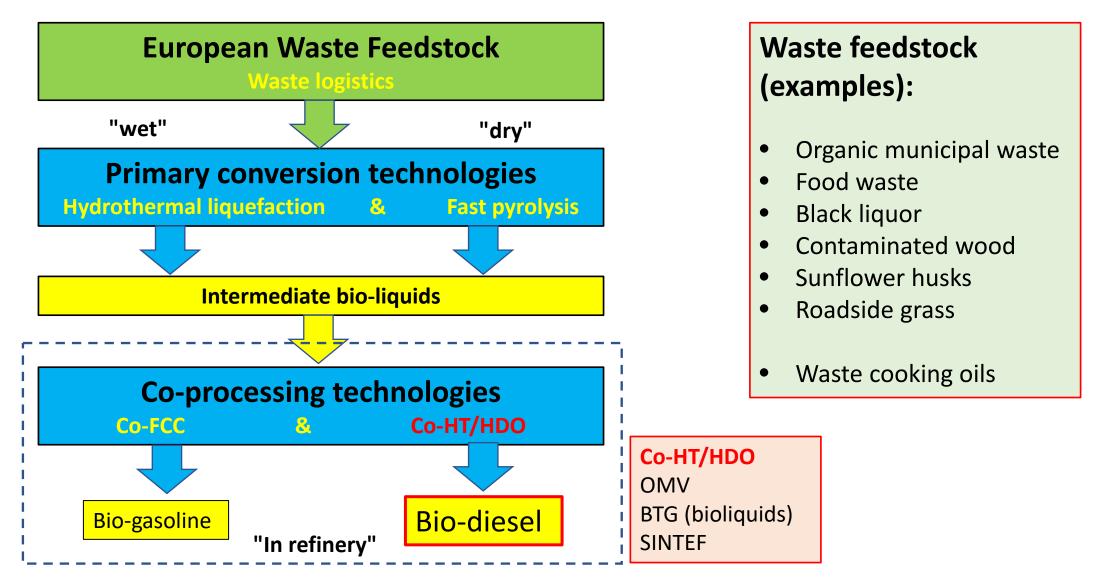


Co-hydroprocessing of bio-oils to middle distillates"

Senior Scientist Rune Lødeng - SINTEF, Research scientist Håkon Bergem - SINTEF Training seminar 20. April 2021 (VTT organizer)


Contents

- The waste2road concept
- State of the art
 - Conventional hydrotreating processing (HDS/HDN)
 - Catalysts
 - Renewable processing plants
- The W2R challenge; Co-refining in a conventional refinery
- Properties
 - Primary feedstock (for FP and HTL)
 - Renewable oils and co-feed for hydroprocessing (upgrading)
 - Miscibility
- Results examples
 - HDO of Waste Cooking Oil
- Way forward

Co-HT/Co-HDO in the Waste2Road concept

State-of-the-art

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 818120.

4

Conventional hydroprocessing to fuels

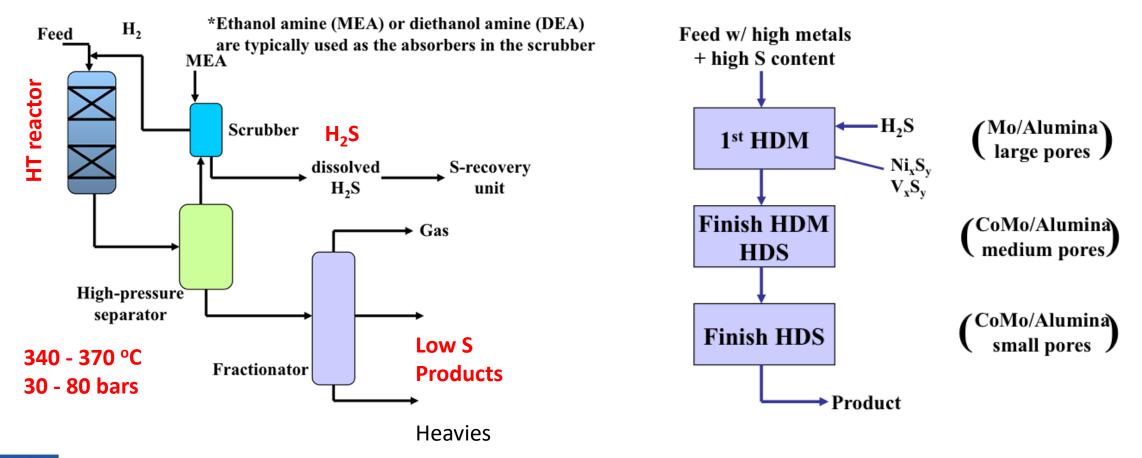
Hydrotreating (HT)

