
 1

USER’S MANUAL FOR

VECTFIT

version 2.1 for Matlab

written by :
Bjørn Gustavsen

SINTEF Energy Research
N-7465 Trondheim

NORWAY

 E-mail: bjorn.gustavsen@sintef.no
 Fax: +47 73597250

Download site:
http://www.energy.sintef.no/Produkt/VECTFIT/index.asp : VFIT2.zip

Last revised : 27.10.2005
Total number of pages: 30

1. INTRODUCTION.. 2

2. PROGRAM FILES.. 3

3. COMPUTING REQUIREMENTS .. 3

4. ROUTINE DESCRIPTION .. 4
4.1 Purpose .. 4
4.2 Limitations .. 4
4.3 Specification... 5
4.4 Specification of initial poles... 7
4.5 Weighting ... 8
4.6 Iterations .. 9
4.7 Recommended parameter settings.. 9
4.8 Ill-conditioning... 10
4.9 Speed-issues ... 10
4.10 Auxiliary routines... 11

5. TUTORIAL EXAMPLE (ex1.m) ... 12

6. OTHER EXAMPLES.. 16
ex2.m – Fitting a vector of two rational elements... 16
ex3.m – Fitting a measured frequency response (transformer) ... 17
ex4a.m –Fitting a single column (Network equivalent) .. 18
ex4b.m – Columnwise fitting, improving initial poles.. 20
ex4c.m – Matrix fitting.. 22
ex4d.m – Reducing the likelihood of passivity violations .. 24
ex5.m – Transmission line modelling ... 27
ex6.m – Fitting a time delay.. 29

7. REFERENCES... 30

 2

1. INTRODUCTION

This guide describes version 2.1 of the Matlab function vectfit for calculating a rational
approximation of a given frequency domain response. It is intended to replace the previous
version 1.0 (2000) by introducing significant improvements, including

• Option for relaxation of the non-triviality constraint in the vector fitting algorithm
[2]. This often gives faster and more reliable convergence, in particular when fitting
noisy responses

• Option for using sparse computations, enabling solution of larger systems.
• Option for usage of Normal Equations, enabling faster computations

vectfit and VF are abbreviations for "Vector Fitting". A thorough description of the
method and its characteristics is given in [1]. Vector Fitting has since its first introduction in
1999 become a widely applied tool for frequency domain identification of linear systems,
thanks to its robust and efficient formulation, and enforcement of guaranteed stable poles.
Applications include

• Simulation of electromagnetic transients in power systems: Wide band modelling of
transmission lines/cables, power transformers, instrument transformers, and
frequency dependent network equivalents (FDNE). Vector fitting is used for pole
identification of the phase domain transmission line models in EMTDC (Manitoba
HVDC Research Centre) and EMTP-RV (IREQ/Hydro-Quebec).

• Signal integrity simulation of microwave systems: Modelling of systems, devices and
transmission lines. Vector fitting is used in the SIDEA software by Optimal
Corporation, in the Analog Office software of Applied Wave Research Inc.

• Specialized areas: Shielding analysis (EMC), antenna design, Green’s functions
representation.

To look for specific applications, check the download site (item “References”) at
http://www.energy.sintef.no/Produkt/VECTFIT/index.asp, or better, do a GoogleScholar
search from http://scholar.google.com/

The function to be fitted can be either a single frequency response, or a vector of frequency
responses. In the latter case, all elements in the vector will be fitted using a common pole set.
This vector fitting capability gives powerful means of identifying models of multi-terminal
systems, via columnwise fitting or even simultaneous fitting of the entire matrix. The
resulting model can be expressed in either state-space form or pole-residue form.

The vector fitting algorithm replaces an initial set of poles with an improved set of poles
using a pole relocation method based on least squares (LS) approximation of two linear
problems [1]. The new poles can be reused as initial poles in an iterative procedure.
Convergence is normally achieved in 2-3 iterations. (A single call to vectfit gives a single
iteration). This procedure does not suffer from the ill-conditioning problems encountered by
polynomial-based fitting methods.

Note: The program code is in the public domain and can be freely used by anyone. We only
ask that if the program code is used in a scientific work, or in a commercial program, then the
method should be called Vector Fitting, and reference should be made to the following :
B. Gustavsen and A. Semlyen, “Rational approximation of frequency domain responses by
vector fitting”, IEEE Trans. Power Delivery, vol. 14, no. 3, July 1999, pp. 1052-1061.

 3

2. PROGRAM FILES

The package VFIT2.zip contains the following 19 files:

vectfit2_userguide.pdf %This document
vectfit_paper.pdf %Paper describing vector fitting
Relaxed_VF.pdf %Paper describing relaxation of vector fitting

vectfit2.m %The fitting routine (vector fitting)
tri2full.m %Auxiliary routine (used in ex4c.m, ex4d.m)

ss2pr.m %Auxiliary routine (used in ex4c.m, ex4d.m)

ex1.m %Fitting a vector of 1 rational function
ex2.m %Fitting a vector of 2 rational functions
ex3.m %Fitting a single element (transformer measurement)
ex4a.m %Fitting a single column (network equivalent)
ex4b.m %Columnwise fitting (network equivalent)
ex4c.m %Matrix fitting (network equivalent)
ex4d.m %Matrix fitting with passivity “precautions” (network equivalent)
ex5.m %Fitting a vector of 5 elements (transmission line modeling)
ex6.m %Fitting a pure time delay

03pk10.txt %data file for ex3.m
fdne.txt %data file for ex4a.m – ex4d.m
h.txt %data file for ex5.m
w.txt %data file for ex5.txt

ex1.m, ex2.m, ex3.m, ex4a.m, ex4b.m, ex4c.m,ex5.m and ex6.m are Matlab
examples described in this guide.

