawmill in Gävle					
Setra)	RCR (BTG)	(Sweden)	Wood residues		21 ML/year	2021	Under planning
Ensyn and Fibria							
Celulose S.A.	RTP (Ensyn)	Aracruz (Espirito Santo Brazil)	Wood residues		83 ML/year		Under planning
Ensyn and Renova							
Capital Partners	RTP (Ensyn)	Dooley country (Georgia USA)	Wood residues		76 ML/year		Under planning

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 818120.

10

Waste material feedstock for pyrolysis

			Contaminated	Roadside	Organic fraction of	
Feedstock		Sawdust	wood, B class	grass	municipal solid waste	Sunflower husk
Moisture	wt%	6.7	8.0	4.1	6.9	11.0
Volatiles, dry	wt%	85.1	84.7	-	-	-
Ash, dry	wt%	0.3	0.8	11.7	28.4	3.0
Carbon, dry	wt%	51.4	50.4	40.9	36.1	46.4
Hydrogen, dry	wt%	6.0	6.0	4.8	5.0	6.3
Nitrogen, dry	wt%	0.1	0.4	2.1	1.4	0.7
HHV, dry	MJ/kg	19.6	20.2	15.0	13.8	18.2
LHV, dry	MJ/kg	18.3	18.9	13.9	12.7	16.8
Cl, dry	wt%	-	0.02	-	0.609	0.061
S, dry	wt%	0.01	0.02	_	0.27	0.12

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 818120.

11

Fast pyrolysis of waste materials

- Pyrolysis liquid yield and quality is dependent on the feedstock.
- Highest liquid yield is obtained with bark free wood and lowest with agrobiomass.
- Ash content correlates to liquid yield
- Alkali metals, mainly potassium are known to catalyse pyrolysis reactions to yield more gas and water and decrease the organic liquid yield

Oasmaa, A.; Solantausta, Y.; Arpiainen, V.; Kuoppala, E.; Sipilä, K. Fast Pyrolysis from Wood and Agricultural Residues. Energy Fuels, 2010, 24, 1380-1388.

**** * * ***

Phase stability of bio-oil

- There are two main types of phase separation related to the feedstock used to produce the FPBO
 - Phase separation of the extractive-rich top phase
 - Phase separation of the aqueous phase and lignin derived phase
- Phase separation of the aqueous phase and lignin derived phase is caused by
 - High water content of the feedstock
 - High ash content of the feedstock, which catalyzes dehydration reactions
 - Higher pyrolysis temperature, which reduce the oxygen content in the bio-oil and makes the organic phase more hydrophobic
 - Aging of the bio-oil, which increase the amount of water insoluble material and reduce the amount of light volatile compounds
- A chemical—composition-based phase stability diagram shows how close to phase separation any given FPBO is
- An increase in the relative amount of polar fraction above 60 wt% or a WIS fraction above 35 wt% or a decrease in the amount of cosolvent below 15 wt% may lead to phase separation

Oasmaa, a.; Sundqvist, T.; Kuoppala, E; Garcia-Perez, M.; Solantausta, Y.; Lindfors, C.; Paasikallio, V. Controlling the Phase Stability of Biomass Fast Pyrolysis Bio-oils. Energy Fuels, 2015, 29, 4373-4381.

Bio-oil from waste material

- Metal, sulphur, nitrogen and chlorine content high in the oils from waste materials
- Pyrolysis reduced the metal content by 95 % compared to the feedstock

		Contaminated	Roadside	Sunflower
Oil	Sawdust	wood	grass	husk
Water, wt %	22.4	24.4	27.0	14.2
Solids, wt%	<0.01	0.17		
Ash dry, wt %	0.01	0.13		
MCR dry, wt%	23.1	27.5		
Carbon dry, wt%	56.7	54.1	59.0	67.4
Hydrogen dry, wt%	6.7	6.4	6.5	6.4
Nitrogen dry, wt %	0.3	0.5	1.2	1.7
Sulfur dry, wt%	0.02	0.03		
Chlorine dry, wt%	0.00	0.04		
Oxygen by difference dry, wt%	36	39	33	24
HHV dry, MJ/kg	23.6	22.6	24.7	28.3
LHV dry, MJ/kg	22.1	21.2	23.2	26.9

High metal content in bio-oil will limits its further application

- In pyrolysis most of the metals are removed with the char in the cyclones
- Small particles (< 10 μ m) will escape the cyclones and end in the product liquid
- Metals in the pyrolysis liquid
 - settle at the bottom of the vessel in form of sludge during bio-oil storage
 - cause erosion, corrosion and block injection nozzles in power generation systems
 - form deposits on the surface of the catalyst which changes its activity and shorten its lifetime, when pyrolysis liquid is further upgraded

Alkali removal from FPBO is importand when residues are used as feedstocks

Alkali removal before pyrolysis from forest residue, eucalyptus and straw

- Fast pyrolysis of forest residue, eucalyptus and straw have been carried out in bench scale before and after washing
- Noticeable increase in organic liquid yield was obtained with washed straw and eucalyptus
- Washed eucalyptus and forest residues behaved differently compared to untreated raw materials.
 - Washed feeds were found to agglomerate with heat carrier which disturbed feed and temperature control and eventually led to termination of the experiment.
 - With eucalyptus, problem was solved by decreasing the feed rate. Eucalyptus
 was successfully processed after adjustments
 - Even after the adjustments, forest residue particles were not pyrolyzed completely which led to clogging of the equipment. Absence of catalytic inorganic ash elements may change the optimal process conditions. Ash and AAEM content of the raw materials was also the lowest with forest residues.