- Remove hetero atoms & saturate carbon-carbon bonds
 - Sulfur, nitrogen, oxygen & metals removed
 - Olefinic and aromatic bonds saturated
 - Minimal cracking (loss)
- Minimal conversion 10 20% typical
- Products suitable for further processing or final blending
 - Reforming, catalytic cracking, hydrocracking

In a conventional refinery it is located before the "Catalytic reforming and "(hydro)cracking" units - removing critical catalyst contaminants

Hydrocracking

- Severe form of hydroprocessing Break carbon-carbon bonds
- Drastic reduction in molecular weight
- Reduce average molecular weight and produce higher yields of fuel products
- 50%+ conversion
- Products more appropriate for diesel than gasoline



Conventional processing, "HDS"

Staging of Hydrotreatment Processes

HDS Process Configuration

Commercial HT catalysts (sulphides)

Table 1. Catalysts Used in Hydrotreating/Hydrocracking Tests Remarkably similar compositions!

supplier	catalyst id	active metals	weight %	- support	form ^a
supplier	cataryst in	active metals	weight 70	support	IOIIIIa
Harshaw	Ni-1404	Ni	68	proprietary	1/8 -i n T
Harshaw	CoMo0402	CoO/MoO ₃	3/15	silica-alumina	1/8 -i n T
Harshaw	HT 400	CoO/MoO ₃	3/15	γ -Al ₂ O ₃	1/8-in E
Harshaw	HT 500	NiO/MoO ₃	3.5/15.5	γ -Al ₂ O ₃	1/8-in E
Harshaw	Ni-3266	Ni	50	silica-alumina	1/16-in E
Harshaw	Ni-4301	NiO/WO ₂	6/19	γ -Al ₂ O ₃	
Haldor Topsoe ^b	TK 710	CoO/MoO ₃	2/6	Al ₂ O ₃	3/16-in R
Haldor Topsoe ^b	TK 750	CoO/MoO ₃	2.3/10	Al_2O_3	1/16-in E
Haldor Topsoe ^b	TK 770	CoO/MoO ₃	3.4/14	Al_2O_3	1/16-in E
Haldor Topsoe	TK 751	NiO/MoO ₃	3/13	Al_2O_3	1 mm E
Katalco	CoMo479	CoO/MoO ₃	4.4/19	Al_2O_3	1/16-in E
Katalco	CoMo499	CoO/MoO ₃	4.4/19	γ -Al ₂ O ₃	1/16-in E
Katalco	KAT 4000	CoO/MoO ₃	3.5/14	γ -Al ₂ O ₃	1/3 2-in E
Shell	S411	NiO/MoO ₃	2.67/14.48	Al ₂ O ₃ ^c	1/20-in T
PNL/Linde	CoMo/Y	CoO/MoO ₃	3.5/13.9	Y-zeolite/ Al ₂ O ₃	1/16-in E
PNL/Grace	CoMo/SiAl	CoO/MoO ₃	3/13	13%Al ₂ O ₃ SiO ₂	3/16-in T
Amoco	NiMo/Y	NiO/MoO ₃	3.5/18	Y-zeolite/ Al ₂ O ₃ c	1/16-in E
BASF	K8-11	CoO/MoO ₃	4.3/11	MgO spinel/ Al ₂ O ₃	1 mm E
Akzo	KF-742	CoO/MoO ₃	4.4/15.0	γ -Al ₂ O ₃	1.3 mm Q
Akzo	KF-840	NiO/MoO ₃	3.9/19.6	$Al_2O_3^c$	1.3 mm Q
Criterion	C-424	NiO/MoO ₃	4/19.5	$Al_2O_3^c$	1.3 mm Q
Strem	78-166	Pt	5	γ -Al ₂ O ₃	Р
				-	

^{*a*} E = extrudates; R = ring; T = tablet; Q = quadrilobe extrudates; P = powder; and the size given is the o.d. ^{*b*} All three catalysts were used in a layered bed. ^{*c*} Includes phosphorus oxide.

