Last revised : 17.03.2013

Matlab scripts for interfacing rational function-
based models with circuit solvers using discrete
convolution

Y-parameters, Z-parameters, S-parameters, transfer functions

Bjorn Gustavsen
SINTEF Energy Research
N-7465 Trondheim
NORWAY

e-mail: bjorn.gustavsen@sintef.no

Download site (interfacing_with_circuit_solvers.zip):
http://www.energy.sintef.no/Produkt/ VECTFIT/index.asp

http://www.energy.sintef.no/Produkt/VECTFIT/index.asp

Table of Contents

I. INTRODUCTION......coitittiiieeeeie et eeae e e et e et e e e e e e e eeaaeeeeeeaaaaeeeennes 3
2. DISCRETE CONVOLUTION.......ooottiiiiiiie ettt e 4
3. TWO-PORT EXAMPLEoooiiiioiiee ettt 6
4. MODEL INTERFACES ...ttt 9
4.1 Circuit level SIMUIAtiONccc.ooiiiiiiiiieeieec e e 9
AP €T 2111 1<) ¢ PSSP 10
VAR T o | 71 11 15 <) £SO TP U TR 13
I N 1 ¥:11 0151 1<) - RRRRRRRURRRRN 16
4.5 Transfer FUNCHIONScc..oiiiiiiiic e et e e e eaae e e eeareee s 19
4.6 Comparison of time domain wWaveformscceevviieriieeiieecie e 21
5. THE PACKAGEoo oottt et e e e e 24
6. REFERENCES oottt e e e e eenaaae e e ennas 24

7. ACKNOWLEDGEMENTccoiiiiiiiiiiiiiiiieccce e 24

1. INTRODUCTION

The Matrix Fitting Toolbox (downloadable from this site) can be used for producing rational-
function-based models for Y-parameters, Z-parameters and S-parameters. In addition,
vectfit3.m can be used for generating models of general transfer functions. The returned
models are given both on pole-residue form and on the equivalent state-space form, see
Table I. The state-space model has its A-matrix diagonal and B sparse.

Table I. Parameter type and Models.

Pole- residue model State-space model
Y-parameters — —A)!
P Y(s) = z Ry +5E Y(s)=C(sI-A) B+R(+sE
Z-parameters — —A)!
P Z(s) = z IRy +sE Z(s)=C(sI-A) B+R,+sE
m= m
S-parameters Y S(s)=C(sI-A)'B+R,
el
Transfer functions N _ —_A)!
H(s) = z +Ry+5E Y(s)=C(sI-A) B+R+sE
m=

It is often desirable to integrate the model in a time domain simulation environment. Ref. [1]
shows an efficient procedure for achieving this using discrete convolution. This download
allows the user to replicate the simulation results for one of the examples in [1] where a two-
port model was created from a small electrical circuit, for Y-, Z- and S-parameters. In
addition, the use of a transfer function for calculating voltage transfer between two nodes was
demonstrated. The procedure is applicable to models of any order and number of ports.

We recall that Y-, Z- and S-parameter models interact with the circuit over the connecting
ports. Therefore, passivity must in general be enforced. This is not the case for pure transfer
function models which have no feedback to the circuit.

Notation: bold, uppercase: matrix; bold, lowercase: vector; non-bold: scalar.

= In Chap. 2, we derive the discrete form of the convolution between an input and
output, with a fixed time step length and trapezoidal integration.

= In Chap. 3, we introduce as an example a small circuit from which we extract two-port
parameters.

= In Chap. 4 we utilize the two-port parameters in a circuit level simulation based on
time domain nodal analysis. We show how to achieve this by formulating Norton
equivalents for the alternartive parameter types, and we show the implementation in
Matlab script.

Restrictions of use:
= [fthe code is used in a scientific or commercial work, then reference should me made to [1].

