Multiperiodic VRP models and hybrid OR-CP solution techniques For closed-loop reverse logistics

Pierre DEJAX
Emilie GRELLIER, Narendra JUSSIEN
Ecole des Mines de Nantes
IRCCyN - LINA

VIP'08, OSLO June 12-14, 2008

Plan

1. Context and problem description

- 2. Metaheuristics: GRASP
- 3. Column Generation / Branch and Bound
- 4 Results
- 5. Conclusions and perspectives

Reverse Logistics open loop / closed loop supply chains?

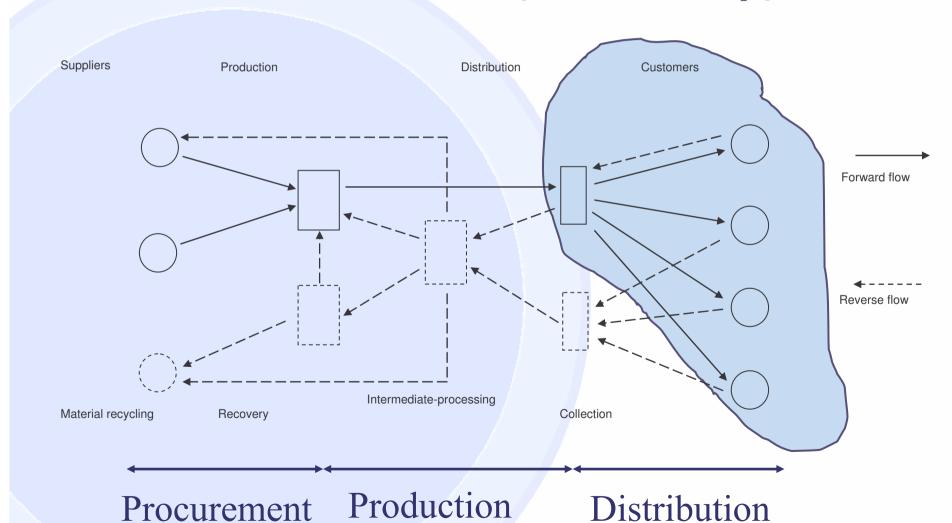
"Reverse logistics can be viewed as the process of planning, implementing and controlling the efficient, cost effective flow of raw materials, in-process inventory, finished goods and related information, from the point of consumption to the point of origin, for the purpose of recapturing their value or proper disposal".

American Reverse Logistics Executive Council

(Rogers and Tibben-Lembke, 1998)

Motivation:

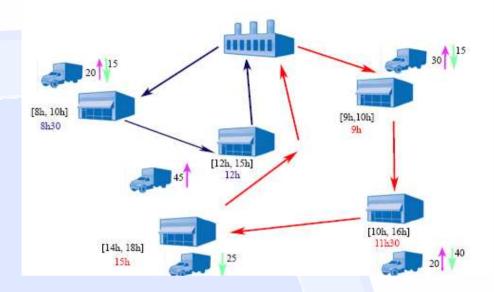
- Environmental protection, product, packages recycling
- Productivity and cost savings: product repair, handling equipements reuse
- Customer service : product returns


General References, books and surveys

- Fleischmann, M., J. M. Bloemhof-Ruwaard, R. Dekker, E. Van Der Laan, J. A.E.E. Van Nunen, L. N. Van Wassenhove, 1997. Quantitative models for reverse logistics: a review.
- Gungor, A., S.M. Gupta, 1999. Issues in Environmentally Conscious Manufacturing and Product Recovery: A Survey.
- Fleischmann, M., 2001. Quantitative models for reverse logistics.
- Dekker R., Fleismann M., Interfuth K., van Wassenhove L edts., 2004, "Reverse logistics. Quantitative models for closed loops supply chains",436 p.
- Bostel N., P. Dejax, Z. Lu, 2005. "The Design, Planning and Optimization of Reverse Logistic Networks"
- CAOR, 2006. Special issue on Reverse Logistics.
- Stock J.R., 2008. "Reverse Logistics, Green Logistics and Packaging".