Elliott, D.C., "Historical developments in hydroprocessing", 2007

**** * * * *

State-of-the art also for renewable processing

Existing renewable plants (commercial)

1. Generation (limited resources)

Production of "**HVO diesel**", Hydrogenated Vegetable Oil

Company Name	Location	Feedstocks	Capacity	Technology
Neste	The Netherlands	Vegetable oil and waste animal fat	1,000,000 tn/year	NExBTL
Neste	Singapore	Vegetable oil and waste animal fat	1,000,000 tn/year	NExBTL
Diamond Green Diesel	USA	Non-edible vegetable oils and animal fats	900,000 tn/year	Ecofining™
UOP/Eni	Italy	Vegetable oils, animal fats and used cooking oils	780,000 tn/year	Ecofining™
Neste	Finland	Vegetable oil and waste animal fat	380,000 tn/year	NExBTL
Renewable Energy Group (REG) Inc.	USA	High and low free fatty acid feedstocks	250,000 tn/year	Dynamic Fuels LLC
AltAir Fuels	USA	Non-edible natural oils and agricultural waste	130,000 tn/year	Ecofining™
UPM Biofuels	Finland	Crude tall oil	100,000 tn/year	UPM BioVerno

NOTES: Also, there are a number of companies co-processing vegetable oils with petroleum distillates such as Petrobras (Brazil), Cepsa (with several refineries in Spain), Preem (Sweden), Repsol (with several refineries in Spain) and British Petroleum (Australia).

Hydrodeoxygenaton + isomerization to reach fuel quality (Esterification with CH3OH to FAME)

2. generation

Pyrolysis oil

BTG Bioliquids / Empyro / Netherlands "rotating cone"

BTG Bioliquids / Green Fuel Nordic / Finland

BTG Bioliquids / Pyrocell / Sweden (Autumn 2021)

VTT / Savon Voima Joensuu / Finland (earlier Fortum)

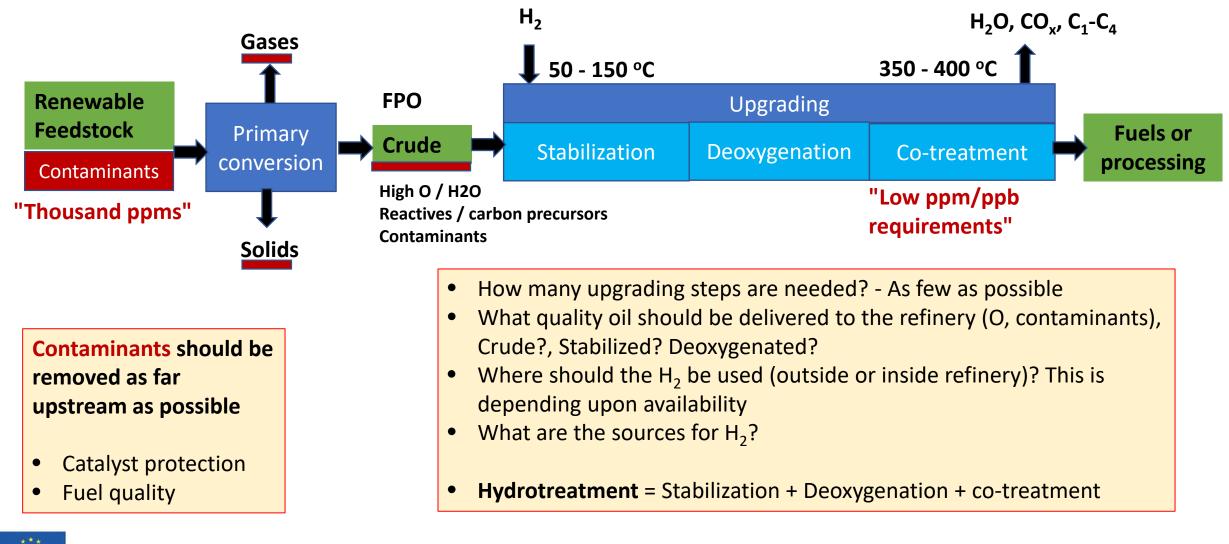
"fluidized sand" Ensyn / Plants in Canada