3. COMPUTING REQUIREMENTS

The computer code has been tested on Matlab v6.5.0, v7.0.1, and v7.1.0.

No toolboxes are needed.

 4

4. ROUTINE DESCRIPTION

4.1 Purpose

vectfit approximates a frequency response f(s) (generally a vector) with a rational
function, expressed in the form of a sum of partial fractions:

1

()
N

m

m m

s s
s a=

≈ + +
−∑ cf d e (1)

where terms d and e are optional. cm and am are the residues and poles, respectively. If f(s) has
Nc elements, all bold quantities in (1) have dimension (Nc ×1). All poles {am} are stable (lie in
the left half plane). The model as returned by vectfit is for convenience expressed as
parameters of a state-space model, i.e.

 1() ()s s s−≈ − + +f C I A b d e (2)

The user can choose between a model with real-only parameters or a model with real and
complex conjugate parameters, depending on input parameter VF.complex_ss.

 VF.complex_ss =1 VF.complex_ss =0
A Diagonal, complex Block-diagonal, real (one 2x2 block for each complex pair)
b Column vector of 1’s Column vector of 1’s, 2’s and 0’s
C Full, complex Full, real
d Column vector, real Column vector, real
e Column vector, real Column vector, real

Note:
It is assumed that f(s) is complex conjugate. Only positive frequency samples should be
specified.

4.2 Limitations

• The initial poles must be distinct. Otherwise, the solution is not unique and
failure results when using the normal equations option (VF.NE=1).

• The response to be fitted cannot have multiple poles.

 5

 4.3 Specification

function [SER,poles,rmserr,fit]=vectfit2(f,s,poles,weight,VF)
%
% ===
% = Vector Fitting =
% = Version 2.1 =
% = Last revised: 27.10.2005 =
% = Bjorn Gustavsen =
% = SINTEF Energy Research, N-7465 Trondheim, NORWAY =
% = bjorn.gustavsen@sintef.no =
% = http://www.energy.sintef.no/Produkt/VECTFIT/index.asp =
% ===
%
% PURPOSE : Approximate f(s) with a state-space model
%
% f(s)=C*(s*I-A)^(-1)*B +D +s*E
%
% where f(s) is a singe element or a vector of elements.
% When f(s) is a vector, all elements become fitted with a common
% pole set.
%
% INPUT :
%
% f(s) : function (vector) to be fitted.
% dimension : (Nc,Ns)
% Nc : number of elements in vector
% Ns : number of frequency samples
%
% s : vector of frequency points [rad/sec]
% dimension : (1,Ns)
%
% poles : vector of initial poles [rad/sec]
% dimension : (1,N)
%
% weight: the rows in the system matrix are weighted using this array. Can be used
% for achieving higher accuracy at desired frequency samples.
% If no weighting is desired, use: weight=ones(1,Ns).
%
% Two dimensions are allowed:
% dimension : (1,Ns) --> Common weighting for all vector elements.
% dimension : (Nc,Ns)--> Individual weighting for vector elements.
%
% VF.relax==1 --> Use relaxed nontriviality constraint
% VF.relax==0 --> Use nontriviality constraint of "standard" vector fitting
%
% VF.kill=0 --> unstable poles are kept unchanged
% VF.kill=1 --> unstable poles are deleted
% VF.kill=2 --> unstable poles are 'flipped' into the left half plane
% (kill=2 is the recommended choice)
%
% VF.asymp=1 --> Fitting with D=0, E=0
% VF.asymp=2 --> Fitting with D~=0, E=0
% VF.asymp=3 --> Fitting with D~=0, E~=0
%
% VF.spy1=1 --> Plotting, after pole identification (A)
% figure(3): magnitude functions
% cyan trace : (sigma*f)fit
% red trace : (sigma)fit
% green trace : f*(sigma)fit - (sigma*f)fit
%
% VF.spy2=1 --> Plotting, after residue identification (C,D,E)
% figure(1): magnitude functions
% figure(2): phase angles
%
% VF.logx=1 --> Plotting using logarithmic absissa axis
%
% VF.logy=1 --> Plotting using logarithmic ordinate axis
%
% VF.errplot=1 --> Include deviation in magnitude plot
%
% VF.phaseplot=1 -->Show plot also for phase angle
%
%
% VF.skip_pole=1 --> The pole identification part is skipped, i.e (C,D,E)
% are identified using the initial poles (A) as final poles.