2. DISCRETE CONVOLUTION

In the continuous time domain, the state equation associated with the state-space model reads

%= Ax+Bu (1a)
y=Cx+Du+Eu (1b)

Applying trapezoidal integration with a fixed time step length At gives the discrete, recursive
formula (2) at the kth time step [1],

xpx Bw (2a)
y, =Cx, +Gu, (2b)
where
a= (I—Aﬂ)*(nAﬂ)
2 2 (3a)
G=(PB-C) (3b)
C=da(p+) (3¢)
with
At At
A=p=I-A—)"'— 3d
n=(>) 2 (3d)
In the case of a non-zero E, we get the augmented matrices [1]
~ ~ a O
C cC 1|, - ,
Aol)
B | “)
B—| 4 |,G—>G +2—E
-— At
At |

Equation (2) forms the corner stone in the subsequent implementations, whatever the type of
parameters the model is representing.

In the case that the model includes complex poles, one can choose between a complex or a
real-only model. We shall assume that the model is kept in its complex form, which results in
that A is diagonal and B is a sparse matrix which has a single one in each row. In this case,
one can reduce the model size by deleting from A the second part of all complex pairs and the

ditto columns in C and rows in B, provided that one multiplies the rows in B associated with

—5—

the first pole parts, with a factor two, and that one retains only the real part of ka in (2b).

This operation has been conveniently implemented in the function reducecmplx.

reducecmplx
[SERLl] =reducecmplx (SER) ;
for improved speed.

Processing of model before time domain simulation,
The Model size is reduced by throwing out the second part of all complex pairs

-

and multiplying rows in B associated with first part by factor
07.03.2013. B. Gustavsen

3. TWO-PORT EXAMPLE

As an example we use the electrical circuit in Fig. 1. Our objective is to create a model with
respect to ports 1 and 2, and to employ that model in a time domain simulation.

0.1 mH 1Q 1mH 1 pF 1Q 2uF
0 e e B
5Q 5mH
10 LuF 10Q 10pF | ——
1Q 2uF
@ 20 mH
001Q 1mH [
YN,
0.2 uF

Fig. 1. Electrical circuit [1].

Using nodal analysis, we establish the frequency domain 5x5 nodal admittance matrix Y(s)
with respect to the five nodes in Fig. 2. The procedure amounts to establishing the nodal
admittance stamp for each branch between any to nodes and between any node and ground,
and to add this stamp to the 5x5 Y in the correct position.

= For a branch with admittance y between node i and ground, we add the contribution y
to element Y;;.

* For a branch between nodes i and j, we add the contribution y to element Y;; and Y,
and the contribution —y to elements Y;; and Y.

In the code, we have conveniently introduced a function add_branch for adding in the branch
contributions.

add_branch
T=add branch(nl,nZ,v,T):
The function adds the contribution fom an admittance y between nodes

nl and nZ to the admittance matrix Y. Node number 0 denotes ground.
07.03.2013. B. Gustavsen

Fig. 2 shows the adopted branch numbering (blue) along with the node numbering (red)

0.1 mH 1Q 1mH1pF 1Q 2puF
208
Or s % —||——|:|;|
@ 5Q 5mH

1o 1uF 10Q 10 pF —:l—m

o

Fig. 2. Electrical circuit with node numbering (red) and branch numbering (blue).
Variables for the circuit component values associated with Fig. 2 are first introduced:

$Component values:

L1=0.1le-3;
R2=1; L2=1e-3; C2=le-6;
R3=1; C3=2e-6;
R4=1; Cd=le-6;
R5=10; C5=10e-6;
R6=5; L6=5e-3;
R7=1; C7=2e-6;
R8=1le-2; L8=le-3;

L9=20e-3;

Cl10=0.2e-6;

In the frequency loop, the branch admittances at each frequency s; are calculated:
%$Branch admittances
yl =1/ (sk*Ll1);

y2 =1/ (R2+sk*L2+1/ (sk*C2));
y3 =1/(R3+1/ (sk*C3));
y4 =1/ (R4+1/ (sk*C4));

(
(
(
y5 =1/(R5+1/ (sk*C5));
(
(
(

y6 =1/ (R6+sk*L6) ;
y7 =1/(R7+1/ (sk*C7));
y8 =1/(R8+sk*L8);

v9 =1/ (sk*L9)
y10=sk*C10;

...and added to the global admittance matrix, Y:

