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Enforcing Passivity for Admittance Matrices
Approximated by Rational Functions

Bjgrn GustavsenrMember, IEEEand Adam SemlyerLife Fellow, IEEE

Abstract—A linear power system component can be included in Il. CRITERION FORPASSIVITY
a transient simulation as a terminal equivalent by approximating . . . )
its admittance matrix Y~ by rational functions in the frequency do- We are given in the frequency domain a component defined

main. Physical behavior of the resulting model entails that it should by an admittance matrix:

absorb active power for any set of applied voltages, at any fre-

quency. This requires the real part ofY” to be positive definite (PD). i=Yw. Q)
We calculate a correction to the rational approximation ofY” which

enforces the PD-criterion to be satisfied. The correction is minimal For any complex vector we get for the absorbed power
with respect to the fitting error. The method is based on lineariza-

tion and constrained minimization by Quadratic Programming. — * — * i — *

Examples show that models not satisfying the PD-criterion can lead P =Re{v"Yv} = Re{v(G +jB)v} = Re{v"Gu} - (2)
to an unstable simulation, even though the rational approximation
has stable poles only. Enforcement of the PD-criterion is demon-
strated to give a stable result.

where the asterisk denotes transpose and conjugate. It follows
that P will always be positive only if all eigenvalues ¢f are
positive. Thus, a criterion for passivity is that= Re{Y} be

I. INTRODUCTION positive definite (PD).

We note that7 is a symmetric, real matrix. Therefore, all

T HIS paper deals with the topic of including in an elecéigenvalues of: are real.
tromagnetic transient simulation an admittance makrix

whose elements have been approximated (“fitted”) in the fre-
quency domain by rational functions. Examples of applications
are the modeling of power transformers at high frequencies [1],!t is assumed that the rational approximationtohas been
[2] and the modeling of network equivalents [3]. calculated with a fairly high accuracy. This makes it possible to
Past experience has shown that simulations involving a fittéfce any negative eigenvalueGf{w) to be positive by making
Y can sometimes lead to an unstable simulation, even thougjHy & small correction to the rational approximation. This jus-
the elements of” have been fitted using stable poles only. tifies an approach based @nearization
A useful mitigation technique is to require the network to be .
passive, i.e., the component must absorb active power for dry INitial Solution
set of applied voltages, at any frequency. The resulting equiv-We are given a matri¥” whose elementg j have been ap-
alent may still have unphysical electrical components, but tipgoximated by a rational function of the form
probability of an unstable simulation becomes greatly reduced.
A simple method for enforcing passivity has been introduced
in [2]. However, then the criterion for assessing passivity was
not sufficiently conservative as the focus was on the eigenvalues
of Y instead of the eigenvalues 6f = Re{Y'}. Also, the cor- Our task is to modify all or some of the parameteys a..,, d
rection made to the original fitting was constant over a widanhde for the elements of; so that all eigenvalues @¥g; =
frequency range and thus not minimal. Re{Yq: } become positive.
This paper presents a new method for enforcing passive be- o
havior. Using the original fitting as a starting point in an iterativ8- Linearization
procedure, aonstrainedeast squares fitting is calculated where The selected parameters of the rational approximafigiare
the constraints are directly related to the criterion for passivitylaced in a single vectat, and the columns of, are placed
As aresult, the correction made to the original fitting is minimah a vectoryg;. Linearization of (3) gives the following incre-
in terms of the resulting fitting error. mental relation between andyy;:

I1l. ENFORCEMENT OFPASSIVITY

Yae ()= D —"— +d+se. 3)

Ayg, = MAz. (4)
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Finally, a linear relation is calculated betwegg and the
eigenvalues\ of Gy : Approximate y by
rational functions