 6

%
% VF.skip_res =1 --> The residue identification part is skipped, i.e. only the
% poles (A) are identified while C,D,E are returned as zero.
%
% VF.use_normal=1 -->Solving Least Squares (LS) systems using the Normal Equations.
% =0 -->Solving LS systems using QR decomposition
%
% VF.use_sparse=1 -->Sparsity is used for formulating and solving LS system of the
% pole identification problem.
% =0 -->Full arithmetic is used (not very useful).
%
% VF.cmplx_ss =1 -->The returned state-space model has real and complex conjugate
% parameters. Output variable A is diagonal (and sparse).
% =0 -->The returned state-space model has real parameters only.
% Output variable A is square with 2x2 blocks (and sparse).
%
% OUTPUT :
%
% fit(s) = C*(s*I-(A)^(-1)*B +D +s.*E
%
% SER.A(N,N) : A-matrix (sparse). If cmplx_ss==1: Diagonal and complex.
% Otherwise, square and real with 2x2 blocks.
%
% SER.B(N,1) : B-matrix. If cmplx_ss=1: Column of 1's.
% If cmplx_ss=0: contains 0's, 1's and 2's)
% SER.C(Nc,N) : C-matrix. If cmplx_ss=1: complex
% If cmplx_ss=0: real-only
% SERD.D(Nc,1) : constant term (real). Is non-zero if asymp=2 or 3.
% SERE.E(Nc,1) : proportional term (real). Is non-zero if asymp=3.
%
% poles(1,N) : new poles
%
% rmserr(1) : root-mean-square error of approximation for f(s).
% (0 is returned if skip_res==1)
% fit(Nc,Ns): Rational approximation at samples. (0 is returned if
% skip_res==1).
%
%
% APPROACH: The identification is calculated using Vector Fitting, see
% reference in text box below. A modification has been introduced in v2 which
% makes convergence substantially faster and more reliable than in v1, see
% B. Gustavsen, "Improving the pole relocating properties of Vector
% Fitting", IEEE Trans. Power Delivery, accepted.
%
%
%**
% NOTE: This program is in the public domain and may be used by anyone. If the *
% program code (or a modified version) is used in a scientific work, or *
% in a commercial program, then reference should be made to the following:*
% B. Gustavsen and A. Semlyen, "Rational approximation of frequency *
% domain responses by Vector Fitting", IEEE Trans. Power Delivery, *
% vol. 14, no. 3, pp. 1052-1061, July 1999. *
%**

 7

4.4 Specification of initial poles

For functions with resonance peaks, the initial poles should be complex conjugate with weak
attenuation, with imaginary parts β covering the frequency range of interest. The weak
attenuation assures that the LS problem to be solved has a well-conditioned system matrix,
and the distribution of the pairs over the frequency range reduces the probability that poles
need to be relocated a long distance (avoiding need for many iterations).

The pairs should be chosen as follows :

 1,n na j a jα β α β+= − + = − − (2)

where

 100/βα = (3)

Typically, β is specified to be linearly spaced over the frequency range of interest
(recommended choice). In some instances, a logarithmic distribution gives faster
convergence. The selection of initial poles is demonstrated in several of the example m-files.
Code sections for producing initial poles would look like this (w is the frequency given in
rad/sec).

N=20; %Order of approximation

%Complex conjugate pairs, linearly spaced:
bet=linspace(w(1),w(end),N/2);
poles=[];
for n=1:length(bet)
 alf=-bet(n)*1e-2;
 poles=[poles (alf-i*bet(n)) (alf+i*bet(n))];
end

% Complex conjugate pairs, logarithmically spaced :
bet=logspace(log10(w(1)),log10(w(end)),N/2);
poles=[];
for n=1:length(bet)
 alf=-bet(n)*1e-2;
 poles=[poles (alf-i*bet(n)) (alf+i*bet(n))];
end

When fitting very smooth functions, one may also use real initial poles, for instance:

%Real poles poles, logarithmically spaced :
poles=-2*pi*logspace(log10(w(1)),log10(w(end)),N);

 8

4.5 Weighting

Weighting is a powerful way of controlling the accuracy of the resulting approximation. This
is achieved via array weight. Two dimensions are permitted:

1. weight(Nc,Ns)
2. weight(1,Ns)

where
 Nc: number of elements to be fitted (= n.o. rows in array f)
 Ns: number of frequency samples (= n.o. columns in array f)

The first dimension option allows to specify independent weighting for the elements of f(s),
while the second dimension option is intended for specifying a common weighting.

When modelling systems/devices that can interact with the remainder of the system, error
magnifications can easily result when the impedance of the connected network is very
different from the impedance used in the “measurement” (short circuit in admittance
representation). The likelihood of large magnifications can be avoided by appropriate
weighting, see Table 6.1.

Table 4.1 Some useful weighting schemes
Scheme Independent weighting Common weighting
1)
No
weight

weight=ones(Nc,Ns); weight=ones(1,Ns);

2)
Strong
inverse
weight

weight=1./(abs(f));

weight=zeros(1,Ns);
for k=1:Ns
 weight(1,k)=1/norm(f(:,k));
end

3)
Weaker
inverse
weight

weight=1./sqrt(abs(f));

weight=zeros(1,Ns);
for k=1:Ns
 weight(1,k)=1/sqrt(norm(f(:,k)));
end

The inverse weighting schemes in Table 4.1 gives a strong weight on elements in f(s) where
they are small. For instance, if f(s) is a scalar, weight scheme 2) in Table 4.1 results in a high
weight where the magnitude of f(s) is small, thus tending to minimize the relative deviation
instead of the absolute deviation. When fitting a vector, higher weight is also placed on small
elements than on large elements.