$Adding contribution from branch admittances:
Y=add branch(5,4,y2,Y);
Y=add branch(4,0,y3,Y);
Y=add branch(5,3,y4,Y);
Y=add branch(3,4,y5,Y);
Y=add branch(4,0,y6,Y);
Y=add branch(2,3,y7,Y);
Y=add branch(2,3,y8,Y);
Y=add branch(3,0,y9,Y);
Y=add branch(2,0,y10,Y

o~ o~ o~~~ o~ o~ —~

)7

Y=add _branch(1,5,y1l,Y);

The admittance matrix is reduced with respect to terminals 1 and 2. To see how this is done

we introduce the partitioning
i Y Y \
|:.a:|:|: aa abj|.|: a:| (5)
I, Y, Y,]|V
Where "a" denotes modes 1-2 and "b" denoted nodes 3-5. Since the current injection to nodes
3-5 is zero, we have i,=0. From the second row in (1) we express v, by v,
v, ==Y, Y, v (6)
Inserting (2) into the first row in (1) gives the final result:
ia = (Yaa - Yabe;Jlea)Va = Yred Va (7)

$Eliminating nodes 3-5:
Yred=Y(1:2,1:2)-Y(1:2,3:5)*Y(3:5,3:5)"(-1)*Y(3:5,1:2);

The resulting 2x2 Y., is stored in 3-D array bigY:
bigY(:, :,k)=Yred;
In the remainder, we will skip subscript "red" when denoting the 2x2 admittance matrix. The

admittance matrix is converted into the other parameters sets (Z-, S-) in the pertaining
examples.

4. MODEL INTERFACES

4.1 Circuit level simulation

We wish to simulate the example in Fig. 3 where a unit step voltage behind a 5 Q resistor is
connected to node #1 with node #2 being open. We will calculate the current flowing into
node #1 and the voltage response on node #2.

50

Step voltag 2

Fig. 3. Simulation example.

To do this, we replace the voltage source behind the resistor with its Norton equivalent, and
we represent the two-port model with a Norton equivalent, see Fig. 4. The way the Norton
equivalent is obtained from the rational model depends on which type of parameters it
represents.

External circuit Rational model
A A
[\[|
T GNorton
@
5 A D 1/5 S ihis,k,l ihiS,k,Z
i R i

Fig. 4. Circuit simulation via Norton equivalents.

The time step loop for Fig. 4 can in its simplest form be realized as shown by the pseudo-code
in Fig. 5, where subscripts "ind" and "his" denotes "independent" and "history", respectively:

Zciova = Gy

for k=1: Nt
i, Globa=lind k, Global Tihis k, Global
Vi, Global =ZGlobal I, Global
inis k= f(Vi-1)

end

Fig. 5. Pseudo-code for time step loop.

—-10 -

= "Global" refers to all nodes in the system, which in general is larger than the number
of ports in the system.
* Gglobal 18 Obtained by assembling the contribution from all branches and Norton
equivalents in the circuit. Its dimension is equal to the number of nodes.
" indk, Global and dhisk, Global @re current source vectors with as many entries as there are
nodes in the system.
= The function f{:) for updating the history current source depends on which parameter
type the model is representing (Y-, Z, or S).

4.2 Y-parameters

Y-parameters define the relation between voltage and current at the terminals of the device,
when voltage is input,

i=Yv (®)

Model extraction

Using routine VFdriver from the Matrix Fitting Toolbox we calculate a rational
approximation for Y(s), held in structure SERY:

opts.N=10; %Model order
opts.poletype="'"logcmplx"';
opts.asymp=3; %Model includes RO and E
opts.stable=1;

opts.NE=0;
poles=[];
[SERY, rmserr,big¥fit,opts2]=VFdriver (big¥, s,poles,opts);
0
10 Y32y
= Y(1,1
R Y(.2), Y21
£ 10° e
g
=3
)
g 10
B
£
g 15
% 0 Data
2 Model
Deviation
-20
10
1 2 3 4 5
10 10 10 10 10

Frequency [Hz]
Fig. 6. Rational approximation of Y(s).

The resulting model is now in structure "SERY", both on pole-residue form and on state-
space form.

Since we are in this example "fitting to machine precision", the model error is virtually zero
and so we do not care about passivity enforcement. (In the general case you would have to
process the result (SERY) using function RPdriver, also found in the Matrix Fitting toolbox).