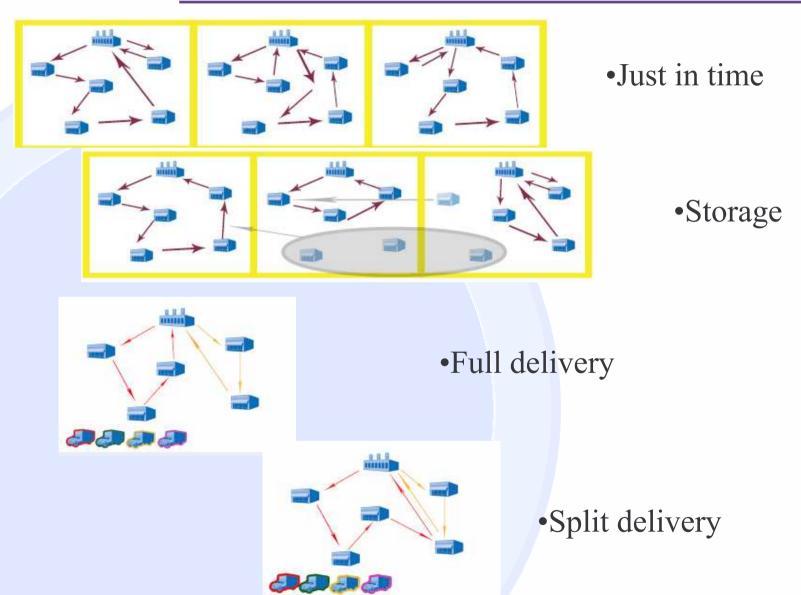
Case studies based models

- Thierry, M.C., M. Salomon, J. Van Nunen, L. Van Wassenhove, 1995. Strategic issues in product recovery management.
- De Brito, M. P., R. Dekker, S. D.P. Flapper, 2003. Reverse Logistics a review of case studies.
- Kumar S. and P. Malegeant, 2006. Strategic alliance in a closed-loop supply chain, a case of manufacturer and eco-non-profit organization.
- Schultmann F., Zumkeller M. and O. Rentz, 2006. Modeling reverse logistic tasks within closed-loop supply chains: An example from the automotive industry.
- •Schultmann F., Engels B. and Rentz O., 2004. Flowsheeting-based simulation of recycling concepts in the metal industry.
- Seitz M., 2007, A critical assessment of motives for product recovery: the case of engine remanufacturing.
- Krikke H., le Blanc I., van Krieken M., Fleuren H., 2008. Low-frequency collection of materials disassembled from end-of-life vehicles: On the value of on-line monitoring in optimizing route planning.


Integrated supply chain with forward and reverse flows (closed loop)

Goal of the research

- Study a « generic » realistic distribution system
 - multiperiodic VRP with reverse flows
 - several possible management policies
- Evaluate different solution technique:
 - pure O.R. techniques,
 - Hybrid O.R. techniques with C.P. techniques
 - Classical heuristics and meta heuristics: GRASP
 - « exact » methods : Column generation/ Branch & Bound


VRP with Reverse Flows

- •1 warehouse,
- n stores
- •1 product type on pallets
- pallets to be recycled
- products returnable by consumers
- demand on a multiperiodic horizon
- dtore time windows
- homogeneous fleet of vehicles

Possible management policies:

General goals

- demand satisfaction
- handling of returns
- respect vehicle capacities
- •Minimize costs:
 - -Vehicle fixed and transport costs
 - -Possible storage costs at store

Related VRP problems and methods

- •VRP: Toth &Vigo (2001)
- •VRPTW: Cordeau et al.(2002), Braÿsy & Gendreau (2005)
- Pick up & Delivery: Cambpell et al. (2002), Nagy & Saly (2004), Parragh et al. (2008)
 - Simultaneous Delivery & Pick up: Dethloff (2001), Halskau et al. (2001), Hoff & Lokketangen (2006)
- Inventory Routing: Deseaulnier et al. (2002)
 - IPDPTW: Christiansen & Nygreen (1998), Christiansen (1999) [planning of ships between ports over a month]
- Hybrid methods for routing problems:
 - -Rousseau et al.(2002): constraint programming, column generation
 - -Caseau & Laburthe (1999): solving large VRPs with insertion methods using LDS

Plan

- 1. Context and problem description
- 2. Metaheuristics: GRASP
- 3. Column Generation / Branch and Bound
- 4 Results
- 5. Conclusions and perspectives

GRASP Framework

GRASP - Greedy Randomized Adaptative Search - (Feo & Resende, 1989)

