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Enforcing Passivity for Admittance Matrices
Approximated by Rational Functions

Bjørn Gustavsen, Member, IEEEand Adam Semlyen, Life Fellow, IEEE

Abstract—A linear power system component can be included in
a transient simulation as a terminal equivalent by approximating
its admittance matrix by rational functions in the frequency do-
main. Physical behavior of the resulting model entails that it should
absorb active power for any set of applied voltages, at any fre-
quency. This requires the real part of to be positive definite (PD).
We calculate a correction to the rational approximation of which
enforces the PD-criterion to be satisfied. The correction is minimal
with respect to the fitting error. The method is based on lineariza-
tion and constrained minimization by Quadratic Programming.
Examples show that models not satisfying the PD-criterion can lead
to an unstable simulation, even though the rational approximation
has stable poles only. Enforcement of the PD-criterion is demon-
strated to give a stable result.

I. INTRODUCTION

T HIS paper deals with the topic of including in an elec-
tromagnetic transient simulation an admittance matrix

whose elements have been approximated (“fitted”) in the fre-
quency domain by rational functions. Examples of applications
are the modeling of power transformers at high frequencies [1],
[2] and the modeling of network equivalents [3].

Past experience has shown that simulations involving a fitted
can sometimes lead to an unstable simulation, even though

the elements of have been fitted using stable poles only.
A useful mitigation technique is to require the network to be

passive, i.e., the component must absorb active power for any
set of applied voltages, at any frequency. The resulting equiv-
alent may still have unphysical electrical components, but the
probability of an unstable simulation becomes greatly reduced.

A simple method for enforcing passivity has been introduced
in [2]. However, then the criterion for assessing passivity was
not sufficiently conservative as the focus was on the eigenvalues
of instead of the eigenvalues of . Also, the cor-
rection made to the original fitting was constant over a wide
frequency range and thus not minimal.

This paper presents a new method for enforcing passive be-
havior. Using the original fitting as a starting point in an iterative
procedure, aconstrainedleast squares fitting is calculated where
the constraints are directly related to the criterion for passivity.
As a result, the correction made to the original fitting is minimal
in terms of the resulting fitting error.
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II. CRITERION FORPASSIVITY

We are given in the frequency domain a component defined
by an admittance matrix :

(1)

For any complex vector we get for the absorbed power

(2)

where the asteriskdenotes transpose and conjugate. It follows
that will always be positive only if all eigenvalues of are
positive. Thus, a criterion for passivity is that be
positive definite (PD).

We note that is a symmetric, real matrix. Therefore, all
eigenvalues of are real.

III. ENFORCEMENT OFPASSIVITY

It is assumed that the rational approximation ofhas been
calculated with a fairly high accuracy. This makes it possible to
force any negative eigenvalue of to be positive by making
only a small correction to the rational approximation. This jus-
tifies an approach based onlinearization.

A. Initial Solution

We are given a matrix whose elements have been ap-
proximated by a rational function of the form

(3)

Our task is to modify all or some of the parameters, ,
and for the elements of so that all eigenvalues of

become positive.

B. Linearization

The selected parameters of the rational approximationare
placed in a single vector, and the columns of are placed
in a vector . Linearization of (3) gives the following incre-
mental relation between and :

(4)

Details of the calculation of are given in Appendix A.
Thus, a linear relation results betweenand :

(5)

where vector contains the elements of .
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Finally, a linear relation is calculated between and the
eigenvalues of :

(6)

Combining (5) and (6) gives a linearized relation between the
eigenvalues of and the parameter vector:

(7)

Appendix B gives details regarding the calculation of.

C. Constrained Least Squares Approximation

We want to find a least squares solution to the
problem

(8)

subject to passivity constraints for . Linearization using (4)
gives

(9)

We require the eigenvalues of to be positive. This is
achieved by (7):

(10)

Equation (9) and (10) can be rewritten in the standard form:

(11)

where

(12)

A least squares solution for (11) is calculated using Quadratic
Programming (QP):

minimize

subject to

(13)

where

(14)

D. Preprocessing

We have found it useful to separately enforce positive defi-
niteness for and of the rational approximation [ and
are composed of and in (3)]. This is achieved as follows:

1) Diagonalize and :

(15)

Negative eigenvalues in and are set equal to 0 and
modified matrices and are calculated by (15)
( and have no negative eigenvalues.)

Fig. 1. Overview of calculation.

2) and are subtracted from the data ( ),
which is subjected to anew fitting with , and re-
stricted to be zero. Finally, and are added
to the new rational approximation.

Note that does not depend on, but negative eigen-
values in may lead to an unstable simulation and are therefore
not tolerated.