—-11 -

Time domain simulation
In the case of Y-parameters, voltage v is input and current i is output. This gives for (2),

xgx By (%a)
i, =Cx, +Gv, (9b)

and we recognize that (9b) represents a Norton equivalent (Fig. 7) with GNoron=G and

Ihis, k= CXk .
)
—>
[
+ GNorton
Vi Lhis k

Fig. 7. Norton equivalent.

We will us a time step length of 10 ps and simulate until 5000 ps.
S++++t+tttttttttt bttt

$**Simulation parameters:

Dt=1le-5; time=(0:Dt:5e-3); Nt=length(time);

The conductance "matrix" of the external circuit:
S++++++++++++++H+H+H+H+H
$**External circuit:

Rsour=5;

gsour=1/Rsour;

First, we reduce the model size:

$Throw out second part of complex poles:
[SER]=reducecmplx (SERY) ;

A=full (diag(SER.A)); %A is now a column vector
B=SER.B

C=SER.C

D=SER.D;

E=SER.E;

Next, we calculate the parameters for the convolution, and the Norton conductance:
Stt++++++++++ttttt ottt

$**Initialization:

N=length (A7) ;

Nc=length (D) ;

X=zeros (N,1l); %state vector

a=A."';

alfa=(l+a*Dt/2) ./ (1-a*Dt/2);

lamb=(Dt/2) ./ (1-a*Dt/2);

mu=lamb;

GY=D+real (C*diag(lamb) *B); %Norton conductance for model

—12 —

dum=alfa.*lamb +mu;
Ctilde=zeros (Nc,N) ;
for row=1:Nc
Ctilde (row, :)=C(row, :) .*dum; S%Ctilde
end

%$Contribution from E-matrix, i1f present:
if max (max (abs(E)))>0
alfa=[alfa -ones(1l,Nc)];
Ctilde=[Ctilde eye(Nc)];
B=[B;-4*E./Dt];
GY=GY+2*E./Dt;
X=[X;zeros (Nc,1)1;
end

Assembling global conductance matrix, calculating impedance matrix:

GG=zeros (2,2); %$Global conductance matrix
GG(1:2,1:2)=GG(1:2,1:2)+GY; %Contribution from model
GG(1,1)=GG(1,1)+gsour; %$Contribution from external circuit

22=GG"™ (-1) ; $Impedance matrix
This=[0 0]."'; %Global history current source

Time step loop:

t=0;
for k=1:Nt
t=t+Dt;
Iind=[gsour 0].'; %Global vector of independent current sources 1
Itot=Iind+Ihis; %Total current
V=ZZ*Itot; $Node voltages

%Updating history current source of model
X=alfa.'.*X +B*V;
This=-real (Ctilde*X);

pgb¥Y (1, k)=gsour-gsour*V(l); %$Saving current flowing into node #1
pabY (2,k)=V(2);; $Saving voltage at node #2

bigvV(k)=V(l); %to be used as excitation in voltage transfer computation
end $for k=1:Nt

From the above we see that the model is included in the time step loop using only two lines of

code. Note that in an actual implementation, we can utilize the sparsity of B to achieve an
even faster code.

The simulated waveforms as stored in pgbY are presented in Chapter 4.6.

—-13-—

4.3 Z-Parameters

Z-parameters define the relation between voltage and current at the terminals of the device,
when current is input,

v=7Zi (10)
Model extraction

First, we compute the impedance data from the admittance data in Chap. 3.:

for k=1:Ns
Y=squeeze (big¥ (:, :,k));
bigZ(:,:,k)=Y"(-1);

end

Using routine VFdriver from the Matrix Fitting Toolbox we calculate a rational
approximation for Z(s), held in structure SERZ:

opts.N=10; %Model order

poles=[];

opts.poletype="logcmplx"';

opts.asymp=3; %Model includes RO and E

[SERZ, rmserr,bigZfit,opts2]=VFdriver (bigZ,s,poles,opts);

5
10 : . .
% z(1,1)
3
£ o Z(2,2
g 10 Z(12),2@2,1) 1
=3
E
5
2 4
2
3
£
(]
8 .0
!E 0 Data
g Model
E Deviation
107°
1 2 3 4 5
10 10 10 10 10

Frequency [Hz]
Fig. 8. Rational approximation of Z(s).