- GRASP combines construction method (greedy heuristics), randomization and local search
- GRASP is a method which can be divided in two steps: a construction of an initial solution and improvement using local search. These two steps are repeated several times.
- Principle for one iteration:
 - Construction phase
 - All the unrouted nodes are valuated with the greedy function.
 - The n (parameter of the GRASP) best nodes following the greedy function are selected.
 - Among these selected nodes, the node which will be inserted is randomly selected.
 - If all the nodes are routed: end construction phase Else start to 1.
 - Local Search.
- We studied two GRASP versions: classical GRASP and Hybrid GRASP

Classical Grasp

1. Construction step: Best insertion

Choices:

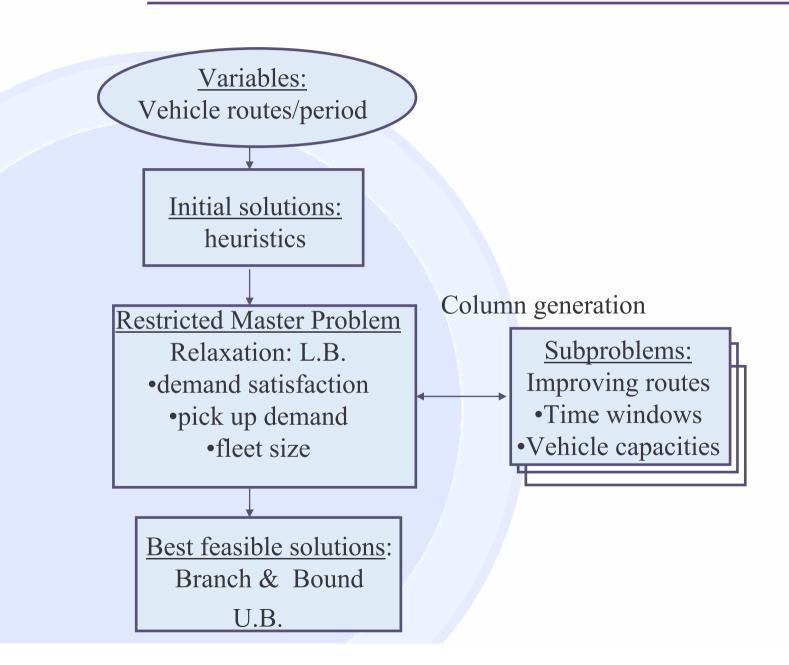
- where ? → in which route? between which nodes?
- how much ? → quantity for the delivery?
- at what time ? → time of visit in the route?

2. Local search for « just in time version »:

- We chose the combination named: E_oD_oO⁺.
 - Eo: "String Exchange"
 - D_o: "String Relocation"
 - O: "2-Opt"

2. Local search for version with inventory:

- We chose the combination named: $E_i E_o D_o D_i OA^+$.
 - Ei: "2-Exchange"
 - Eo: "String Exchange"
 - D_i: "Or-opt"
 - Do: "String Relocation"
 - O: "2-Opt"
 - A: "Day-Exchange"


Hybrid Grasp

- 1. Construction step: Best insertion
- 2. Local search: using LNS –Large Neighbourhood Search (Shaw, 1998)
 - Explores the neighbourhood of the solution by selecting a number of visits to be removed from the routing plan and re-inserting later these visits.
 - How to choose the removed nodes:
 - Randomly
 - Best contribution: the nodes which cost the most
 - Best Resemblance: the nodes which have the biggest resemblance
 - To find the reallocation we use constraint programming techniques with the solver choco.
 - Branching technique: Limited Discrepancy Search LDS (Harvey and Ginsberg ,1995)
 Parameter: the number of decision points at which we do not follow the heuristic (discrepancies).
 - Introduction of a tabu list in the LNS technique.

Plan

- 1. Context and problem description
- 2. Metaheuristics
- 3. Column Generation / Branch and Bound
- 4 Results
- 5. Conclusions and perspectives

Set partitionning solution mechanism

Subproblem solution techniques

- Dynamic programming: ESPRC (Feillet et al, 2004)
 - -ressources: cost, load, time of visit
- Tabu search:
 - -neighborhoods: add, withdraw of site, exchanges, site moves
 - finish with dynamic programming
- Constraint programming (Rousseau et al, 2002)
 - -variables: predecessors, successors, time of visit, vehicule load
 - -Constraints: TW, vehicule load, sub cycles forbidden
- Constraint programming with global constraint (Rousseau et al, 2002)
 - -variables: predecessors, successors, time of visit
 - Constraints: same + cumulative constaint for vehicule load (Aggoun & Beliceanu, 1993)