AX = QAgsg;. (6)
A . . . . v y’am7cm$D’E
Combining (5) and (6) gives a linearized relation between the
eigenvalues ofig; and the parameter vector Enforce D, E to be positive \
definite (section I11.D)
AN = QPAxr = RAzx. @)
vro:Y
Appendix B gives details regarding the calculatiortof
_ _ _ - Calculate H, B, f, and ¢ in §’
C. Constrained Least Squares Approximation 1 (13) using (12), (14) §:
We want to find a least squares solutigg(z, s) to the <
H,B.f c g
problem \ =
=4
y(s) — yac(z, s) = 0 (8) Solve (13) with respect to Ax using §
: - _ . L ) Quadratic Programming e
subject to passivity constraints fgg;. Linearization using (4) =
gives Ax
_ 0
y(s) — (uh(s. @) + MAz) = 0. ©) v =g +Ax )

We require the eigenvalues of Gy, to be positive. This is
achieved by (7):

AX = RAz 2 =\ (10) Fig. 1. Overview of calculation.

Equation (9) and (10) can be rewritten in the standard form:
2) D,oq andsF,q are subtracted from the dati(..s),

AAx — b which is subjected to aew fitting with D, and F re-
BAz <¢ (11) stricted to be zero. Finallyp,,.q and £,,,4 are added
to the new rational approximation.
where Note thatG@(;;(s) does not depend o, but negative eigen-

values inE may lead to an unstable simulation and are therefore
not tolerated.

A least squares solution for (11) is calculated using QuadraE'c
Programming (QP): :

A= M, b=y -y, B=—-R, c=A (12

Program Overview

o Fig. 1 gives an overview of the calculation procedure. The
minimize program takes as input the original dgt@nd the parameters of
%Aa;T HAz — fTAz the rational approximatio? andF are first enforced to be pos-

itive definite. The parameters of the rational approximation are
placed inzy and a correction\z is calculated using Quadratic
Programming and added 1. The procedure is repeated until

BAz < ¢ (13) all constraints have been satisfied. The linearizations (4) and (7)
are recalculated in each iteration.

subject to

where

H=ATA, f= AT, (14) IV. PRACTICAL CONSIDERATIONS

A. Passivity Outside Fitting Range

D. Preprocessing In general Y will have been fitted within a certain frequency

. . ange {1—w-2). In order to ensur&s;(w) to be positive def-
.We have found it useful to ;eparately epforge positive deﬂiite also outside this frequency range, we include additional
niteness forD and F of the rational approximation/} and £

are composed af ande in (3)]. This is achieved as follows: zri??ﬁg%/s?;r?optl?: mw(hlear; building the constraint matri¢esd

1) DiagonalizeD and E:
B. Updating of QP-Problem During Iterations

Iterations as indicated in Fig. 1 are in general needed because
Negative eigenvalues ifi, andA g are set equal to 0 and (13) represents a linear model of a nonlinear problem. In our
modified matriced,,,.q andE,,,.q are calculated by (15) implementation we use only residues,[in (3)] as parameters
(Dmoa andE,.q have no negative eigenvalues.) in z (see Section IV-C below). This results in (3) being linear

D =TpApTyt, E =TpApT;* . (15)
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in z, and thusH in (13) will not change during the iterations. o
The other matriceéB, f, ¢) need to be recalculated during the 10 T
iterations.
—_ original
C. Reduction of Problem Size % e fitted
The number of elements inis reduced by nearly a factor of § 10° ]
4 as follows: E‘
» Only residues are kept as unknowns (poles as well as e g
ments ofD, F are conS|dere.d known). .. deviation Y
* Redundant elements occurringirdue to symmetry ot N N
are removed. 107 - Aﬁ-?”“" — \
Furthermore, the number of rowsthandc can be drastically 10 10 10 10
Frequency [Hz]

reduced by including only rows where a constraint violation oc
curs. When doing iterations as in Fig. 1, it is then necessary 1o
also include inB rows where violations occurred in previousrig. 2. Elements of” for single phase overhead line.

steps (since violations may reappear).