Field is progressing

W2R challenges

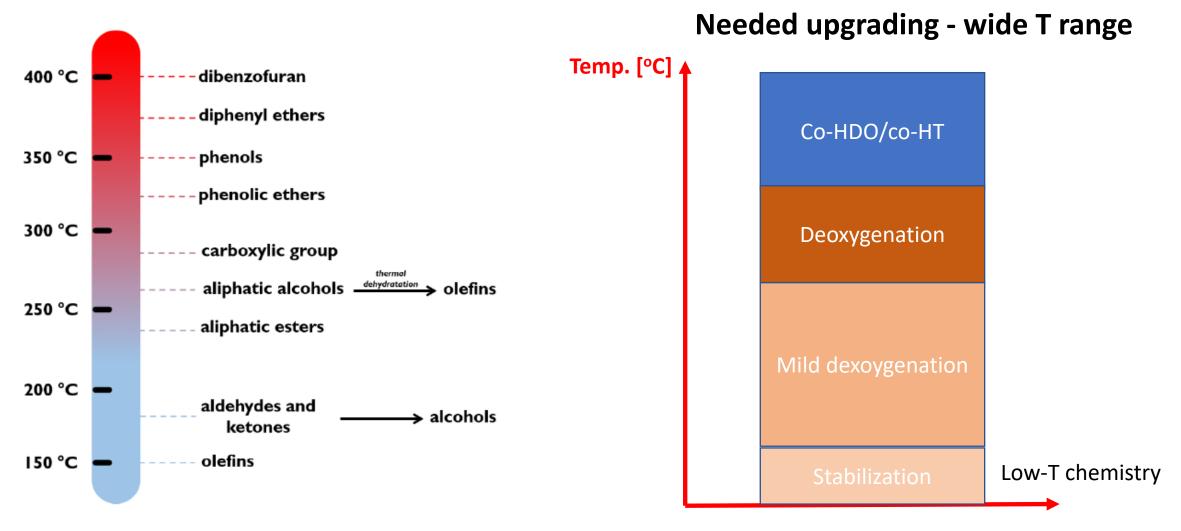
co-HT/co-HDO

Chemical, physical and technical challenges in processing of renewables


- High oxygen content; Exothermic reactions and a high consumption of hydrogen
 - Might include a high H2O content
- Materials; The risk of corrosion due to a high acid number, a high chlorine content and the presence of oxygenated compounds, carboxylic acids
- Contaminants; Deposits causing pressure drop and catalyst deactivation due to the presence of components such as Si and P, and others
- Product Quality; The establish on the density and cold flow properties of the end product,
- Feedstock supply; The ability to secure a reliable supply of renewable feedstocks of sufficient quality

W2R solution is diversity in feedstock types and technology

Upgrading needs and strategies (W2R)



**** * * * ****

Reactivity scale of bio-oil components

Bagnato G. et al., Catalysts, 2021

Deactivation mechanisms & causes

General

- (i) Poisoning (blocking of active sites)
- (ii) Coking / carbonaceous
- (iii) Sintering
- (iv) Solid-state transformations
- (v) Masking or pore blockage (fouling)
- (vi) Leaching (loss of active phase)

Conventional oil HDS/HDN-processing

Ni, V present (a.o.) **Demetallization**

Deactivation typically by

- Asphaltene formation
- Ni and V sulphides deposition
- V on the exterior, Ni interior

Typical poisons found in renewable feeds

- Phosphorus (present in cell walls in form of phospholipids)
- Alkali metals like potassium or sodium (from soil as nutrients or counter ions of phospholipids)
- Iron (due to corrosion during transportation and storage in iron vessels)
- Silicon (from dust or soil)
- Chlorides (a counter anion)

Removal; by adsorbents, ion exchange, etc.