	Feedstock					Washed feedstock				
	K (ppm)	Na (ppm)	Ca (ppm)	Mg (ppm)	Ash (wt%)	K (ppm)	Na (ppm)	Ca (ppm)	Mg (ppm)	Ash (wt%)
Forest										
residues	700	200	1300	200	0.74	< 50	< 50	< 50	< 50	0.29
Eucalyptus	2600	500	7500	900	4.75	400	100	800	100	2.81
Wheat straw	7600	< 50	1700	700	6.91	300	< 50	100	< 50	5.70
Furopean Union's Horizon 2020 research and innovation program										

Table 1. Washing conditions in bench scale washing.

Sample	Temperature (°C)	Time (min)	Acid (w-%)	Washing liquid (B:WL)	Rinsing water (B:W)
Forest residues	50	30	1 %	1:10	1:10
Eucalyptus	50	30	1 %	1:10	1:10
Wheat straw	20	30	0,5 %	1:10	1:10

Alkali removal before pyrolysis from forest residue, eucalyptus and straw

- Oil from the washed raw material had different chemical composition.
 - Fraction of "sugars" increased.
 - Oxygen content increased.
 - pH and CAN were reduced.

Feedstock	Acid leached wheat straw	Untreated wheat straw	Acid leached eucalyptus	Untreated eucalyptus	Forest residues
Water, wt %	16.4	21	7.8	27.5	22.3
Ash dry, wt %	0.04	0.05	0.03	0.04	0.13
MCR dry, wt%	27.4	23.7	31.2	24.4	25.1
Carbon dry, wt%	51.0	54.9	53.5	57.5	57.8
Hydrogen dry, wt%	6.1	6.8	6.2	6.8	6.3
Nitrogen dry, wt %	0.1	0.3	0.3	0.4	0.1
Sulfur dry, mg/kg	na	0.03	0.02	na	0.01
Chloride dry, mg/kg	na	0.05	0.03	na	0.00
Oxygen by difference dry, wt%	43	38	40	35	36
HHV dry, MJ/kg	20.4	22.7	21.7	24.1	24.3
LHV dry, MJ/kg	19.1	21.2	20.3	22.7	23.0
рН	2.3	2.52	2.5	3.1	2.6
CAN dry, mg KOH/g	90.1	115.3	53.6	109.1	85.6
Carbonyl dry, mmol/g	7.3	6.6	3.9	4.4	3.6

4refinery - Scenarios FOR integration of bio-liquids in existing REFINERY processes European Union's Horizon 2020 research and innovation program, GA No. 727531

VTT's new design of hot vapour filtration

- VTT's new filter design is a combination of a so called moving bed filter and candle filter.
- Coarse particles of moving bed filter will enable avoiding of formation of sticky dust cake by removing captured particles from the filter surface.
- Filter conditions have been optimized in bench scale using:
 - Contaminated wood as feedstock
 - Varying the filter temperature: 450, 400, 360 °C
 - Varying the face velocity by using 3, 2, or 1 filter candle

Solids removal by hot vapour filtration

- Fast pyrolysis vapours did not block the pores in the filters
- Hot vapour filtration reduced the organic liquid yield and increased the gas, water and char yield
- Higher filtration temperature reduced more the organic liquid yield
- Reducing the amount of filters increased also the organic liquid yield

Solids removal by hot vapour filtration

- Hot vapour filtration did not significantly change the properties of bio-oil
- Metal content was reduced by hot vapour filtration

		Feedstock	Pyrolysis liquid					
		Contaminated	Without	Filter	Filter	Filter 360		
Metals	Unit	wood	filter	450 °C	400 °C	С°		
Na	mg/kg	350	84	76	80	70		
K	mg/kg	500	10	10	10	10		
Mg	mg/kg	230	10	10	10	10		
Са	mg/kg	1700	28	10	10	10		
Ash	wt%	0.8	<0.05	<0.05	<0.05	<0.05		

		Pyrolysis liquid					
		Without filter	Filter 450 °C	Filter 400 °C	Filter 360 °C		
Water	wt. %	16.3	22.4	21.2	22.6		
Solids	wt. %	0.2	0.1	0.1	< 0.1		
Ash	wt. %	< 0.05	< 0.05	< 0.05	< 0.05		
MCR (dry)	wt. %	28.1	27.8	27.7	24.5		
TAN (dry)	mg KOH/g	63.7	83.2	76.3	75.5		
Carbonyl (dry)	mmol/g	5.34	5.15	4.95	5.04		
WIS (dry)	wt. %	33.2	38.9	31.6	38.5		
HHV	MJ/kg	19.3	18.7	18.7	18.1		
LHV	MJ/kg	17.7	17	17.1	16.5		
Carbon (dry)	wt. %	55.7	57.5	56.7	55.9		
Hydrogen (dry)	wt. %	6.5	7.0	6.4	6.2		
Nitrogen (dry)	wt. %	0.7	0.6	0.5	0.6		
Oxygen by difference (drv)	wt. %	37	35	36	37		

Conclusions

- Pyrolysis liquid yield and quality depends on the feedstock
- Alkali metals mainly potassium are known to catalyse pyrolysis reactions to yield more gas and water
- Metal removal is needed before pyrolysis liquid can be used as a feedstock in oil refinery
- Metal removal from the feedstock before pyrolysis will increase the oil yield, but at the same time the pyrolysis reaction of the feedstock will change
- Metal removal by hot vapour filtration will reduce the metal content in the oil, but at the same time organic liquid yield will decrease

Acknowledgement

The authors gratefully acknowledge the support from 4REFINERY (grant agreement no. 727531) and WASTE2ROAD (grant agreement no. 818120) projects funded by the European Union's Horizon 2020 research and innovation programs