X 10'4 fitting range

D. Sparsity —

Several of the matrices used in the building of th |<__“,..Z.> : ;' | ‘;\' Nl e
QP-problem (13) are sparse. This is the case for matric - R R R R 4 ;' s .‘6.‘,_'.;'}“.3:»°":..;""/‘7
M, P, andA. When calculating?, B, andf via these matrices Vo ’ oo \\__—-:’ .7L1'
we operate directly on the nonzero elements, thus increas ¢ 6 - "\\' """" AR AR ‘\ """"
computational efficiency and avoiding the need to store ze % ' 7\;2 }' ! A : %\,'
elements. E 4 ....... \\. ......... '.: 1- 2"."6;

We note that in the QP-problemis full, whereadH is block- g AN l Lo : )
diagonal with as many blocks as there are elements.in W 2p g & R without enf. '

e e J’ — — — with enf.
V. SEQUENTIAL SOLUTION O'_.......o.l..“. .....
The measures mentioned in Section IV-C make it possible 0 2 4 6 8 10
Frequency [kHz]

solve relatively large systems. Using Matlab, problem sizes wi
up to 250 elements in are readily handled. However, larget
problem sizes can occur, for instance in the case of netwq;k o .

. . . ig. 3. Enforcing eigenvalues 6#5;;, to become positive.
equivalents where very high order fittings may be used. A fur-

ther reduction of: is possible by redoing the iterations in Fig. 1 o . . L
domain simulation. The initial rational approximation is in

with different partitions ofx. X e .

We have implemented a simple method for partitioning all ex?‘mp'_es cal_culated using Vector Fitting [4] ant_j the tw_ne
which we refer to asequential solutionThe method can be d.o”.‘a'” smulatmns are based on trapezoidal integration,
outlined as follows: similarly as in EMTP.

1) Sortthe elements af so that the magnitudes of the assop  gyact PI-Equivalent for Transmission Line

ciated poles come in ascending order. ) . .
2) Ineach iteration in Fig. 1, use a contiguous set of elementd" this €xample we model a 25 km single phase overhead line

from z. The sets of elements between two successive 5 &1 €xact Pl-equivalent (admittance matrix).
Fig. 2 shows the phase domain elements of the 2 by

erations are overlapping. Include i only rows corre- _ X X
R -matrix as fitted by 30 poles in the range 0.01 Hz—2000 Hz.

sponding to the frequencies covered by the poles of t 4 :
We note that all (four) elements have been fitted to an accuracy

partition. g L
3) Repeat the iterations in Fig. 1 until all elements:ihave begiretgzr:arfeal V‘gtg'; the gt;'?g r?r']g(ra]égat' o around 5 kH
been utilized. _Jneeigenvalue dlrge = heq by, 5 ISN€gative arou Z,
The rationale of this procedure is the following: when a neg'm.p lying thaﬂ./ﬁ“ Is not Passive. Passivity vi/as enforced bY mod-
. ) : . . Ifying the residueg,, of Yg; using the QP-approach of Fig. 1.
.tlve eigenvalue occurs ata given frequea@y pa}rtlal fractions Fig. 3 shows the eigenvalues Gf;;, before and after passivity
in (3) vx_/hose poles have mag_nltude in the ne_lghborho_odoof anorcement. (A single iteration was used). We note that all
are believed to be good candidates for enforcing the eigenvalue I .
eigenvalues have become positive, at all frequencies. The pas-

to become positive. sivity enforcement had the effect of increasing the RMS-error
in the fitting range from 2.48E-9 to 3.76E-8, which is still very
VI. CALCULATED RESULTS small

In this section we show numerical results demonstrating We now demonstrate the effect of passivity enforcement on
the method of passivity enforcement and its effects on a timetime domain simulation. The transmission line (Fig. 4) is
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open at t=10ms 0.1
0.08} fitting range
600Hz /
® 0.06(€ 3
% =
g
. . . e g 0-04]
Fig. 4. Disconnecting a transmission line. o
1
0.02}
2 —
0
0 50 100 150 200 250 300
1t i Frequency [kHz]
without enf. with enf. | Fig. 7. Eigenvalues off andGi:.

