
 1

USER MANUAL FOR

VECTFIT

version 1.0 for Matlab

written by :
Bjørn Gustavsen

SINTEF Energy Research
N-7465 Trondheim

NORWAY

 E-mail: bjorn.gustavsen@energy.sintef.no
 Fax: +47 73597250

Last revised : 04.11.2002
Total number of pages: 7

1. INTRODUCTION

This manual gives a brief description of a Matlab subroutine (function) vectfit for
calculating a rational approximation of a given frequency domain response. The function to
be fitted can be either a scalar, or a vector. In the latter case, all elements in the vector will be
fitted using the same poles.

In general, vectfit is accurate, robust and efficient. It has been found to be extremely
useful for the modeling of frequency dependent effects in power systems. Examples are:
transmission line modeling, transformer modeling, and network equivalents.

vectfit is an abbreviation for "Vector Fitting". A thourough description of the method and
its characteristics is given in [1].

Why using Vector Fitting?
The advantage of Vector Fitting over other methods are the following:
• Iterative methods are often slow (requires a large number of iterations) and may converge

to a local minimum. Vector Fitting arrives in principle directly at the optimal solution by
solving two linear least squares problem. Sometimes, however, a few iterations may be
needed.

• Methods which rely on fitting high order polynomials in s to the data tend to get
numerical problems when using a high order approximation combined with a wide
frequency range. This is particularly the case when the response to be fitted is
contaminated with noise. Vector Fitting does not suffer from such problems.

Note: The program code is in the public domain and can be freely used by anyone. We only
ask that if the program code is used in a scientific work, or in a commercial program, then the
method should be called Vector Fitting, and reference should be made to the following :
B. Gustavsen and A. Semlyen, ”IEEE Trans. Power Delivery, vol. 14, no. 3, July 1999, pp.
1052-1061.

 2

2. PROGRAM FILES

You should have the following 11 files:

manual.pdf % This document
manual.m % m-file for example shown in this manual
vectfit.m % the fitting routine
ex1.m
ex2.m
ex3.m
ex4.m
ex5.m
03pk10.txt
w.txt
h.txt

ex1.m, ex2.m, ex3.m, ex4.m and ex5.m are matlab examples mentioned in this manual.
03pk10.txt, w.txt and h.txt are data files that are read by the matlab programs (ex3.m, ex4.m).

3. COMPUTING REQUIREMENTS

The computer code has been tested on Matlab v4.2, v5.1 and v6.1. The programs can be run
directly from the Matlab command window.

4. ROUTINE DESCRIPTION

A) Purpose

vectfit approximates a frequency response with rational functions, expressed in the
form of a sum of partial fractions:

)(sf

esd
as

csf
N

i i

i ++
−

≈ ∑
=1

)((1)

where terms d and e are optional. ci and ai are the residues and poles, respectively.

The approximation is achieved by replacing an initial set of poles with an improved set of
poles using a pole relocation method based on least squares approximation of linear problems
[1]. The order of the approximation equals the number of starting poles.

It is assumed that is complex conjugate. Only positive frequency samples should be
specified.

)(sf

 3

B) Specification

function
[SERA,SERC,SERD,SERE,rmserr]=vectfit(f,s,SERAstart,weight,kill,asympflag,
spy1,spy2,logx,logy,skip);