Time domain simulation
In the case of Z-parameters, current i is input and voltage v is output. This gives for (2),

xpx (B (11a)
v, =Cx, +Gi, (11b)

and we recognize that (11b) represents a Thevenin equivalent with Zneron=G and vpis x=— Cx ‘-

The Thevenin equivalent is conveniently converted into a Norton equivalent as shown in
Fig. 9, where G =7,

Norton = Linorion AN This k= GNorton Vhisk -

14—

i

Vhis
\Y ‘
k \Y
ZNonon k

T

Lhis &

GNorton

Fig. 9. Conversion of Thevenin equivalent into Norton equivalent.

S++++++++++H+H+H
$**Simulation parameters:
Dt=le-5; time=(0:Dt:5e-3); Nt=length(time);

S++++++++++++++++ A+
$**External circuit:

Rsour=5;

gsour=1/Rsour;

S++++++++++++++++++H
$**rational model:

[SERZ]=reducecmplx (SERZ) ;
A=full (diag (SERZ.A)) ;

B=SERZ.B;

C=SERZ.C;

D=SERZ.D;

E=SERZ.E;

S+++++++++++++ 4+
$**Initialization:

N=length (A7) ;

Nc=length (D) ;
X=zeros (N, 1) ;

a=A."';
alfa=(l+a*Dt/2) ./ (1l-a*Dt/2);
lamb=(Dt/2) ./ (1-a*Dt/2);
mu=lamb;

Zthevenin=zeros (Nc) ;
Zthevenin=real (C*diag (lamb) *B) ;
Zthevenin=Zthevenin+D;

dum=alfa.*lamb +mu;
Ctilde=zeros (Nc,N) ;
for row=1:Nc

Ctilde (row, :)=C(row, :) .*dum; %Ctilde
end
%$Contribution from E-matrix, if present:
if max (max (abs(E)))>0

alfa=[alfa -ones(1l,Nc)];
Ctilde=[Ctilde eye(Nc)];
B=[B;-4*E./Dt];
Zthevenin=Zthevenin+2*E./Dt;
X=[X;zeros (Nc,1)1;

end

—15—

Gnorton=Znorton” (-1); %Converting Zthevenin into Gnorton

$Assembling global conductance matrix, calculating impedance matrix:
GG=GY;
GG(1,1)=GG(1,1)+gsour;

272=GG" (-1); %Impedance matrix
This=[0 0]."'; %Global history current source
%$Time step loop:
t=0;
v=[0 0].';
for k=1:Nt
t=t+Dt;
Iind=[gsour 0].'; %Global vector of independent current sources
Ttot=Iind+Ihis; $Total current
V=ZZ*Itot; %$Node voltages

%Updating history currnt source:
I=(GY*V-This); %current flowing into terminals
X=alfa.'.*X +B*I;

IThis=GY*real (Ctilde*X) ;

pgbZ (1,k)=I(1); $%$saving current flowing into node #1
pgbZ (2,k)=V(2); $Saving voltage at node #2

end %for k=1:Nt

—16 —

4.4 S-Parameters

Definitions

S-parameters define the relation between incoming power waves a and reflected power waves
b at the ports of a device being terminated by reference impedances. With the reference
impedances held in the (diagonal) entries of a diagonal matrix Z,, we can write

b=Sa (12)
with
a=\JZ, v, (13a)
b=\Z, v, (13b)

v; and v, are incident and reflected voltage waves (see Fig. 10). a and b are the associated
power waves.

Z, a:Vi/ ZO
D
° . Device
+ —
v b=v /\Z

Fig. 10. Incident and reflected waves at the ports of the device.