Voltage [V]
o

At
-2 . . . . -
0 5 10 15 20 25 30
Time [ms] @
=]
E
Fig. 5. Effect of passivity enforcement on a time domain simulation. %
o
2
434kV 21kV
-1 i L. L s
0 20 40 60 80 100
Frequency [kHz]
7 Fig. 8. Expanded view of Fig. 7.
Fig. 6. 410 MVA generator step-up transformer. X 10'3
‘\ "\"‘ﬁu-uuv'".' 2
energized by a 600 Hz voltage source which is ramped up frc ,m,..:.."';mom::,
0to1Vin5ms. Att = 10 ms the line is disconnected from g g e s
the source. ® H /i'
Fig. 5 shows the simulated voltage on the open line er @ v S . cesonn
Without passivity enforcement the voltage is seen to becor 'gs 0 e o
unstable after disconnecting the line. The state equation reali § . 2
tion of the disconnected line was found to have one unstable ¢ ;2 o5l .~ fit
of poles 302 & 530919), which resonates at 4919 Hz. Passivit ’ === Ag with enf.
enforcement moved the pole pair toZ5 + j30463) which is
stable, although weakly damped. Fig. 5 shows that a stable s -1 : : : .
ulation has been achieved. 0 20 40 60 80 100
Frequency [kHz]

B. Transformer Model

We return to the transformer measurements used in [2] fgp-9- Enforcing eigenvalues @y to become positive.
which the admittance matriX has been measured in the fre-
qguency range 1 kHz—200 kHz [5]. The QP-approach in Fig. 1 enforcé#;; to become passive
The measurements were fitted using a 10th order approxinia-a single iteration. Fig. 9 shows the eigenvalues-gf be-
tion. Fig. 7 shows the eigenvalues@f= Re{Y '} in the range fore and after passivity enforcement. It is seen that the negative
1 kHz—200 kHz, and the eigenvalues@f; = Re{Y5:} inthe eigenvalues have been forced to be positive. The rms-error of
range 0 Hz—300 kHz. Fig. 8 shows an expanded view of Fig. 7tlte fitting of Y (between 1 kHz and 200 kHz) increased from
is seen that? andG;; have negative eigenvalues below 10 kHZ1.894E-4 to 1.897E-4.
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Fig. 13. 300 kV network.
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Fig. 14. Network equivalent for bus A.

(Y N . L
“0 002 004 006 008 O.1 10" .
Time [ms] original
Fig. 11. \oltage at low-voltage terminals: 0-0.1 ms. —_
c
£
------ without enf. g
{ —— — with enf. . 2

- 0 1 2 3 4 5
Frequency [kHz]

Voltage [V]
o
e

.I
|
4
\c
‘ [ ]
\ 5
] o
Lk
!
/
]
k .
\
)
]
!
!

Fig. 15. Element¥ (1, 1) andY’(2, 1).

0 0.2 O'AT 0.6 0.8 1 C. Network Equivalent
Time [ms]

Network equivalents for parts of a network may be used as a
. . means to reduce the computation time of time domain simula-
Fig. 12. \oltage at low-voltage terminals: 0—1 ms. . . .

tions [3]. However, unstable simulations may result when pas-
sivity is not enforced.

The significance of passivity enforcement will be demon- Fig. 13 shows a simple 300 kV system where the overhead
strated by an example of voltage transfer calculation, as sholivies are untransposed. A network equivalent for the system was
in Fig. 10. The circuit represents the situation that the tranfiest calculated in the phase domain with respect to bus A, as
former is connected to very long cables at the high-voltage sidown in Fig. 14.
and very short cables{25 m) at the low-voltage side. Aninci- The elements of the 3 by 3 admittantéw) were fitted in
dent 8/20us wave impinges the transformer at one of the higihe range 5 Hz-5 kHz using a common set of 26 poles. Fig. 15
voltage terminals. shows the elements(1, 1) andY (2, 1).