Limiting regeneration and life-time

Surface and pore blocking Transport limitations

PO and HTL oils properties

HTL oil rel. PO

- Higher C content
- Large heavy fraction above middle distillate range
- Lower H/C
- Lower O/C
- Lower H_2O
- Higher Viscosity

Challenges

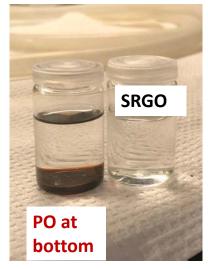
- Flowability/processability
- Miscibility
- Catalytic O removal
- Also a CRACKING need

TABLE 11-3	Properties	of	Wood-Derived	Bio-Oil	from	Fast	Pyrolysis	and
Liquefaction	-							

Property	Pyrolysis oil	HTL oil
Elemental composition (%)		
Carbon (C)	58	73
Hydrogen (H)	7	8
Oxygen (O)	40	16 🔶
Nitrogen (N)	0.2	
Water content (wt%)	30	1 🔶
Viscosity (cP)	100 ⁴	15,000 ⁰ -
рН	2.5	
Heating value (MJ/kg)	19	34 🔶

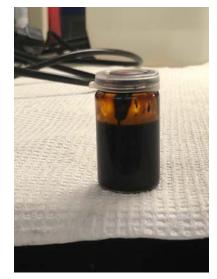
Adapted from Ref. [6].

D. Elliott and G. Schiefelbein, Liquid hydrocarbon fuels from biomass, in American Chemical Society, Division of Fuel Chemistry Annual Meeting Preprints, 1989, vol. 34, pp. 1160-1166.


Oils compatibility / miscibility

30% PO in WCO

10% PO in SRGO


10% HTLO in SRGO

10% WCO in SRGO

10% HTLO in PO

Compatibility

Abolutely no compatibility

A minor compatibility Compatibility at 10% level

Some compatibility

Needs processing adapted to reactivity

Feedstock properties

Primary feedstock and contaminants

Contaminated wood

- H₂O, 12 20 wt.%
- O, ca. 38 wt.%
- Ash, 0.02 0.17 wt.%
- Si, 790 8700 mg/kg
- Ca, 1700 4300 mg/kg
- Na, 350 1400 mg/kg
- K, 500 1300 mg/kg
- Mg, 230 590 mg/kg
- Fe, 210 1800 mg/kg
- Pb, 20 56 mg/kg
- Cu, 6 52 mg/kg

Paint, etc.

Food waste

- N, 1.3 3%
- Total solids, 50 300 g/kg
 - Partly insolubles
- Proteins, 78 13%
- Carbohydrates, 40 80%
- Lipids, 6- 10%
- Lignocellulosic matrix

Black liquor

- Na, 18 22 wt.%
- K, 1.8 4 wt.%
- S, 0.2 5 wt.%
- Cl, 0.4 5 wt.%
- Si, 0 4 wt.%
- Lignin
- Polysaccarides