Model extraction
In the example, we compute S from Y using the relation

S=(+\Z,Y\2,)" 0~\Z,Y\[Z,) (14)

We use for the reference impedances,

100 0
Z- 0
{ 0 200}

R=diag ([100 200]); %Reference impedances

sgR=sqgrt (R) ; $Square-root of reference impedances
I=eye (Nc); SNc=2
for k=1:Ns

Y=bigY(:,:,k);

bigS(:, :,k)=(I+sgqR*Y*sgR) " (-1) * (I-sgqR*Y*sqR) ;

end

—17 —

Using routine VFdriver from the Matrix Fitting Toolbox we calculate a rational
approximation for Z(s), held in structure SERS:

opts.N=11; %Model order

opts.poletype="logcmplx"';

poles=[];

opts.stable=0;

opts.asymp=2; %$Model includes RO

[SERS, rmserr,bigSfit,opts2]=VFdriver (bigS, s,poles,opts);

S(1.1), S(2.2) =4 2
S(1,2), $(2.1)

-5
10 E

Data
. Model
Deviation

Scattering matrix (Magnitude)
)

Frequency [Hz]
Fig. 11. Rational approximation of S(s).

Time domain simulation
In the simulation, a is input and b is output, which gives for the convolution (2)

xox Ba (152)
b, =Cx, +Ga, (15b)

We wish to obtain the Norton equivalent in Fig. 12.

iy
—
°
+ GNonon
Vi Lhis

Fig. 12. Norton equivalent for interface of S-parameter model.
As shown in [1], the conductance matrix Gnoron @and history current surce iy are obtained as
-1 O -1
GNorton = \ ZO [(I_G)(I+G)]\/ Z() (163)

i =20& (I+G)'Cx, = (16b)

- 18—

The procedure for calculating x; in (16b) is as follows:
1. Calculate a;—; from v;_; and x;_;

— -1 jod
%4:a+GVWZoVH_CHﬁ

2. Calculate x; using (15a)
3. Calculate iz using (16b)

In actual code,

$**Simulation parameters:
Dt=1le-5; time=(0:Dt:5e-3); Nt=length(time);

e o e S i S
$**External circuit:

Rsour=5;

gsour=1/Rsour;

S++++++++++++H
$**Rational model:
[SERS]=reducecmplx (SERS) ;
A=full (diag ((SERS.A)));

B=SERS.B

C=SERS.C

D=SERS.D;

S+++++++++++++++++H
$**Initialization:

N=length (A7) ;

Nc=length (D) ;

X=zeros (N, 1) ;

IT=eye (Nc) ;

a=A."';
alfa=(l+a*Dt/2) ./ (l-a*Dt/2);
lamb=(Dt/2) ./ (1l-a*Dt/2);
mu=lamb;

G=D+real (C*diag (lamb) *B) ;
GS= R (-0.5)* (II-G) *(II+G)"(-1)*R"(-0.5);

dum=alfa.*lamb +mu;
Ctilde=zeros (Nc,N) ;
for row=1:Nc
Ctilde (row, :)=C(row, :) .*dum;
end
GAMMA=2* (R" (-0.5))* (II+G) "~ (-1)*Ctilde;

S+++++++++H+H+H+HH

%$Assembling global conductance matrix, calculate impedance
GG=GS;

GG(1,1)=GG(1,1)+gsour;

matrix:

(17)

—19-—

272=GG" (-1);
This=[0 0]."';

S+++++++++++++++H++H
%$Time domain simulation:
t=0;
for k=1:Nt
t=t+Dt;

Iind=[gsour 0]."';
I=Tind+Ihis;
V=ZZ*I; %Node voltages

%Calculating incoming power wave
a=(II+G) "~ (-1)*(R*(-0.5)*V -real (Ctilde*X));

%Updating history current source
X=alfa.'.*X +B*a;
Ihis=real (GAMMA*X) ;

pgbS (1, k)=gsour-gsour*V(l); S%$Saving currentvflowing into node #1
PgbsS (2,k)=V(2); $Saving voltage at node #2

end $Sfor k=1:Nt

4.5 Transfer Functions

The general transfer function H defines the relation between an input u and an output y,
y =Hu (18)

Model extraction
In the example, we calculate the voltage on the open port 2 using the voltage on port 1 as
input. From the condition /=0 we obtain the voltage transfer function is calculated as

H, =-1,Y, (19)

Y=squeeze (bigY (:, :, k))
bigH(:,:,k)=-(Y(2,2))"
end

(-1)*Y(2,1);