Fig. 11 shows the effect of the passivity enforcement on theNegative eigenvalues f@¥ were observed at about 1.7 kHz.
simulated voltages at the low-voltage terminals, for the tinféig. 16 shows the effect of passivity enforcement on the eigen-
frame 0-0.1 ms. It is seen that the passivity enforcement hadues, in the range 1 kHz—3 kHz. It is seen that the eigenvalues
only a very small effect on the simulated waveforms. become positive after enforcement of passivity.

Fig. 12 shows the simulated waveforms in the time frame The network equivalentin Fig. 14 was represented by an elec-
0-1 ms. Itis seen that the passivity enforcement has the effectrafal network in ATP-EMTP. A simulation of the equivalent
mitigating a zero sequence oscillation with negative dampingn open circuit was performed in ATP, starting from a phasor
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Fig. 16. Effect of passivity enforcement on eigenvalueé& of
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Fig. 17. Time domain simulation.

k=0

oy

k=k+1
Calculate Gg(sp)

Diagonalize Ggi(sy)
Update D :

D=D-TA,, T
]

Fig. 18. Enforcing passivity by simplistic approach.

solution as initial condition. Fig. 17 shows the node voltage
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Fig. 19. Change in;; due to passivity enforcement.

VII. SIMPLISTIC APPROACH

In the following we show a simple approach for passivity en-
forcement, based on the method developed in [2]. This approach
is very easy to implement in a computer program, but gives a
larger correction to the fittedl’, as compared to the previously
described QP-approach.

The real part of the rational approximation (3) can be written
as:

N

Gﬁtzj(s):d‘i‘Rﬁ{Z Cm

S — Qm

} =d+p(s). (16)

m=1
The full matrix becomes
Gai(s) = D + P(s). a7
We consider a single frequency s and diagonalize:
TAT'=D+P (18)
whereA contains the eigenvalueA.is separated into a sum:
T(Apos + Aneg) T ' =D+ P (19)

whereA,.s andA,,., contain the positive and negative eigen-
values, respectively. Moving the second term of the left side to
the right side produces a modifi€ek, which is PD:

Gﬁt, corr — lexpos]ji1 =D - TAnegTil + P. (20)

Thus,Gy;; can be modified to have its negative eigenvalues re-
placed by zeros by adding a correction/®o This procedure is
repeated for all frequencies for which we require passivity:

This alternative approach gives a correctior¥tp which is
larger than the one obtained by the QP-approach. Fig. 19 com-
pares the norm of the changeXg, for the transformer example
it the previous section, when using the simplistic approach and

bus A, before and after enforcement of passivity. It is seen that, QP-approach, respectively. Despite of the larger change to

the passivity enforcement mitigates an unstable simulation.}Aﬁt the time domain simulation (Fig. 11) was nearly identical
further analysis showed that without passivity enforcement, tﬂ?r‘the two approaches.

circuit had two unstable eigenvalues

A2 =24.37 + j11032.

In other cases the high accuracy of the QP-approach is crucial.
Fig. 20 shows a situation of a trapped charge simulation for an
exact Pl-equivalent of a 25 km 3 phase overhead line, whose
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open at t=10ms A sequential solution based on residue partitioning is used

/ if the number of residues becomes too large for Quadratic
/ ! Programming.
g The main characteristics of the method are:

1) The correction is minimal in the sense that it ensures pas-
e e c 600Hz, pos. sequence sivity With a smallest possﬁble increase in the RMS-error
of the rational approximation.
) 2) lterations are in general needed due to the nonlinear na-
ture of the problem. 1-3 iterations are normally sufficient.
The method was successfully applied to an exact
Pl-equivalent for an overhead line, a high frequency model
of a power transformer, and to a network equivalent. In these
examples the passivity enforcement had the effect of mitigating

Fig. 20. Disconnecting a transmission line.