One difficulty with using a the inverse weight is when f(s) contains noise since the noise
content relative to the signal strength tends to be high where elements are small. It is therefore
a chance that VF tries to fit the noise. This problem can be alleviated by using a weaker
inverse weight, for instance scheme 3) in Table 4.1.

It is remarked that for pure transfer function modelling (such as the propagation function in
transmission line modelling), one should normally not use any weight (unless a certain
frequency band is very important).

Also, note that the sampling effectively represents a weighting: Increasing the sampling
density in some frequency band makes the LS solver place more weight on this band.

 9

4.6 Iterations

To improve accuracy, vectfit may be called again with the new poles (kept in poles)
used as (new) initial poles. This is typically done as follows

for iter =1:Niter
 [SER,poles,rmserr,fit]=vectfit2(f,s,poles,weight,VF)
end

4.7 Recommended parameter settings

Parameter Recommended

setting

Comment

VF.relax 1 Use vector fitting with relaxed nontriviality constraint
VF.kill 2 Enforces stable poles by pole flipping
VF.spy1 0 Will not plot the fitting result associated with the first

stage in VF (pole identification).
VF.skip_pole 0 Will not skip the calculation of poles.

Using “1” is useful when i) poles have been obtained
by some other means/programs, ii) refitting tafter
throing out high-frequency poles (see comment for
ex4d.m)

VF.skip_res 0 Will not skip the calculation of C,D,E. Using “1” can
be useful for increasing computation speed, see
explanation in Section 4.8)

VF.use_normal 1 Will use Normal Equations, which gives fast
computations. Use “0” if ill-conditioning is a problem
(will solve using QR decomp.).

VF.use_sparse 1 Sparse calculations are used for the pole identification
part. Gives faster computations and reduced memory
requirements when fitting vectors. When fitting pure
scalars, using “0” may give slightly faster
computations.

 10

4.8 Ill-conditioning

In some situations the call to vectfit2.m may result in a warning message
Warning: Matrix is close to singular or badly scaled.
 Results may be inaccurate. RCOND = 1.059299e-017.

This essentially means that the solution is not well defined; it usually appears when fitting
with very high orders so that the fitting error starts approaching machine precision. It can also
happen when poles become very close.

Normally, this message has no practical consequences (use 'warning off' to get rid of it). An
exception is when you are creating a lumped network equivalent as you may get some
extremely large or extremely small circuit elements. In that case, one should consider to
reduce the order.

4.9 Speed-issues

• When the number of iterations to be done by VF is known in advance, one can reduce
the computation time by specifying VF.skip_res=1, which results in that the
residue calculations are skipped. Make sure that VF.res_skip is set to 0 before the
last iterations, for instance

 VF.skip_res=1;
 for iter=1:Niter
 if iter==Niter, VF.skip_res=0;end
 [SER,poles,rmserr,fit]=vectfit2(f,s,poles,weight,VF);
 end

• With VF.spy2=1, plots are produced for the magnitude functions and the phase angles
(when VF.skip_res=0). The computation time can be reduced by skipping
plotting, which is achieved by setting VF.spy2=0.

• With parameter VF.legend=1, the produced plots will include legends. Unfortunately,

the inclusion of legends can be very time consuming. This is particularly a problem
when fitting scalars using many iterations as the legends can dominate the
computation time. This problem is avoided by setting VF.legend=0. Also, when
producing plots during iterations, one should only include legends for the last
iteration, for instance

 VF.legend=0;
 for iter=1:Niter
 if iter==Niter, VF.legend=1; end
 [SER,poles,rmserr,fit]=vectfit2(f,s,poles,weight,VF);
 end

• When fitting long vectors, the computation time per iteration can become

considerable. In such cases one can reduce the total computation time by calculating
an improved set of initial poles. This can be achieved by computing a weighted (or

 11

unweighted) sum of the elements in the vector. This is demonstrated in examples
ex4b.m–ex4d.m.

4.10 Auxiliary routines

The following routines are included for convenience:

ss2pr.m

This routine converts a state-space model into a pole-residue model.
Note: it only works correctly when the state-space model has been fitted with a common pole
set.

Example:
[R,a]=ss2pr(A,B,C);

R is a 3 dimensional vector holding the residue matrices, a is a column vector holding the
poles. For a system with Nc terminals fitted with N common poles, the dimensions are:

A(Nc*N,Nc*N)
B(Nc*N,Nc)
C(Nc,Nc*N)

R(Nc,Nc,N)
A(N,1)

The pole-residue formulation is particularly useful when the model is to be realized in the
form of a lumped network. Usage of the routine is demonstrated in example ex4c.m.

tri2full.m

This routine is useful when fitting symmetrical matrices (e.g. Y) using a common pole set.
Because of symmetry, it is sufficient to fit only the lower triangle of Y (which saves
computation time and memory over fitting the full matrix). The resulting state-space model
can afterwards be modified to include the lower triangle by a call to tri2full.m.