Plan

- 1. Context and problem description
- 2. Metaheuristics
- 3. Column Generation / Branch and Bound
- 4 Results
- 5. Conclusions and perspectives

Instances

- Based on Solomon's instances for VRPTW
- •1848 instances of 25 sites for metaheuristics
- 108 instances of 5 sites (« exact method »)
- 96 instances of 6 sites (« exact method »)

1848 Instances of 25 sites

- Based on Solomon instances for the VRPTW: 25 sites.
- Inventory management: generation of the missing values.
- Size of the sites: small, average and big.
- Generation of 11 categories of instances with different repartitions of store sizes.
- 168 samples in each categorie 1848 samples sum-total

Name	% small	% average	% big
A	100	0	0
В	0	100	0
C	0	0	100
D	34	33	33
E	5	25	70
F	25	25	50
G	50	25	25
Н	70	25	5
1	25	50	25
J	25	70	5
K	5	70	25

- Solomon Instances: R1, R2, C1, C2, RC1, RC2 (56 instances).
 - 56 instances have fix demand depending on the size of the site.
 - 56 instances have Gaussian distribution demand: average = fix demand and deviation = 5.
 - 56 instances have Gaussian distribution demand: average = fix demand and deviation = 15.
- In total 56 × 3 instances for each categorie.

Instances characteristics

	Petit site	Grand site	Très Grand site
Capacité Stockage en nb palettes pleines	50	100	150
Demande	20	40	80
Journalière en nb produits	loi normale : $\mu = 20 \mid \sigma = 5$	loi normale : $\mu = 40 \mid \sigma = 5$	loi normale : $\mu = 80 \sigma = 5$
	loi normale : $\mu = 20 \sigma = 15$	loi normale : $\mu = 40 \sigma = 15$	loi normale : $\mu = 80 \sigma = 15$
Taux de retour journalier en nb produits	2	4	8
Stock initial palettes vides	5	10	20
Stock initial produit retour	2	4	8

Results : Classical GRASP

- •Just in time:
 - -improvement of heuristic methods by 3,5% [2,9 to 4,3% depending of instance category]
 - -Better results than heuristics on 83% of instances
- policy with storage:
 - improvement of heuristic methods by 4,5%
 [3,4 to 5% depending of instance category]
 -Better results than heuristics on 90% of instances
 - no significant differences between categories of instar
 - just in time vs storage:
 - depends on ratio on storage vs transport cost!
 - Split delivery: depends on fixed costs of tours!

Classical GRASP

•

• Just in time: Comparison of the results obtained with different size of candidates list with classical GRASP

	as.	Size: 3		- 600	5	Size; 5	99
Average	Average	≠ costvs	$\neq \text{time vs}$	Average	Average	$\neq \cot vs$	≠ time vs
1500	e iii	beuristics	heuristics	cost	Eme Eme	beuristics	heuristics
2814650	2598	-3.5 %	× 142	2 842 621	257.s	-2.5 %	171 ×

 With inventory: Comparison of the results obtained with different size of candidates list with classical GRASP

	ąs	en 18	9:	=1	35	Size: 5	
Average	Average	sv teor ≠	sv amit ≠	Average	Average	≠ cost vs	≠ time vs
tsoo	ime	beuristics	heuristics	cost	time	heuristics	heuristics
2714 059	2.58 8	-45%	$601 \times$	2736838	8 LST	-3,7%	6£1 ×

Results : Hybrid GRASP

- •works only on instances with small TW (363 instances)
- •just in time: worst results than Classical GRASP by 5,5% on average
 - •version with storage: worst results than Classical GRASP by10,5% on average
- •Classical GRASP usually, but not always better than Hybrid GRASP

Hybrid GRASP

Only on instances with small time windows (363 instances).

