
City Guide Over Android

City Guide over Android

TDT4520 Specialization Project

Hanjie Shu

 Spring, 2010

 Supervisor: John Krogstie, Jacqueline Floch

Department of Computer and Information Science, IDI

City Guide Over Android

Abstract

The goal of the project is to explore how to realize a mobile city guide using the
Android platform, including a prototype of the city guide.

The project uses the research method Design Science. Through designing and
implementing an artifact (i.e. prototype of city guide), the goal of the project is
reached. Finally, the project is evaluated in four aspects including platform evaluation,
general functional evaluation, scenario evaluation, and non-functional evaluation.

The prototype implemented includes basic functionalities of city guide such as
showing a map, locating points of interest (POIs) on a map, locating location of a user,
retrieving information of POIs, add reviews about POIs, plan a tour, support
communication (e.g. phone, short message), show route direction to POIs, add
reminder, and choose different kinds of POIs to show on map.

Moreover, the project has explored how to integrate current technologies like Google
Calendar, Google Map, Browser, Contact application and Phone application into the
prototype.

As well, the project has investigated non-functional aspects including extendibility,
tailorability, and usability.

Overall, the project presents a comprehensive understanding of how to realize city
guide on the new mobile platform Android.

City Guide Over Android

Preface

This report documents the project work performed in the subject TDT4520 “Program
and Information Systems, Specialization Project” by Hanjie Shu. The project counts
for 15 credit points and is executed in the first semester of the last year of Master
Program of Information Systems in The Norwegian University of Technology and
Science, NTNU.

The project was defined through the UbiCompForAll research project, coordinated by
SINTEF in Trondheim. UbiCompForAll started in October 2008, and the name is
short for “Ubiquitous Service Composition for All Users”. And the project was
defined by Jacqueline Floch, project manager of the UbiCompForAll project. The
project intends to explore the realization of a City Guide on the Android platform.

I would like to thank my main advisor at SINTEF, Jacqueline Floch, and my
supervisor at NTNU, John Krogstie, for their support and feedback.