E. Program Overview

Fig. 1 gives an overview of the calculation procedure. The
program takes as input the original data, and the parameters of
the rational approximation. and are first enforced to be pos-
itive definite. The parameters of the rational approximation are
placed in and a correction is calculated using Quadratic
Programming and added to . The procedure is repeated until
all constraints have been satisfied. The linearizations (4) and (7)
are recalculated in each iteration.

IV. PRACTICAL CONSIDERATIONS

A. Passivity Outside Fitting Range

In general, will have been fitted within a certain frequency
range ( – ). In order to ensure to be positive def-
inite also outside this frequency range, we include additional
frequency samples when building the constraint matricesand

of the QP-problem (13).

B. Updating of QP-Problem During Iterations

Iterations as indicated in Fig. 1 are in general needed because
(13) represents a linear model of a nonlinear problem. In our
implementation we use only residues [in (3)] as parameters
in (see Section IV-C below). This results in (3) being linear
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in , and thus in (13) will not change during the iterations.
The other matrices need to be recalculated during the
iterations.

C. Reduction of Problem Size

The number of elements inis reduced by nearly a factor of
4 as follows:

• Only residues are kept as unknowns (poles as well as ele-
ments of , are considered known).

• Redundant elements occurring indue to symmetry of
are removed.

Furthermore, the number of rows inand can be drastically
reduced by including only rows where a constraint violation oc-
curs. When doing iterations as in Fig. 1, it is then necessary to
also include in rows where violations occurred in previous
steps (since violations may reappear).

D. Sparsity

Several of the matrices used in the building of the
QP-problem (13) are sparse. This is the case for matrices

, , and . When calculating , , and via these matrices
we operate directly on the nonzero elements, thus increasing
computational efficiency and avoiding the need to store zero
elements.

We note that in the QP-problemis full, whereas is block-
diagonal with as many blocks as there are elements in.

V. SEQUENTIAL SOLUTION

The measures mentioned in Section IV-C make it possible to
solve relatively large systems. Using Matlab, problem sizes with
up to 250 elements in are readily handled. However, larger
problem sizes can occur, for instance in the case of network
equivalents where very high order fittings may be used. A fur-
ther reduction of is possible by redoing the iterations in Fig. 1
with different partitions of .

We have implemented a simple method for partitioning
which we refer to assequential solution. The method can be
outlined as follows:

1) Sort the elements of so that the magnitudes of the asso-
ciated poles come in ascending order.

2) In each iteration in Fig. 1, use a contiguous set of elements
from . The sets of elements between two successive it-
erations are overlapping. Include in only rows corre-
sponding to the frequencies covered by the poles of the
partition.

3) Repeat the iterations in Fig. 1 until all elements inhave
been utilized.

The rationale of this procedure is the following: when a nega-
tive eigenvalue occurs at a given frequency, partial fractions
in (3) whose poles have magnitude in the neighborhood of
are believed to be good candidates for enforcing the eigenvalue
to become positive.

VI. CALCULATED RESULTS

In this section we show numerical results demonstrating
the method of passivity enforcement and its effects on a time

Fig. 2. Elements ofY for single phase overhead line.

Fig. 3. Enforcing eigenvalues ofG to become positive.

domain simulation. The initial rational approximation is in
all examples calculated using Vector Fitting [4] and the time
domain simulations are based on trapezoidal integration,
similarly as in EMTP.

A. Exact PI-Equivalent for Transmission Line

In this example we model a 25 km single phase overhead line
as an exact PI-equivalent (admittance matrix).

Fig. 2 shows the phase domain elements of the 2 by
2 -matrix as fitted by 30 poles in the range 0.01 Hz–2000 Hz.
We note that all (four) elements have been fitted to an accuracy
better than 10 within the fitting range.

One eigenvalue of is negative around 5 kHz,
implying that is not passive. Passivity was enforced by mod-
ifying the residues of using the QP-approach of Fig. 1.
Fig. 3 shows the eigenvalues of , before and after passivity
enforcement. (A single iteration was used). We note that all
eigenvalues have become positive, at all frequencies. The pas-
sivity enforcement had the effect of increasing the RMS-error
in the fitting range from 2.48E-9 to 3.76E-8, which is still very
small.

We now demonstrate the effect of passivity enforcement on
a time domain simulation. The transmission line (Fig. 4) is
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Fig. 4. Disconnecting a transmission line.

Fig. 5. Effect of passivity enforcement on a time domain simulation.

Fig. 6. 410 MVA generator step-up transformer.

energized by a 600 Hz voltage source which is ramped up from
0 to 1 V in 5 ms. At ms the line is disconnected from
the source.