% ==
% = Version 1.0 =
% = Last revised: 22.06.2000 =
% = Bjorn Gustavsen =
% = SINTEF Energy Research, N-7465 Trondheim, NORWAY =
% = bjorn.gustavsen@energy.sintef.no =
% ==
%
%function
[SERA,SERC,SERD,SERE,order,rmserr]=vectfit(f,s,SERAstart,weight,kill,
asympflag,spy1,spy2,logx,logy,skip);
%
% PURPOSE : Calculate the rational approximation
% f(s)=C*(s*I-A)^(-1)*B +D +s*E
% where A is diagonal and B is a column of ones.
%
% INPUT :
%
% f(s) : function (vector) to be fitted.
% dimension : (Nc,Ns)
% Nc : number of elements in vector
% Ns : number of frequency points
%
% s : vector of frequency points [rad/sec]
%
% SERAstart : vector of starting poles [rad/sec]
%
% weight: the rows in the system matrix are weighted using this array.
% Can be used for achieving high accuracy at given frequency points.
% If no weighting desired, use: weight=ones(Ns,1) --> Equal weight
% for all points
%
% kill=0 --> unstable poles are kept unchanged
% kill=1 --> unstable poles are deleted
% kill=2 --> unstable poles are 'flipped' into the left half plane
% (kill=2 is the recommended choice)
%
% asympflag=1 --> order(numerator)=order(denominator)-1 ('Strictly proper')
% asympflag=2 --> order(numerator)=order(denominator) ('Proper')
% asympflag=3 --> order(numerator)=order(denominator)+1 ('Improper')
%
% spy1=1 --> Plotting, after first stage in vector fitting
% figure(1): magnitude functions
% cyan trace : (sigma*f)fit
% red trace : (sigma)fit
% green trace : f*(sigma)fit - (sigma*f)fit
%
% spy2=1 --> Plotting, after second stage in vector fitting
% figure(2): magnitude functions
% figure(3): phase angles
% cyan trace : f
% magenta trace : (f)fit
% green trace : f - (f)fit
%
% logx=1 --> Plotting using logarithmic absissa axis
%
% logy=1 --> Plotting using logarithmic ordinate axis

 4

%
% skip=1 --> Second stage in vector fitting is skipped. I.e., only the poles
% are returned (reduces computation time)
%
% OUTPUT :
%
% f(s)=SERC*(s*I-diag(SERA))^(-1)*B +SERD +s.*SERE
% SERA (N,1) : poles
% SERC (Nc,N) : residues
% SERD (Nc,1) : constant term (is produced if asympflag=2 or 3)
% SERE (Nc,1) : proportional term (is produced if asympflag=3)
% rmserr : root-mean-square error of approximation for f(s)

%%**

% NOTE: This program is in the public domain and may be used by anyone. If the *

% program code (or a mofified version) is used in a scientific work, or *

% in a commercial program, then reference should be made to the following: *

% B. Gustavsen and A. Semlyen, "Rational approximation of frequency *

% domain responses by Vector Fitting", IEEE Transactions on Power Delivery,*

% vol. 14, no. 3, pp. 1052-1061, July 1999. *

%***

C) Selection of starting poles

The starting poles SERAstart should be chosen to cover the frequency range of interest. For
smooth functions they should be real, although complex poles will also work.

For functions with resonance peaks they should be complex conjugate with weak attenuation,
with imaginary parts β covering the frequency range of interest. Each complex pair should be
chosen s follows :

 βαβα jaja nn −−=+−= +1, (2)

where

 100/βα = (3)

A code for generation of N/2 complex pairs, linearly distributed starting poles over the
considered frequency range, would look like this:

bet=linspace(w(1),w(Ns),N/2);

SERAstart=[];

for n=1:length(bet)

 alf=-bet(n)*1e-2;

 SERAstart=[SERAstart (alf-i*bet(n)) (alf+i*bet(n))];

end

The selection of starting poles is demonstrated in several of the sample m-files.

To improve the accuracy, vectfit can be invoked again with the new poles used as starting
poles. 3 iterations is normally sufficient.

 5

5. TUTORIAL

Consider the frequency response

 5.0
)500100(

4030
)500100(

4030
5

2)(+
−−−

−+
+−−

++
+

=
js

j
js

j
s

sf

)(sf)(sf

Assume that we know only as a discrete function. In this case is rational, so a
good fitter should certainly be able to find a very accurate approximation.