Trondheim, 15th June 2010

Hanjie Shu

City Guide Over Android

Table of Contents

Chapter 1: Introduction ...1

1.1 Project Context..1

1.2 Problem Definition ..1

1.3 Project Contribution ...2

1.4 Report Outline...2

Chapter 2: Background ..3

2.1 Existing Mobile City Guides and Similar Solutions...3

2.1.1 Information Guide ...4

2.1.2 Events Guide...5

2.1.3 Navigation Software ...7

2.1.4 Tailorable Software..8

2.1.5 Others ..9

2.2 Mobile Application Development Technologies ...10

2.2.1 WAP ..10

2.2.2 J2ME ...10

2.3 Android ..12

2.3.1 Highlights of Android ..12

2.3.2 Introduction of Android ..13

2.3.3 Application Fundamentals ..15

2.4 Location sensing technologies ..18

Chapter 3: Research Method ...19

3.1 Research Method...19

Chapter 4: Requirement Specification..22

4.1 Scenarios ..22

4.1.1 Scenario 1: Corporate Group..22

4.1.2 Scenario 2: Family..23

4.2 Requirement Specification ...24

4.2.1 Functional Requirements ..24

4.2.2 Non-Functional Requirements ..26

Chapter 5: Solution...27

5.1 General Architecture...27

5.2 Implementation of Functions ...29

5.2.1 Component Diagram..29

5.2.2 Map and POIs and Review ..31

5.2.3 Get My Location...32

5.2.4 Reminder...33

5.2.5 Search ..35

5.2.6 My Tour plan ..36

5.2.7 Driving Direction..37

5.2.8 Communication ..38

City Guide Over Android

5.3 Class Diagram ...39

5.4 Data Model...41

Chapter 6: Evaluation ..43

6.1 Platform Evaluation..43

6.2 General Functional Evaluation ..43

6.3 Scenario Evaluation ..45

6.4 Non-Functional Evaluation ..57

6.4.1 Flexibility ..57

6.4.2 User Interface Friendly..57

6.4.3 Combination of Existing Innovational Technologies ..57

Chapter 7: Conclusion and Further work ..58

7.1 Achievements ...58

7.2 Further Work ..59

APPENDIX ..60

A: References...60

B: Code Examples ...62

C: POIs and Events XML Document Example ..64

D: UI Design in XML document ..67

E: Relevant Source Code ..68

City Guide Over Android

Figures

Figure 2-1: Demo of Vindigo [Vindigo 2010]...4

Figure 2-2: The architecture of solution of [Hansen 2007];..5

Figure 2-3: Demonstration of [Blakstad 2008] on Nokia N95..6

Figure 2-4: Screenshot of Wayfinder Navigator ...7

Figure 2-5: myMytileneCity Guide [Kenteris 2007]...8

Figure 2-6: Architecture of Android platform [Android 2010]...13

Figure 2-7: The Lifetime of Activity ..16

Figure 2-8: Location-sensing technologies [Hazas 2004]...18

Figure 2-9: J2ME Architecture [Helal 2002] ..11

Figure 5-1: General Architecture of Solution ...27

Figure 5-2: Component Diagram ..29

Figure 5-3: Data Model...41

Figure 5-4: Message Sequence Chart of Map and POIs and Review ...31

Figure 5-5: Message Sequence Chart of Automatic Localization...32

Figure 5-6: Message Sequence Chart of Reminder...33

Figure 5-7: Reminder Implementation..34

Figure 5-8: Message Sequence Chart of Search..35

Figure 5-9: Message Sequence Chart of My Tour Plan ..36

Figure 5-10: Message Sequence Chart of Driving Direction ..37

Figure 5-11: Class Diagram of Solution ...39

Figure 6-1: Start Application ..45

Figure 6-2: Contact………………………………………………………………………………..47

Figure 6-3: Menu ..46

Figure 6-4: Search…………………………………………………………………………………49

Figure 6-5: Result of Search about Church………………………………………………………..49

Figure 6-6: Tap on bubble of POI ...50

Figure 6-7: Description of POI about Nidaros Cathedral…………………………………………50

Figure 6-8: Review of POI………………………………………………………………………...50

Figure 6-9: Add Review..50

Figure 6-10: My Tour Plan ...51

Figure 6-11: Reminder ..51

Figure 6-12: Add new Reminder………………………………………………………………….52

Figure 6-13: Add title of Reminder ………………………………………………………………..52

Figure 6-14: Add Location of Reminder…………………………………………………………..52

Figure 6-15: Set time of Reminder ………………………………………………………………..52

Figure 6-16: Set Date of Reminder ...53

Figure 6-17: Show Reminder Result...53

Figure 6-18: Get My Location ..54

Figure 6-19: The result after choosing one Sight in Tour plan ...54

City Guide Over Android

Figure 6-20: Show Direction to one Sight………………………………………………………...55

Figure 6-21: Contact with somebody..56

Figure 6-22: New Contact……………………………………………………………………….. ..47

Figure 6-23: Group………………………………………………………………………………...48

Figure 6-24: new group...48

Figure 6-25: Add contact to group. ...48

Figure 6-26: Unsuccessful to get Location………………………………………………………..54
Figure 6-27: Firstly go to get current position……………………………………………….........55

City Guide Over Android

Tables

Table 3-1: Guideline for Design Science Research [Hevner 2004] ..19

Table 4-1: Map in Functional Requirements...24

Table 4-2: Information Retrieval in Functional Requirements ...25

Table 4-3: Communication in Functional Requirements ..25

Table 4-4: Review in Functional Requirements..25

Table 4-5: Reminder in Functional Requirements ..25

Table 4-6: Plan Tour in Functional Requirements ..25

Table 4-7: Non-Functional Requirements...26

Table 6-1: Map Evaluation ...43

Table 6-2: Information Retrieval Evaluation ..44

Table 6-3: Communication Evaluation ...44

Table 6-4: Review Evaluation...44

Table 6-5: Reminder Evaluation ...44

Table 6-6: Plan Tour Evaluation ...44

City Guide Over Android

Chapter 1: Introduction

The chapter presents project context, project goal, project contribution and report
outline.

1.1 Project Context

The project is given in the context of UbiCompForAll [UbiCompForAll 2010],
which is a project funded by the Research Council of Norway; it started in October
2008 and is meant to last 4 years. It contains several partners SINTEF ICT, NTNU,
Wireless Trondheim AS and others. The goal of UbiCompForAll is to provide a
solution to enable end users (non-IT professional) compose services according to
their personal needs in ubiquitous computing environment.

Today, people want to adapt their living environment to intelligent environment,
which includes a powerful infrastructure and some intelligent objects. People
perform their tasks through the intelligent environment. However, it leads to an issue
about how users customize computing activity for themselves, because sometimes
there are a great number of services around them, how to manage the complexity and
tailor them to what users really want. End users are considered non-IT professional.
Then, developers should provide composition tools, which enable users to compose
services by themselves. It is just the goal of UbiCompForAll. The challenge is that
service composition framework must be sophisticated enough to support correct
service composition, as well, must be intuitive enough for ordinary end-users.

The platform of Android [Android 2010] has been chosen to implement mobile
services in UbiCompForAll. The project is intended to explore the realization of city
guide over Android. The result of the project can be used as the start point for service
composition research, which meets the goal of UbiCompForAll.

1.2 Problem Definition

The project is to investigate the realization of tailorable City Guide over the platform
of Android. One City Guide should contains some functionalities like automatic
localization, navigation support, retrieving information from points of interests,
setting reminder, adding reviews, communication support and so on. Moreover, the
project should explore current innovational technologies as many as possible and put
them as building blocks like Google Map, Google Calendar, and Twitter. And the
project also needs to see how they can be tailored and composed together. Finally,
the project will result in the demonstration of prototype of city guide.