Fig. 5 shows the simulated voltage on the open line end.
Without passivity enforcement the voltage is seen to become
unstable after disconnecting the line. The state equation realiza-
tion of the disconnected line was found to have one unstable pair
of poles ( ), which resonates at 4919 Hz. Passivity
enforcement moved the pole pair to ( ) which is
stable, although weakly damped. Fig. 5 shows that a stable sim-
ulation has been achieved.

B. Transformer Model

We return to the transformer measurements used in [2] for
which the admittance matrix has been measured in the fre-
quency range 1 kHz–200 kHz [5].

The measurements were fitted using a 10th order approxima-
tion. Fig. 7 shows the eigenvalues of in the range
1 kHz–200 kHz, and the eigenvalues of in the
range 0 Hz–300 kHz. Fig. 8 shows an expanded view of Fig. 7. It
is seen that and have negative eigenvalues below 10 kHz.

Fig. 7. Eigenvalues ofG andG .

Fig. 8. Expanded view of Fig. 7.

Fig. 9. Enforcing eigenvalues ofG to become positive.

The QP-approach in Fig. 1 enforced to become passive
in a single iteration. Fig. 9 shows the eigenvalues of be-
fore and after passivity enforcement. It is seen that the negative
eigenvalues have been forced to be positive. The rms-error of
the fitting of (between 1 kHz and 200 kHz) increased from
1.894E-4 to 1.897E-4.
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Fig. 10. Voltage transfer calculation.

Fig. 11. Voltage at low-voltage terminals: 0–0.1 ms.

Fig. 12. Voltage at low-voltage terminals: 0–1 ms.

The significance of passivity enforcement will be demon-
strated by an example of voltage transfer calculation, as shown
in Fig. 10. The circuit represents the situation that the trans-
former is connected to very long cables at the high-voltage side,
and very short cables (25 m) at the low-voltage side. An inci-
dent 8/20 s wave impinges the transformer at one of the high
voltage terminals.

Fig. 11 shows the effect of the passivity enforcement on the
simulated voltages at the low-voltage terminals, for the time
frame 0–0.1 ms. It is seen that the passivity enforcement has
only a very small effect on the simulated waveforms.

Fig. 12 shows the simulated waveforms in the time frame
0–1 ms. It is seen that the passivity enforcement has the effect of
mitigating a zero sequence oscillation with negative damping.

Fig. 13. 300 kV network.

Fig. 14. Network equivalent for bus A.

Fig. 15. ElementsY (1; 1) andY (2; 1).

C. Network Equivalent

Network equivalents for parts of a network may be used as a
means to reduce the computation time of time domain simula-
tions [3]. However, unstable simulations may result when pas-
sivity is not enforced.

Fig. 13 shows a simple 300 kV system where the overhead
lines are untransposed. A network equivalent for the system was
first calculated in the phase domain with respect to bus A, as
shown in Fig. 14.

The elements of the 3 by 3 admittance were fitted in
the range 5 Hz–5 kHz using a common set of 26 poles. Fig. 15
shows the elements and .

Negative eigenvalues for were observed at about 1.7 kHz.
Fig. 16 shows the effect of passivity enforcement on the eigen-
values, in the range 1 kHz–3 kHz. It is seen that the eigenvalues
become positive after enforcement of passivity.

The network equivalent in Fig. 14 was represented by an elec-
trical network in ATP-EMTP. A simulation of the equivalent
in open circuit was performed in ATP, starting from a phasor
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Fig. 16. Effect of passivity enforcement on eigenvalues ofG.

Fig. 17. Time domain simulation.

Fig. 18. Enforcing passivity by simplistic approach.

solution as initial condition. Fig. 17 shows the node voltage at
bus A, before and after enforcement of passivity. It is seen that
the passivity enforcement mitigates an unstable simulation. A
further analysis showed that without passivity enforcement, the
circuit had two unstable eigenvalues

Fig. 19. Change inY due to passivity enforcement.

VII. SIMPLISTIC APPROACH

In the following we show a simple approach for passivity en-
forcement, based on the method developed in [2]. This approach
is very easy to implement in a computer program, but gives a
larger correction to the fitted , as compared to the previously
described QP-approach.