[SER]=tri2full(SER);

Usage of the routine is demonstrated in example ex4c.m.

 12

5. TUTORIAL EXAMPLE (ex1.m)

Consider the frequency response

 5.0
)500100(

4030
)500100(

4030
5

2)(+
−−−

−
+

+−−
+

+
+

=
js

j
js

j
s

sf

Assume that we know)(sf only as a discrete function. In this case)(sf is rational, so a
good fitter should certainly be able to find a very accurate approximation.

The following Matlab program does the job:

% ex1.m
%
% Fitting an artificially created frequency response (single element)
%
% -Creating a 3rd order frequency response f(s)
% -Fitting f(s) using vectfit2.m
% -Initial poles: 3 logarithmically spaced real poles
% -1 iteration
%
% This example script is part of the vector fitting package (v2.0)
% Last revised: 17.10.2005.
% Created by: Bjorn Gustavsen.
%
clear all

%Frequency samples:
Ns=101;
s=2*pi*i*logspace(0,4,Ns);

disp('Creating frequency response f(s)...')
for k=1:Ns
 sk=s(k);
 f(1,k) = 2/(sk+5) + (30+j*40)/(sk-(-100+j*500)) ...
+ (30-j*40)/(sk-(-100-j*500)) + 0.5;
end

%Initial poles for Vector Fitting:
N=3; %order of approximation
poles=-2*pi*logspace(0,4,N); %Initial poles

weight=ones(1,Ns); %All frequency points are given equal weight

VF.relax=1; %Use vector fitting with relaxed non-triviality constraint
VF.kill=2; %Enforce stable poles
VF.asymp=3; %Include both D, E in fitting
VF.skip_pole=0; %Do NOT skip pole identification
VF.skip_res=0; %Do NOT skip identification of residues (C,D,E)
VF.use_normal=1; %Use Normal Equations instead of QR decomp.
VF.use_sparse=1; %Use sparse computations (pole identification)
VF.cmplx_ss=1; %Create complex state space model

VF.spy1=0; %No plotting for first stage of vector fitting
VF.spy2=1; %Create magnitude plot for fitting of f(s)
VF.logx=1; %Use logarithmic abscissa axis
VF.logy=1; %Use logarithmic ordinate axis
VF.errplot=1; %Include deviation in magnitude plot
VF.phaseplot=1; %Also produce plot of phase angle (in addition to
 %magnitiude)
VF.legend=1; %Do include legends in plots

disp('vector fitting...')
[SER,poles,rmserr,fit]=vectfit2rev(f,s,poles,weight,VF);
disp('Done.')

 13

disp('Resulting state space model:')

A=full(SER.A)
B=SER.B
C=SER.C
D=SER.D
E=SER.E
rmserr

Executing the program gave the following results :

>> ex1
Creating frequency response f(s)...
vector fitting...
Done.
Resulting state space model:

A =
 -5.0000e+000 0 0
 0 -1.0000e+002 +5.0000e+002i 0
 0 0 -1.0000e+002 -5.0000e+002i

B =
 1
 1
 1

C =
 2.0000e+000 3.0000e+001 +4.0000e+001i 3.0000e+001 -4.0000e+001i

D =
 5.0000e-001

E =
 8.4466e-017

rmserr =
 4.8426e-011

Thus, the parameters have been accurately identified and so the fitting is nearly perfect (root-
mean-square error smaller than 1E–10).

In addition, two figures have been created on the screen:
• Figure(1) shows the magnitude of)(sf (cyan) and of the approximation (dashed

magenta), and the magnitude of the complex devation (green).
• Figure(2) shows the phase angle of)(sf (cyan) and of the approximation (dashed

magenta).

The two figures are shown on the next page.

You should try this yourself! Experiment with the plotting options (VF.spy2, VF.logx,
VF.logy, VF.errplot, VF.phaseplot) .

 14

10
0

10
1

10
2

10
3

10
4

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Frequency [Hz]

M
ag

nit
ud

e
[p

.u
.]

Approximation of f

Original
VF
Deviation

Fig. 5.1 Magnitude plot (figure(1))

10
0

10
1

10
2

10
3

10
4

−30

−20

−10

0

10

20

30

40

Frequency [Hz]

Ph
as

e
an

gle
 [d

eg
]

Approximation of f

Original
VF

Fig. 5.2 Phanse angle plot (figure(2))

 15

In the example (ex1.m), the parameter specification included
VF.complex_ss=1

Changing this value to “0” produces a state space model with real-only variables. With this
modification, running ex1.m will produce:

>> ex1

Creating frequency response f(s)...

vector fitting...

Done.

Resulting state space model:

A =

 -5.0000e+000 0 0

 0 -1.0000e+002 5.0000e+002

 0 -5.0000e+002 -1.0000e+002

B =

 1

 2

 0

C =

 2.0000e+000 3.0000e+001 4.0000e+001

D =

 5.0000e-001

E =

 8.4466e-017

rmserr =

 4.8426e-011

 16

6. OTHER EXAMPLES

ex2.m – Fitting a vector of two rational elements
This program constructs an artificial scalar function)(sf having two elements from
predefined partial fractions.
• 18 complex starting poles are used
• vectfit2 is called 3 times with the new poles used as starting poles
• Residue calculation is skipped, except for in the last (third) iteration
• A real-only state-space model is created

>> ex2
vector fitting...
 Iter 1
 Iter 2
 Iter 3

rms =
 0
 0
 9.0107e-012

 17

ex3.m – Fitting a measured frequency response (transformer)
• The measured response of a transformer)(sf (scalar) is read from file.
• 6 complex starting poles are used (3 complex pairs)
• vectfit2 is called 5 times with the new poles reused as starting poles
Running ex3.m gives the result in Fig. 6.1.