Just in Time

andidate s List size	time for each iteration LNS	LDS	Variable choice	≠ Classical GRASP (cost)
95	< 3 min 70 ×	(E)	minDomain ¹	%9 4
855	< 3 min 70 ×	િક	minDomain	+5,5 %

With inventory

Candidates List size	time for each iteration LNS	LDS	Variable choice	≠ Classical GRASP (cost)
ď	< 3 min 100 ×	en.	minDomain	+11,7%
3	× 001 www ç >	m	minDomain	+10,7 %
e	< 5 min 100 ×	90	minDomain	+10.5 %
£	< 5 min 100 ×		minDomain	+12,2 %
6	< 5 min 100 ×	c	DomOverDeg 2	+13 %

A heuristic selecting the variables with smallest domain

²A beunstic ælecting the variables with smallest ratio (domainSize / degree) (the degree of a variable is the number of constraints linked to it)

Repartition of best solutions

	Just in time	storage
Classical heuristics	1%	0
Classical GRASP	91%	99%
Hybrid GRASP	8%	1%

Split delivery option

Pour l'option de partage

		Amélio.	GRASP		
Version	Nb min avec partage	Nb min sans partage	Nb min avec partage	Nb min sans partage	
CC = 2000 juste à temps	34 %	83 %	36%	64 %	
CC = 20000 juste à temps	56 %	75 %	39 %	61%	
CC = 200000 juste à temps	61 %	69 %	47 %	53 %	
CC = 2000 avec stockage	59 %	74 %	76 %	24 %	
CC = 20000 avec stockage	59 %	71 %	32 %	68 %	
CC = 200000 avec stockage	64 %	66 %	52 %	48 %	

Comparaison des différentes versions selon les coûts de création d'une toumée

Results: Column generation + B.&B.

•Just in time:

- -B.&B always yields an integer solution with small gap
- -6 sites vs. 5 sites instances: computing time multiplied by 3 to 15 depending on sub problem method
- -Best sub problem solution method :dynamic Programming (number of solutions within 1 hour)
- -But 7,5% of 5 sites instances find a solution only with CP within 1 hour

- Policy with storage:
- -B&B not relevant: integer solution found only in 22% of cases where relaxed solution obtained
 - 6 sites vs. 5 sites instances: computing time multiplied by 2 to 19 depending on SP method
 - Best sub problem solution method :dynamic Programming (number of solutions within 1 hour)
 - But 90% of instances solved with the CP techniques

Just in time: Comparison of techniques

Les différentes techniques et les avantages des méthodes hybrides

Basée sur les méthodes exactes

Résultats obtenus en juste à temps (processeur Pentium IV à 2,8 GHz)

		5 s	ites			6 s	ites	
	ProgDyn	Tabou	Ppc	PpcCumu	ProgDyn	Tabou	Ppc	PpcCumu
Nombre problèmes	93/108	100/108	70/108	49/108	71/96	61/96	34/96	28/96
résolus	86%	93%	65%	45%	74 %	64 %	35 %	29%
Temps moyen obtention solution relaxée	30 s	14 s	727 s	144 s	475 s	61 s	60 s	343 s
Nombre solutions	93/108	100/108	70/108	49/108	71/96	61/96	34/96	28/96
entière obtenue	86%	93%	65%	45%	74%	64%	35%	30%
Temps moyen obtention solution entière	8 s	0,1 s	1,7 s	35 s	244 s	24 s	8 s	185 s
Nombre colonnes	768	547	163	289	924	728	196	332
Nombre sol	79/93	55/100	31/70	21/49	54/71	29/61	9/34	8/28
entières = sol relaxées	85 %	55 %	44 %	43%	76 %	48 %	26 %	29 %
≠ sol entières sol relaxées	0,3 %	1,3 %	5%	4 %	1,7%	3 %	11 %	4,5%

Plan

- 1. Context and problem description
- 2. Metaheuristics
- 3. Column Generation / Branch and Bound
- 4 Results
- 5. Conclusions and perspectives

Conclusions

✓ Problem:

- •We have proposed a « realistic »framework for multiperiodic routing with reverse flows and a variety of management policies
- Tests made on a large number of random data sets with different characteristics

✓ Techniques:

- GRASP method improves classical heuristics for 25 sites instances (with more computing time)
- Column Generation + B.&B. find solutions close to optimum for small instances for Just in Time policy
- Classical methods for Grasp and column generation usually better than hybrid methods, but not always

Perspectives

✓ Problem:

- Possible extensions
- Tests on other random instances : Cordeau et al. (1997)
- Tests on real application

✓ Techniques

- classical heuristics: automatically generate best combination
- develop other metaheuristics than GRASP
- develop more efficient CP techniques : global constraint for GRASP
- •« exact methods » : develop Branc and Price Technique for policy with storage
- •Implement valid inequalities...