The real part of the rational approximation (3) can be written
as:

(16)

The full matrix becomes

(17)

We consider a single frequency s and diagonalize:

(18)

where contains the eigenvalues.is separated into a sum:

(19)

where and contain the positive and negative eigen-
values, respectively. Moving the second term of the left side to
the right side produces a modified which is PD:

(20)

Thus, can be modified to have its negative eigenvalues re-
placed by zeros by adding a correction to. This procedure is
repeated for all frequencies for which we require passivity:

This alternative approach gives a correction to which is
larger than the one obtained by the QP-approach. Fig. 19 com-
pares the norm of the change to for the transformer example
in the previous section, when using the simplistic approach and
the QP-approach, respectively. Despite of the larger change to

the time domain simulation (Fig. 11) was nearly identical
for the two approaches.

In other cases the high accuracy of the QP-approach is crucial.
Fig. 20 shows a situation of a trapped charge simulation for an
exact PI-equivalent of a 25 km 3 phase overhead line, whose
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Fig. 20. Disconnecting a transmission line.

Fig. 21. Trapped charge simulation.

6 by 6 was fitted by 30 poles in the range 0.01 Hz–2000 Hz.
The transmission line (exact PI) is energized by a 3 phase 600 Hz
voltage source which is ramped up from 0 to 1 V in 5 ms. At

ms the line is disconnected from the source.
Fig. 21 shows the simulated voltage on conductor 1 at the re-

ceiving end. It is seen that without passivity enforcement the
voltage blows up during ramp-up. When enforcing passivity
using the simplified approach the trapped charge leaks out from
the line. This result is incorrect as the shunt admittance matrix
for the line had zero conductance. When enforcing passivity by
the QP approach there is no discharge of the trapped charge (no
drift was detected after 0.5 s).

VIII. C ONCLUSION

The paper has presented a new method for the enforcement of
passivity for an admittance matrix approximated by rational
functions of the form given in (3). Passivity is ensured by en-
forcing the eigenvalues of to be positive.

The approach adopted is as follows:

1) Positive definiteness is first enforced forand of the
rational approximation.

2) Positive definiteness is then enforced for by calcu-
lating a correction to the residues of the rational approxi-
mation. The correction is based on linearization, leading
to a constrained linear least squares problem which is
solved by Quadratic Programming.

A sequential solution based on residue partitioning is used
if the number of residues becomes too large for Quadratic
Programming.

The main characteristics of the method are:

1) The correction is minimal in the sense that it ensures pas-
sivity with a smallest possible increase in the RMS-error
of the rational approximation.

2) Iterations are in general needed due to the nonlinear na-
ture of the problem. 1–3 iterations are normally sufficient.

The method was successfully applied to an exact
PI-equivalent for an overhead line, a high frequency model
of a power transformer, and to a network equivalent. In these
examples the passivity enforcement had the effect of mitigating
instability from the time domain simulation.

A simplified approach (Section VII) was also proposed for
passivity enforcement. However, this approach leads to a larger
change in within the fitting range.

APPENDIX A
CALCULATION OF

In this section we show how to build the matrix in the
QP-approach.

For each element of we have given a rational
approximation

(A.1)

For simplicity we now assume to be of dimension 2 by
2, and we also assume for the order of approximation.
Stacking the columns of into a single column and the
corresponding residues into a column, we obtain the linearized
relationship between and

(A.2)

where, shown in the equation at the top of the next page.
Note that in our actual implementation we keep only the

residues corresponding to the upper triangle ofas unknowns,
as is a symmetric matrix. Also, is never formulated in
the form shown above since we operate directly on its nonzero
elements for the calculation of in (7).

APPENDIX B
CALCULATION OF

We consider the eigenproblem of with focus on a partic-
ular eigenvalue and its corresponding right eigenvector:

(B.1)

Linearization of (B.1) gives

(B.2)

Premultiplication of (B.2) with the corresponding left (row)
eigenvector of makes the first term in (B.2) disappear
and we get

(B.3)
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Because is symmetrical we have , and when the
eigenvectors have been normalized to unit length we get

(B.4)

Equation (B.4) is used only for distinct eigenvalues [6, p. 229]
as it may produce an incorrect result for equal eigenvalues.

If two eigenvalues, , , are found to be closer than a cer-
tain , the sensitivities for these two eigenvalues are calculated
by replacing in (B.4) by the matrix formed by (thearbitrary
set within the two-dimensional null-space of) the two eigenvec-
tors associated with the double eigenvalue . The
resulting sensitivity in (B.4) now becomes a full (symmetric)

matrix

(B.5)

The perturbations of the equal eigenvalues ,
are the eigenvalues of of (B.5). They are nonlinear func-

tions of , , , but by putting , we get

(B.6)

It now follows that the eigenpair , is forced to be positive
by the following constraints:

(B.7)

(B.8a)

(B.8b)

The above approach has been generalized for eigenvalues of
higher multiplicity by replacing (B.7) by , and (B.8)
by .
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