Waste Cooking oil

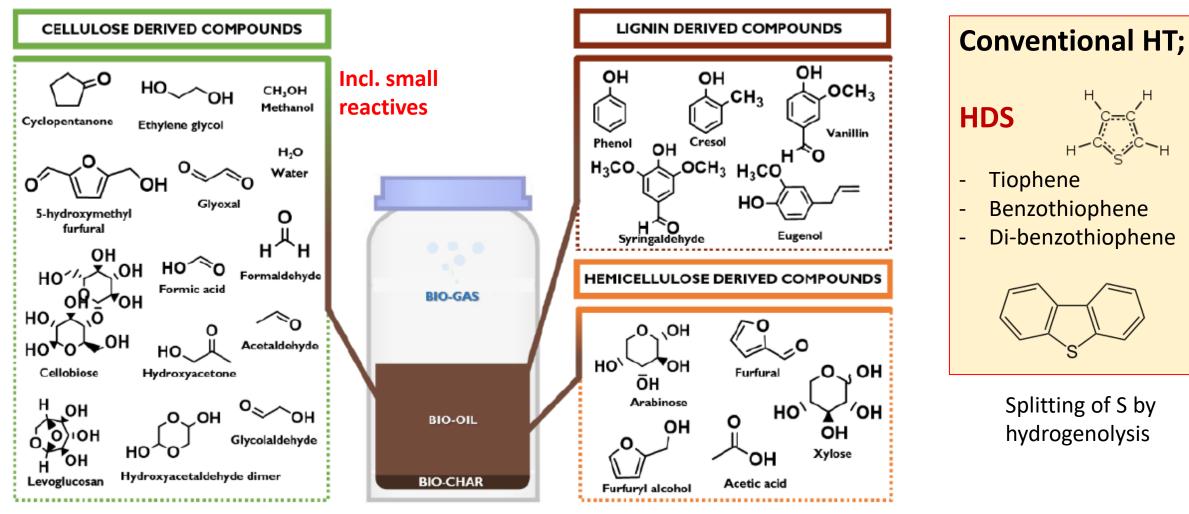
- H₂O, ca. 100 ppmwt.%
- 0, > 8.3 wt.%
- N, ca. 200 ppm-wt%
- S, ca. 20 ppm-wt%
- Polars, 99.75%
- Fatty acids
- Proteins

Feedstock variations - a challenge

Hydrocarbons? - Very little if any!

Ash

Metals and some organics



Pyrolysis oils and HTL oil properties

Pyrolysis bio-oil - A world of oxygen chemistry

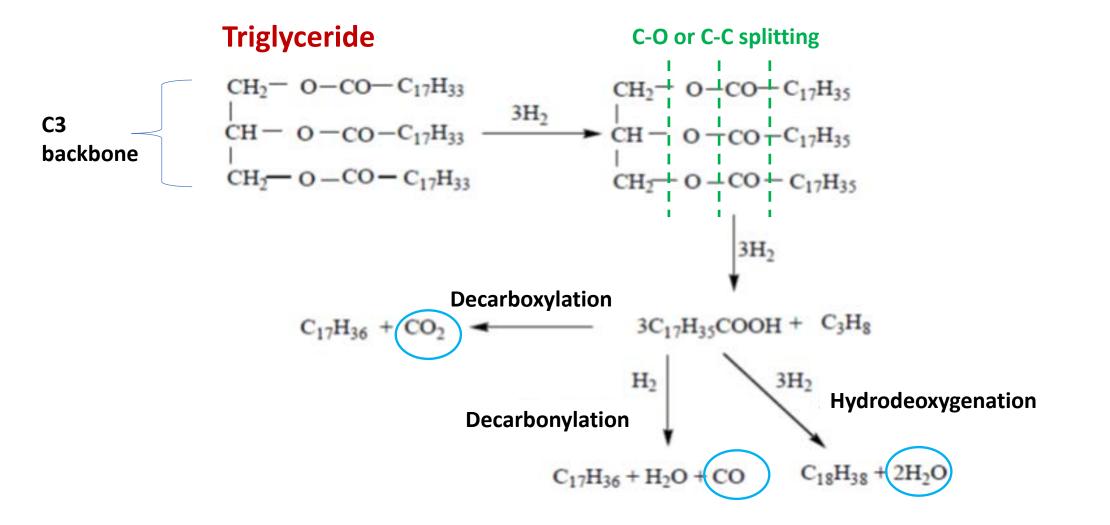
Literature source: ?

HTL properties

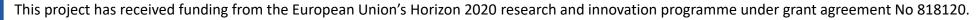
Table 2. Groups of chemicals of hydrothermal liquefaction bio-crude.

Main Components	Area% * Range	References
Phenolics	6%-65%	[14,20,39]
Esters	2%-44%	[14,27,39]
Aromatics and heterocyclics	6%-35%	[14,39]
Aldehydes	0%-18%	[14,20]
Carboxylic acids	2%-40%	[20,27,35]
Ketones	0%-38%	[20,27,35,40]
Alkanes	9%-13%	[35,40]
Nitrogenates	12%-23%	[35,40]

Note: *. Area % from gas chromatography-mass spectrometry results.