The following Matlab program does the job:

%manual.m

clear all

s=2*pi*j*logspace(0,4,100); %defining frequency points: 100 points
 %logarithmically spaced between 1 Hz
 %and 10.000 Hz.
Ns=length(s); %number of frequency samples

N=3; %order of approximation (our guess)
SERAstart=-2*pi*logspace(0,4,N); %N logarithmically spaced,
 %real starting poles
%Creating frequency response f(s):
for k=1:Ns
 sk=s(k);
 f(k,1) = 2/(sk+5) + (30+j*40)/(sk-(-100+j*500)) ...
 + (30-j*40)/(sk-(-100-j*500)) + 0.5;
end

%Fitting options:
weight=ones(Ns,1); %All frequency points are given equal weight
kill=2; %Enforcing stability by flipping unstable poles
 %into left half plane
asympflag=3; %improper realization
spy1=0; %Don't plot results from first stage in vector fitting
spy2=1; %Plotting magnitude and phase angle of f(s) and its
 %approximation, as well as the magnitude of the complex
 %deviation.
logx=1; logy=1; %Use logarithmic abscissa and ordinate when plotting
skip=0; %Second stage of vector fitting will be carried out

%Doing the fitting :
[SERA,SERC,SERD,SERE,rmserr]=vectfit(f,s,SERAstart,weight,kill,
asympflag,spy1,spy2,logx,logy,skip);

Executing the program gave the following results :

SERA = %Calculated poles
-5.0000e+000
-1.0000e+002 +5.0000e+002i
-1.0000e+002 -5.0000e+002i

SERC.’ = %Calculated residues
 2.0000e+000

 6

 3.0000e+001 +4.0000e+001i
 3.0000e+001 -4.0000e+001i

SERD = %Calculated constant term
 5.0000e-001

SERE = %Calculated proportional term
 2.3079e-020

rmserr = %rms-error of the deviation between and its)(sf
 6.0e-014 % approximation

Thus, the parameters have been accurately identified and so the fitting is nearly perfect (root-
mean-square error=6E-14).

In addition, two figures have been created on the screen:
• Figure(2) shows the magnitude of (cyan) and of the approximation (dashed

magenta), and the magnitude of the complex devation (green).
)(sf

• Figure(3) shows the phase angle of (cyan) and of the approximation (dashed
magenta).

)(sf

The two figures are shown below.

You should try this yourself! Experiment with the order (N) specified in the program and the
plotting options (spy1, spy2, logx, logy) . Normally, one will put spy1=0.

 7

6. OTHER EXAMPLES

ex1.m
This program constructs an artificial scalar function from predefined partial fractions.
The example is similar to the one shown in this manual, but the order of is now 18.
Things of special interest:

)(sf
)(sf

• 20 complex starting poles are used
• vectfit is called 2 times with the new poles used as starting poles

By removing the comment character '%' from one statement in the program (line 50), you can
also use real starting poles. See how the error decreases when vectfit is called several
times. (Check with [1] for an explanation of the phenomenon). The number of iterations, n,
can be modified on line 60 (for iter=1:n).

ex2.m
This program is similar to ex1.m, except that is now a vector of two elements.)(sf
• 20 complex starting poles are used
• vectfit is called 2 times with the new poles reused as starting poles

 8

ex3.m
This program reads a measured transformer response (scalar) from file.)(sf
• 6 complex starting poles are used
• vectfit is called 5 times with the new poles reused as starting poles

Try increasing the order of the approximation to 30 (put N=30 on line 31). Also, try deleting
the comment character '%' on line 46. This has the effect that becomes weighted with
the inverse of its magnitude. See how the shape of the deviation changes due to the scaling.

)(sf

ex4.m
This program reads from file one column of the propagation matrix H(s) for a 5-conductor
overhead line (parallell AC and DC line). All 5 elements are placed in as a vector of 5
elements and are fitted simultaneously with identical poles.

)(sf

• 14 real starting poles are used
• vectfit is called 5 times with the new poles reused as starting poles

ex5.m
This program calculates the frequency response of a single time delay

)exp()(τssf −= , sµ10=τ

)(sf is fitted in the range 0 - 100 kHz using 20 complex starting poles and 5 iterations. Try
increasing the order (N) on line 27 and see how fast the error drops with increasing order!

7. REFERENCES

[1] B. Gustavsen and A. Semlyen, "Rational approximation of frequency domain

responses by Vector Fitting", IEEE Trans. Power Delivery, vol. 14, no. 3, July 1999,
pp. 1052-1061.