Fig. 6.1 Magnitude function (N=6, no weight)

Try increasing the order of the approximation to 30 (put N=30 on line #38). Also, try deleting
the comment character '%' on line #49. The latter has the effect that)(sf becomes weighted
with the inverse of its magnitude. This is seen to cause the deviation to become small where
the magnitude is small, meaning that we are minimizing the relative deviation instead of the
absolute deviation. The effect on the magnitude function is shown in Fig. 6.2.

Fig. 6.2 Magnitude function (N=30, weighting with inverse of magnitude)

0.5 1 1.5 2 2.5 3 3.5 4

x 10
6

10
−4

10
−3

10
−2

10
−1

10
0

Frequency [Hz]

M
ag

nit
ud

e
[p

.u
.]

Approximation of f

Original
VF
Deviation

0.5 1 1.5 2 2.5 3 3.5 4

x 10
6

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency [Hz]

M
ag

nit
ud

e
[p

.u
.]

Approximation of f

Original
VF
Deviation

 18

ex4a.m –Fitting a single column (Network equivalent)
This program reads from file a calculated terminal admittance matrix Y of a power system
distribution system (fdne.txt). The distribution system has two 3-phase buses as terminals
(A, B). The 6×6 admittance matrix Y with respect to these terminals has been calculated in
the frequency range 10 Hz – 100 kHz.

Fig. 6.3 Power system distribution system

ex4a.m fits the first column of Y as follows
• f(s) contains Nc=6 elements
• Ns=300 frequency samples
• N=50 initial poles (complex pairs)
• 5 iterations for the fitting of f(s)
• Weighting with inverse of the square root of the magnitude of f(s)
• Plots are updated in each iteration, legends are added after final iteration

The command window dialogue:

>> ex4a
Reading data from file ...
-----------------S T A R T--------------------------
*****Fitting column...
 Iter 1
 Iter 2
 Iter 3
 Iter 4
 Iter 5
-------------------E N D----------------------------
Elapsed time is 6.540000 seconds.
>>

0.667 0.389 0.991 1.331 0.914 0.110 0.462

0.420
0.700 0.600

1.045
0.112

0.550

0.250

1.000

0.555
0.195

0.700

Overhead line
Underground cable

2.0

A

B

0.667 0.389 0.991 1.331 0.914 0.110 0.462

0.420
0.700 0.600

1.045
0.112

0.550

0.250

1.000

0.555
0.195

0.700

Overhead line
Underground cable
Overhead line
Underground cable

2.0

A

B

 19

The produced plots (magnitude, phase angle)

1 2 3 4 5 6 7 8 9 10

x 10
4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Frequency [Hz]

M
ag

nit
ud

e
[p

.u
.]

Approximation of f

Original
VF
Deviation

Fig. 6.4 Magnitude plot

1 2 3 4 5 6 7 8 9 10

x 10
4

−2500

−2000

−1500

−1000

−500

0

500

Frequency [Hz]

Ph
as

e
an

gle
 [d

eg
]

Approximation of f

Original
VF

Fig. 6.5 Phase angle plot

 20

ex4b.m – Columnwise fitting, improving initial poles
We now calculate a complete state-space model by fitting Y column-by-column. The state
space model of the different columns are combined into a complete model.

Excerpt from code:

for col=1:N

 [A,B,C,D,E,rmserr,fit]=vectfit2(f,s,A,weight,VF);

 %Stacking the column contribution into complete state space model:
 AA=blkdiag(AA,A);
 BB=blkdiag(BB,B);
 CC=[CC C];
 DD=[DD D];
 EE=[EE E];

end

For a three-terminal system the result would have looked as follows:

1

2

3

0 0
0 0
0 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A
A A

A
,

1

2

3

0 0
0 0
0 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

b
B b

b
, []1 2 3=C C C C ,

 []1 2 3=D d d d , []1 2 3=E e e e

• 50 initial poles (complex pairs)
• The initial poles are improved on by fitting the (weighted) column sum of the first

column (5 iterations), before fitting the columns
• The columns are fitted independently (3 iterations)
• Weighting with inverse of the square root of the magnitude of f(s)
• For each column, residue calculation is skipped except for the last iteration
• At end of program, the result for all columns are gathered in single plot (figure(3))

The command window dialogue:
>> ex4b
Reading data from file ...
-----------------S T A R T--------------------------
****Improving initial poles by fitting column sum (1st column)...
 Iter 1
 Iter 2
 Iter 3
 Iter 4
 Iter 5
****Fitting column #1 ...
 Iter 1