Since the transfer function is in this example a scalar, we can in this case use routine VFdriver
from the Matrix Fitting Toolbox for calculating a rational approximation for H(s), held in
structure SERS:

opts.N=11; %Model order

opts.poletype="'"logcmplx"';

poles=[];

opts.stable=1

[SERH, rmserr,bigHfit, opts2]=VFdriver (bigH, s,poles, opts);

—-20-—

0
) /‘/\M
= H(1,1)

10 r 1

Voltage transfer function (Magnitude)

10'15 L Data
. Model
Deviation
-20
10 L L 1
3
10 10 10 10 10

Frequency [Hz]
Fig. 13. Rational approximation of H,(s).

Note: You can only use VFdriver when H is symmetrical. When this is not the case, you will
have to fit H via vectfit3.m and assemble the total state-space model yourself.

Time domain simulation
With input u and output y, we get

xox ,Bw (20a)
y, =Cx, +Gu, (20b)

Since the model is not interacting with the circuit, we do not need the Norton equivalent.

$**Simulation parameters:
Dt=le-5; time=(0:Dt:5e-3); Nt=length(time);

S++++++++++++++H+H+
$**Initialization:

N=length (A7) ;

Nc=length (D) ;

X=zeros (N, 1) ;

a=A."';
alfa=(l+a*Dt/2) ./ (1-a*Dt/2);
lamb=(Dt/2) ./ (1-a*Dt/2);
mu=lamb;

dum=alfa.*lamb +mu;
Ctilde=zeros (1,N);
for row=1l:1

Ctilde (row, :)=C(row, :) .*dum;
end

GH=real (C*diag (lamb) *B) ;
GH=GH+D;

S++++++++++++++++
$Time domain simulation:

t=0;

oldVmode=zeros (N, 1) ;

—21 -

for k=1:Nt
u=bigV(k); %Voltage at node #1 calculated using Y-parameter model
t=t+Dt;
Vmode=B*u;
X=alfa.'.*X +oldVmode;
oldVmode=Vmode;
y = GH*u +real (Ctilde*X);
pgbH (1,k)=0;
pgbH (2, k)=y; %$The voltage on port #2
end

4.6 Comparison of time domain waveforms

We will now compare the obtained results with that obtained by a conventional time domain
circuit simulator (PSCAD/EMTDC v4.2) where the circuit elements in Fig. 1 are represented
individually. The circuit simulator uses trapezoidal integration with the same time step length
as in the previous Matlab simulations.

$PSCAD simulation of RLC circuit
load -ASCII C.mj;

t pscad=C(:,1).";
v_pscad=le-3*C(:,2).";

i pscad=le-3*C(:,3)."';

figure (101),
hl=plot (le3*time, pgb¥ (1, :

)
h2=plot (le3*time,pgbZ (1, :), 'r—=");
h3=plot (le3*time,pgbS(l,:), 'g-."); hold off
legend ([hl h2 (1) h3(l)],'Y-parameters', 'Z-parameters', 'S-parameters',1l);

xlabel ('Time [ms]');
ylabel ('Current [A]")
title('Simulation result')
hold off
Simulation result
0.05 T T T T

Y-parameters
co4f | T Z-parameters | |

| S-parameters

003} 1

002} 1

Current [A]

0.01

_001 _ 1 1 1 1
0 1 2 3 4 5

Time [ms]
Fig. 14. Simulated current i; at port #1.
figure (102),

hl=plot (le3*time,pgbY¥Y (1, :)-1i pscad, 'b-");hold on
h2=plot (le3*time,pgbZ (1, :)-1i pscad, 'r--"');

—22 —

h3=plot (le3*time,pgbs(l,:)-1i _pscad, 'g-."'); hold off

title('Deviation from PSCAD simulation result')

legend ([hl h2 (1) h3(l)],'Y-parameters', 'Z-parameters', 'S-parameters',l);
xlabel ('Time [ms]');

ylabel ('Current [A]")

hold off

10 4 Deviation from PSCAD simulation result

Y-parameters
Z-parameters |
S-parameters

Current [A]

-8 L L L L
0 1 2 3 4 5

Time [ms]