Results examples



Waste Cooking oil / Main chemical pathways

Rogelia Boyas

Complex oils / NiMoS / RSO + 5% SDPO

SRGO periods - Rape seed oil periods - Cofeed og RSO & Stabilized Deox. Pyrolysis oils

	ſ	Sample	Temp.	Pres.	LHSV	Density	S	HDS	Ν	HDN	0	HDO
DAY	3	id	[°C]	[bar]	[h ⁻¹]	[g/ml]	[wt.%ppm]	[%]	[wt.%ppm]	[%]	[wt.%]	[%]
1	ref.	2-1 LGO	340	44	1	0,8471	1,9	96,0	5,7	99,5		
-		2-2 RSO 1	340	44	1	0,7807	0,9	98,2	3,6	99,7	0,011	99,9
•		2-3 RSO	355	44	1	0,7798					0,085	99,2
_		2-4 RSO	370	44	1	0,7799	0,8	98,2	0,8	99,9	0,001	100,0
-		2-5 RSO	355	38	1	0,7781					0,003	100,0
•		2-6 RSO	355	32	1	0,7782	0,2	99 <i>,</i> 6	1,0	99,9	0	100,0
_		2-7 RSO	355	44	2	0,7778	0,2	99 <i>,</i> 6	0,0	100,0	0	100,0
•		2-8 RSO	355	44	3	0,7795	0,6	98 <i>,</i> 6	0,0	100,0	0,114	99,0
•		2-9 RSO	355	44	1	0,7784					0	100,0
_	ref.	2-10 LGO	340	44	1	0,8487	6,7	85,8	14,1	98,7		
•		2-11 RSO	355	44	1	0,7814	0,9	98,1	0,6	99,9	0,003	100,0
•		2-12 RSO	355	44	1	0,7811					0,045	99,6
		2-13 Cofeed	355	44	1	0,7883	38,8	17,9	7,4	99,3	0,085	99,2
•		2-14 Cofeed	370	44	1	0,7872	29,2	38,2	10,7	99,0	0,042	99,6
•	ref.	2-15 LGO	340	44	1	0,8496	14,0	70,4	26,5	97,6		
16		2-16 RSO 2	355	44	1	0,7796)			0	100,0

SRGO/LGO S: ca. 1141 wt.% ppm N: ca. 47 wt.% ppm

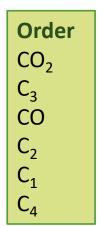
RSO S: < 1 wt.% ppm N: < 1 wt.% ppm

High degree of oxygen removal maintained during whole test

Theoretical 0.77 - 0.78 g/ml C₁₇ HC (Deep HDO established) Lowered HDS and HDN in SRGO reference periods over time are indicative of deactivation processes (see red circles)

4refinery - Scenarios FOR integration of bio-liquids in existing REFINERY processes *European Union's Horizon 2020 research and innovation program, GA No. 727531*

NiMoS / Light gases formation


	Period	CO ₂	СО	CH₄	C ₂	C ₃	C ₄	C₅	C ₆	Sum gas prod
		[g/h]	[g/h]	[g/h]	[g/h]	 [g/h]	_₄ [g/h]	[g/h]	 [g/h]	[g/h]
Day 1	LGO									
	Rape seed oil 1	2,62	0,45	0,07	0,10	1,08	0,01	0,00	0,00	4,34
	RSO	1,97	0,48	0,13	0,12	1,12	0,01	0,01	0,00	3,84
	RSO	1,96	0,57	0,17	0,14	1,11	0,02	0,01	0,01	3,98
	RSO	2,30	0,55	0,10	0,12	1,19	0,01	0,01	0,00	4,27
	RSO	2,72	0,63	0,08	0,13	1,29	0,01	0,01	0,00	4,86
	RSO	3,37	0,88	0,11	0,16	1,84	0,01	0,01	0,00	6,38
	RSO	3,85	1,14	0,09	0,16	2,12	0,01	0,00	0,00	7,38
	RSO	2,01	0,48	0,10	0,12	1,12	0,01	0,00	0,00	3,85
	LGO			0,00	0,00	0,01	0,01	0,00	0,00	0,03
	RSO	2,44	0,51	0,09	0,13	1,09	0,01	0,01	0,00	4,28
	RSO	2,44	0,48	0,08	0,14	1,05	0,01	0,01	0,00	4,21
	RSO/SDPO	2,24	0,42	0,05	0,13	0,88	0,01	0,01	0,01	3,75
	RSO/SDPO	1,94	0,49	0,08	0,16	0,88	0,02	0,01	0,01	3,59
	LGO			0,00	0,00	0,01	0,00	0,00	0,00	0,02
Day 18	Rape seed oil 2	2,24	0,53	0,14	0,08	1,15	0,01	0,00	0,00	4,16