 21

 Iter 2
 Iter 3
****Fitting column #2 ...
 Iter 1
 Iter 2
 Iter 3
****Fitting column #3 ...
 Iter 1
 Iter 2
 Iter 3
****Fitting column #4 ...
 Iter 1
 Iter 2
 Iter 3
****Fitting column #5 ...
 Iter 1
 Iter 2
 Iter 3
****Fitting column #6 ...
 Iter 1
 Iter 2
 Iter 3
-------------------E N D----------------------------
Elapsed time is 18.658000 seconds.
>>
During calculations, a magnitude plot is produced for the fitting of each column. At the end of
the program, a magnitude plot for all columns is produced:

Fig. 6.6 Magnitude plot (figure(3))

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Frequency [Hz]

All matrix elements

Original
VF
Deviation

 22

ex4c.m – Matrix fitting

In this example, all elements of Y are fitted with a common pole set. The computations
produce a state space model (A,B,C,D,E) plus a pole-residue model (a,R,D,E).

• The elements of the lower triangle of Y(which is symmetric) are stacked are stacked into

a single vector f(s). f(s) has 21 elements.
• 50 initial poles (complex pairs)
• The initial poles are improved on by fitting the (weighted) column sum (5 iterations)
• The column (f) is fitted using 3 iterations
• Weighting with inverse of the square root of the magnitude of f(s)
• The state space model (lower triangle) is converted into a state space model for the full Y

(using auxiliary routine tri2full.m)
• The state space model is converted into a pole-residue model (using auxiliary routine

ss2pr.m)

The command window dialogue:
>> ex4c
Reading data from file ...
-----------------S T A R T--------------------------
****Stacking matrix elements (lower triangle) into single column....
****Calculating improved initial poles by fitting column sum ...
 Iter 1
 Iter 2
 Iter 3
 Iter 4
 Iter 5
****Fitting column ...
 Iter 1
 Iter 2
 Iter 3
****Transforming model of lower matrix triangle into state-space
model of full matrix....
****Generating pole-residue model....
-------------------E N D----------------------------
Elapsed time is 14.432000 seconds.
>>

The resulting magnitude plot is shown in fig. 6.7. The accuracy is lower than in fig. 6.6,
because fitting with a common pole set is more constrained than using a separate pole set for
each column.

 23

Fig. 6.7 Magnitude plot

1 2 3 4 5 6 7 8 9 10

x 10
4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Frequency [Hz]

M
ag

nit
ud

e
[p

.u
.]

Approximation of f

Original
VF
Deviation

 24

ex4d.m – Reducing the likelihood of passivity violations

When a model is to be included as an interacting component in a time domain simulation,
passivity is an essential feature in order to guarantee a stable simulation. This requires that the
model satisfies the requirement:

 (Re{ ()}) 0eig s s> ∀Y (6.1)

At infinite frequency this results in that the eigenvalues of D must be positive (i.e. D is
positive definite – P.D.). In addition, the eigenvalues of E should be positive (although this is
not related to passivity of Y). Reference [3] shows that positivity can be enforced by post
processing as follows:

1. Set any negative eigenvalues to 0, giving Dmod, Emod
2. Subtract Dmod +sEmod from Y, giving Ymod.
3. Fit Ymod with D, E enforced to 0. This gives A,B,C
4. The state space model for Y is taken as matrices A,B,C,Dmod,Emod

Experience has shown hat large passivity violations tend to occur at frequencies outside the
frequency band used in the fitting process, particularly at high frequencies. Reference [4] has
suggested to improve on this by throwing out poles that are above the upper frequency limit
used in the fitting process.

Example ex4d.m shows one way of utilizing these ideas. The procedure is as follows:

1. Fit Y in the same way as in ex4c.m
2. Throw out all poles at frequencies above the upper band limit
3. Calculate Dmod, Emod, Ymod
4. Fit Ymod without modifying the poles (use VF.pole_skip=1)
5. passivity checking of resulting model by sweeping eigenvalues of Re{Y(s)} in

frequency range 0–2·ωmax, at 1200 samples.

The command window dialogue:

>> ex4d
Reading data from file ...
-----------------S T A R T--------------------------
****Stacking matrix elements (lower triangle) into single column ...
****Calculating improved initial poles by fitting column sum ...
 Iter 1
 Iter 2
 Iter 3
 Iter 4
 Iter 5
****Fitting column ...
 Iter 1
 Iter 2
 Iter 3
****Throwing out high-frequency poles: ...

 25

****Refitting residues: ...
****Enforcing positive realness for D, E...
****Refitting C while enforcing D=0, E=0 ...
****Transforming model of lower matrix triangle into state-space
model of full matrix ...
****Generating pole-residue model ...
****Checking passivity (sweeping) ...
-------------------E N D----------------------------
Elapsed time is 19.349000 seconds.
>>

The following plots are produced:

• figure(1): Magnitude plot for the fitting of the column f(s) and the two subsequent
refittings

• figure(2): Phase angles corresponding to figure(1)
• figure(3): Magnitude plot comparing the resulting Y after the various stages in the

process
• figure(4): Plot comparing eigenvalues of Re{Y(s)}, for the initial fitting results and

for the final result.