1.5 y y T instability from the time domain simulation.
QP-approach A simplified approach (Section VII) was also proposed for
1r o, passivity enforcement. However, this approach leads to a larger
- . "y "
< 0.5} S S | change inYs, within the fitting range.
% 0 simplistic approach . APPENDIX A
= CALCULATION OF M
> -05 In this section we show how to build the matd{ in the
At E ] QP-approach.
We— no enforcement For each elementi, j) of Y we have given a rational
15— — . : - - approximation
0] 5 10 15 20 25 30
Time [ms] N
Ys. . = ™ g s Al
i, (5) r;s—ai,j,m—i_ SRR A5

Fig. 21. Trapped charge simulation. . .. . .
9 PP 9 For simplicity we now assumgj; to be of dimension 2 by

2, and we also assume = 2 for the order of approximation.
6 by 6Y was fitted by 30 poles in the range 0.01 Hz—2000 H5tacking the columns dfy, into a single columnyg;, and the
The transmission line (exact Pl) is energized by a 3 phase 600¢t#responding residues into a columywe obtain the linearized
voltage source which is ramped up from 0 to 1 V in 5 ms. Atklationship betweegg, andz
t = 10 ms the line is disconnected from the source.
Fig. 21 shows the simulated voltage on conductor 1 at the re- Ay = M Az (A.2)

ceiving end. It is seen that without passivity enforcement tr\}venere, shown in the equation at the top of the next page.

vo!tage bIO.WS up during ramp-up. When enforcing passivity Note that in our actual implementation we keep only the
using the simplified approach the trapped charge leaks out frore]},idues corresponding to the upper triangl& afs unknowns

the line. This result is i t as the shunt admitt i
€ ine. This result Is incorrect as the shunt admittance matbiy y- ;o 5 symmetric matrix. Alsoj}/ is never formulated in
for the line had zero conductance. When enforcing passivity . . :
. . e form shown above since we operate directly on its nonzero
the QP approach there is no discharge of the trapped charge (no. : ;
) ements for the calculation @t in (7).
drift was detected after 0.5 s).

APPENDIX B

CALCULATION OF
VIII. CONCLUSION Q

We consider the eigenproblem @f;; with focus on a partic-

The paper has presented a new method for the enforcemenygf eigenvalue\ and its corresponding right eigenvector
passivity for an admittance matrix approximated by rational

functions of the form given in (3). Passivity is ensured by en- (G — AM)v=0. (B.1)
forcing the eigenvalues @Fs; = Re{Y%:} to be positive.
The approach adopted is as follows:

1) Positive definiteness is first enforced fbrand £ of the (G — ADAv 4+ (AGgy — AXv = 0. (B.2)

rational approximation. o _ _
2) Positive definiteness is then enforced &, by calcu- Premultiplication of (B.2) with the corresponding left (row)

lating a correction to the residues of the rational approx@/genvectorw of G, makes the first term in (B.2) disappear
mation. The correction is based on linearization, leadirff!d We get

to a constrained Ii_near least squares problem which is wAGgv
solved by Quadratic Programming. A= ————.

Linearization of (B.1) gives

(B.3)

wv
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- 1 1 -
0 0 0 0 0 0
s—agi1,1 S$S—ai1,2
1 1
0 0 0 0 0 0
§—az 1,1 S$S—a21,2
M= 1 1
0 0 0 0 0 0
§—ai,21 S$—0G1,22
1 1
0 0 0 0 0 0
L §— Q221 §—a2,2 2
Becauseiy; is symmetrical we havey = v7, and when the ACKNOWLEDGMENT
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