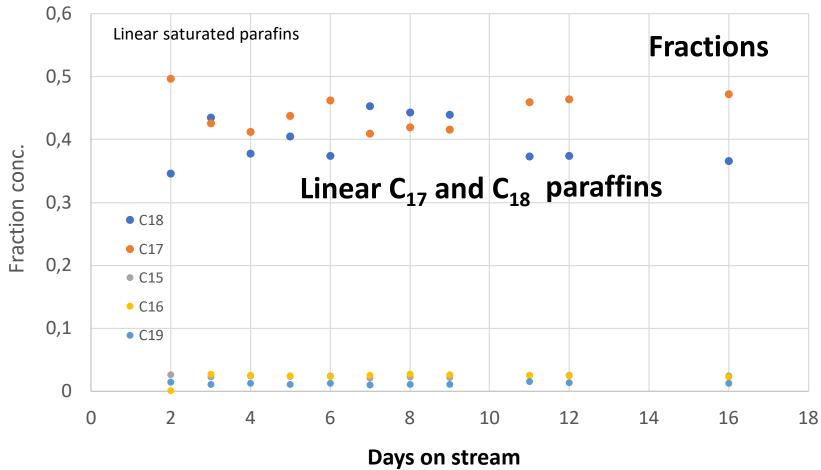
Theoretical (CO_2) : ca. 4.2%

ca. 6%

Observed:

CO₂ (= loss) CO (a poison) HCs (value, H₂) C₃ Propane Propene

served "HCs" : ca. 4%


Theoretical "C₃H₈" : ca. 5%

4refinery - Scenarios FOR integration of bio-liquids in existing REFINERY processes *European Union's Horizon 2020 research and innovation program, GA No. 727531*

Liquid product composition from RSO

RSO reference periods (T, P, SV variations)

C-yield total: > 90%

Low Temperature, i.e. 340 °C favor high C_{17}/C_{18} ratio ("favor CO_2 ")

C₁₅, C₁₆, C₁₉ not much affected by the performed parameter variations

Analysis by 2D-GC-MS

4refinery - Scenarios FOR integration of bio-liquids in existing REFINERY processes *European Union's Horizon 2020 research and innovation program, GA No. 727531*

Conclusions & way forward

- Various types of waste feedstock have a potential for middle distillates production
- Co-feeding of renewable oils in conventional refineries is a rational strategy
 - Hydrotreating / (Hydro)cracking
- Critical aspects
 - Oils compatibility / contaminants & levels / reactives
- Cleaning technology;
 - Efficient deep contaminant removal is a critical aspect for upgrading
 - Number of processing steps should be minimized
- Robust technology;
 - Variability of feed composition is a challenge
- Catalysts materials;
 - New renewable dedicated non-sulfide based HT/HDO catalysts are desired

The W2R project is progressing the field of renewable processing

Thank you for your attention!

Presenter: Senior Scientist Rune Lødeng Tel: +47 98243476 Email: <u>Rune.Lodeng@sintef.no</u>

Coordinator: Dr. Duncan Akporiaye Tel: +47 930 59 166 Email: Duncan.Akporiaye@sintef.no

PROPRIETARY RIGHTS STATEMENT

The information in this presentation reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