Beware that this procedure is not a cure-all solution. In particular, discarding high frequency
poles can result in that new passivity violations appear in the fitting band. The throwing out
of poles can be disabled by setting the parameter remove_Hfpoles to 0 in ex4d.m. Also,
the frequency limit for throwing out high frequency poles can be adjusted by parameter
factor_HF. For instance, a value 1.1 results in the throwing out of poles above 1.1*ωmax.

Fig. 6.8 Magnitude plots in figure(3)

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Frequency [Hz]

Rational approximation, all matrix elements

Original
After fitting
After removing HF poles and refitting
After enf. PD for D,E and refitting

 26

Fig. 6.9 Eigenvalue plots in figure(4)

Although the the size of passivity violations can be significantly reduced by this approach,
violations may remain. Fig. 6.10 shows a closeup of the eigenvalues in Fig. 6.11. It can be
seen that some very small violations are remaining (negative eigenvalues).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

−3

Frequency [Hz]

Eigenvalues of ReY(s)]

Original model

After removing HF poles and enf. PD for D,E

Fig. 6.10 Expanded view of eigenvalue plots

If remaining violations are considered a problem (for instance due to an unstable simulation),
such violations can be removed using the approach in [3] which has been implemented in
routine QPpassive.m, available in package QPpassive.zip.

Currently, QPpassive.m can only be applied to pole-residue models, meaning that the
model must have been obtained by fitting all matrix elements by a common pole set, followed
by a conversion using ss2pr.m (as is done in examples ex4c.m and ex4d.m).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency [Hz]

Eigenvalues of ReY(s)]

Original model
After removing HF poles and enf. PD for D,E

 27

ex5.m – Transmission line modelling

• The propagation function H(s) of a 5-conductor overhead line is read from file (AC
line in parallel with DC line). The lossless time delay has been factored out.

• One column of H is fitted with N=14 poles (7 complex pairs) directly in the phase
domain (no modal fitting)

• 5 iterations
• No weighting

The result is shown in Fig. 6.11 (Magnitude function)

Fig. 6.11 Fitting a column of the propagation function. N=14 poles

It is seen that the “error level” is quite “flat” as function of frequency. Fig. 6.12 shows the
fitting result when introducing inverse magnitude weighting.
 weight=1./abs(f);

10
1

10
2

10
3

10
4

10
5

10
6

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency [Hz]

Ma
gn

itu
de

 [p
.u.

]

Approximation of f

Original

VF

Deviation

Fig. 6.12 Effect of weighting with inverse of magnitude

10
1

10
2

10
3

10
4

10
5

10
6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency [Hz]

Ma
gn

itu
de

 [p
.u.

]

Approximation of f

Original

VF

Deviation

 28

We continue with the same example, but remove the inverse weighting (i.e. weight=1 for all
frequencies). Fig. 6.13 shows the result when specifying VF.relax=0, resulting in that the
relaxation is removed. Comparison with Fig. 6.11 (VF.relax=1) shows that the fitting error is
now much higher in the high-frequency region. For an explanation is referred to [2].

Fig. 6.13 Usage with VF.relax=0. No weighting

10
1

10
2

10
3

10
4

10
5

10
6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency [Hz]

M
ag

ni
tu

de
 [p

.u
.]

Approximation of f

Original
VF
Deviation

 29

ex6.m – Fitting a time delay

Time delays naturally occur in systems involving transmission lines. In transmission line
modelling by the method of characteristics, the delay effects are easily factored out and
removed. However, such factoring cannot easily be achieved when macromodelling a system
containing transmission lines. In the following we demonstrate that an uncompensated time
delay does not represent an obstacle to VF (although it results in a waste of poles).

• The time delay function f(s)=exp(–sτ) is calculated in the frequency range 0–1 MHz
with τ=10 µs.

• f(s) is fitted with N=30 poles (15 linearly spaced complex pairs)
• 3 iterations
• No weighting

The result is shown in Figs 6.14 (magnitude function) and 6.15 (phase angle).

Fig. 6.14 Magnitude plot

Fig. 6.15 Phase plot

0 1 2 3 4 5 6 7 8 9 10

x 10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency [Hz]

Ma
gn

itu
de

 [p
.u.

]

Approximation of f

Original
VF
Deviation

0 1 2 3 4 5 6 7 8 9 10

x 10
5

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

Frequency [Hz]

Ph
as

e a
ng

le
[de

g]

Approximation of f

Original
VF

 30

7. REFERENCES

[1] B. Gustavsen and A. Semlyen, "Rational approximation of frequency domain

responses by Vector Fitting", IEEE Trans. Power Delivery, vol. 14, no. 3, pp. 1052-
1061, July 1999.

[2] B. Gustavsen, ”Improving the pole relocating properties of vector fitting”, IEEE

Trans. Power Delivery, accepted.

[3] B. Gustavsen and A. Semlyen, “Enforcing passivity for admittance matrices

approximated by rational functions”, IEEE Trans. Power Systems, vol. 16, no. 1, pp.
97-104, February 2001.

[4] D. Saraswat, R. Achar and M.S. Nakhla, “A fast algorithm and practical

considerations for passive macromodeling of measured/simulated data”, IEEE Trans.
Avdanced Packaging, vol. 27, no. 1, pp. 57-70, February 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