Fig. 15. Deviation from result by conventional circuit simulation.

hl=plot (le3*time,pgbY¥ (2, :), 'b-");hold on

h2=plot (le3*time,pgbz(2,:), 'r—-");

h3=plot (le3*time,pgbS(2,:), " 'g-.");

h4=plot (le3*time,pgbH(2,:), 'k: ', "linewidth',1.0); hold off
)

title('Simulation result'

legend ([h1(1) h2(1) h3(1) h4(1l)],'Y-parameters', 'Z-parameters', 'S-
parameters', 'Transfer function',1l);

xlabel ('Time [ms]');

ylabel ('Voltage [V]")

0.6 T T T T

Y-parameters

o4 | e Z-parameters
S-parameters
Transfer function

Voltage [V]

0.8 L L L L
0 1 2 3 4 5

Time [ms]

Fig. 16. Simulated voltage v, at port #2.

figure (104),
hl=plot (le3*time,pgbY¥Y (2, :)-v_pscad, 'b-");hold on
h2=plot (le3*time,pgbZ (2, :)-v_pscad, 'r--"');

23—

h3=plot (le3*time,pgbs (2, :)-v_pscad, 'g-.");

hd4=plot (le3*time, pgbH(2,:)-v_pscad, 'k:'),hold off

title('Deviation from PSCAD simulation result')

legend ([h1(1) h2(1) h3(1) h4(1l)],'Y-parameters', 'Z-parameters', 'S-
parameters', 'Transfer function',1);

xlabel ('Time [ms]');

ylabel ('Voltage [V]")

15 T T T T
Y-parameters
Z-parameters]
S-parameters
Transfer function
Id 17
[)

3 ,\\

R RN
A R A T e
“\ ‘/ '.\’\

!
[}
(.]
1

/!

1

Voltage [V]

Time [ms]

Fig. 17. Deviation from result by conventional circuit simulation.

We note that the difference between the result by the detailed PSCAD simulation and that by
the two-port models is extremely small. Although we have created highly accurate rational
model approximations, we could still expect significant differences due to the discretization of
the convolution integrals. However, in this case we have with all approaches adopted the

same integration technique (trapezoidal integration) with the same time step length, leading to
consistent discretization errors. That way, we have "proved" the correctness of the

implementations.

—24—

5. THE PACKAGE

The package (simulation_1.zip) is downloadable from
http://www.energy.sintef.no/Produkt/VECTFIT/index.asp

Documentation
model interface for simulation.pdf This document
TPWRD_Inclusion_of rational model 2013. Reference [1]

Matlab routines:
circuit_small_example.m Runs all simulation examples

Auxiliary routines:

add_branch.m Add admittance stamp to Y

reducecmplx.m Compacting of state-space model for faster simulation
Other files:

C.m Simulation result by PSCAD (used in Chap. 4.5)

6. REFERENCES

[1] B. Gustavsen and H.M.J. De Silva, "Inclusion of rational models in and electromagnetic
transients program — Y -parameters, Z-parameters, S-parameters, transfer functions”, I[EEE
Trans. Power Delivery, 2013.

7. ACKNOWLEDGEMENT

The development of these templates was supported by the KPN project "Electromagnetic

transients in future power systems" (ref. 207160/E20), financed by
e Research Council of Norway (Norway),

Dong Energy (Denmark),

EdF (France),

EirGrid (Ireland),

Hafslund Nett (Norway),

National Grid (UK),

Nexans (Norway),

RTE (France),

Siemens WP (Denmark),

Statnett (Norway),

Statkraft (Norway),

Vestas WS (Denmark)

http://www.energy.sintef.no/Produkt/VECTFIT/index.asp

	1. INTRODUCTION
	2. DISCRETE CONVOLUTION
	3. TWO-PORT EXAMPLE
	4. MODEL INTERFACES
	4.1 Circuit level simulation
	4.2 Y-parameters
	4.3 Z-Parameters
	4.4 S-Parameters
	4.5 Transfer Functions
	4.6 Comparison of time domain waveforms

	5. THE PACKAGE
	6. REFERENCES
	7. ACKNOWLEDGEMENT