 1

City Guide Over Android

1.3 Project Contribution

The main contribution of the project is to present a comprehensive understanding of
how to realize city guide on the new mobile platform Android. Now we can see
many realizations of city guide on other platforms such as Windows Mobile, IPhone,
J2ME and so on. However, there is few city guides over Android. The final prototype
covers basic functionalities of city guide such as showing map, locating points of
interest (POIs) on map, locating user’s location, retrieving information of POIs, add
review about POIs, plan a tour, communication, show route direction to POIs, add
reminder, and choose different kinds of POIs to show on map.

1.4 Report Outline

Chapter 2: Background describes existing mobile city guides and similar solutions,
and presents mobile application development technologies like WAP, J2ME, and
gives concrete introduction of Android, finally introduces wireless Internet access
technology and location sensing technology.
Chapter 3: Research Method introduces the research method Design Science and
describes relevant points between Design Science and the project.
Chapter 4: Requirement Specification presents scenarios used in the project, and
functional requirements and non-functional requirements.
Chapter 5: Solution gives the solution architecture of the project, and solution of
each function.
Chapter 6: Evaluation presents platform evaluation, general functional evaluation
and scenario evaluation.
Chapter 7: Conclusion and Further work presents the achievement of the project,
and the points needed to be improved.

 2

City Guide Over Android

Chapter 2: Background

The chapter describes existing mobile city guides and similar solutions, and presents
mobile application development technologies like WAP, J2ME, and gives concrete
introduction of Android, and comparison between these different mobile platforms,
finally introduces wireless Internet access technology and location sensing
technology.

2.1 Existing Mobile City Guides and Similar Solutions

In this chapter, I shortly describe some city guides or related applications, some of
them are products in the market, and some are for research or students’ projects. We
can summarize solution methods and functional requirements from them. According
to their features of functionalities implemented, I divide them into different groups:

Information Guide is focus on providing information like restaurants, bars,
museums, movies, ATM, parking lots and so on in a city. Usually, they don’t have
automatic localization.

Event Guide emphasizes on providing information about current events around
user’s position in a city. Sometimes, they also provide information about nearby bars,
hotels, parking lot and so on.

Navigation Software puts navigation support as its main feature.

Tailorable Software enables users to tailor their visit based on their personal interest,
and tailors the information they want.

In addition, I list other applications briefly, some of them can let users to add review,
some support audio navigation, some are the solutions based on browser.

 3

City Guide Over Android

2.1.1 Information Guide

Vindigo

Vindigo [Vindigo 2010] is software for PDA (Palm and Pocket PC/Windows
Mobile). The software helps users know about great restaurants, bars, movies, and
museums in major U.S. cites and find ATM and parking lots nearby. It also tells
users how to get where they want to arrive with the color map. But users have to
input locations by themselves, the product lacks automatic localization. And users
can submit reviews of restaurants, bars and so on. The content in the software can be
updated when the PDA is connected to computers, which is connected to Internet.
Generally, it is not as advanced as some current popular products. However, it
provides information, which is very useful for users. It is very helpful for me to
design functions in City Guide for how to meet users’ need. There is a picture
attached below of the product.

Figure 2-1: Demo of Vindigo [Vindigo 2010]

 4

City Guide Over Android

2.1.2 Events Guide

Cultural Guide

[Hansen 2007] is a project in NTNU with the aim of creating a mobile application
for getting current or following happening event in Trondheim. Users can find some
events showed on a map on their mobile phones with the application, these events
will happen in the following hours near where they are. The functionalities
implemented in the project could be a part of functional requirements of my project.
The architecture of the project is showed in the Figure 2-2 below. Cell phone is
positioned with GPS transmitter installed in it; it sends Http Request (1) in Java
(Development platform chosen for the project is J2ME) to PHP server, which
retrieves required data (2) from Utguiden Database. Utguiden [UtGuiden 2010] is a
cultural guide managed by the local newspaper in Trondheim, Adresseavisa. It
contains all forms of events hosted in Trondheim and is accessed through the website
of Adresseavisa. The project uses an existing framework of developing map
application for mobile device. The framework can display a detailed map of
Trondheim; and it is possible to register information at specific locations.

 Figure 2-2: The architecture of solution of [Hansen 2007];

 5

City Guide Over Android

Mobile City Guide

Blakstad [Blakstad 2008] created a mobile city guide of Trondheim, which shows
user’s current position on map, shows current events or places to eat or drink near
the current position. Users can read further information about them. Users also can
navigate around the map. Figure 2-3 below shows the software running on Nokia
N95. Smiley face represents user’s current position, the number1, 2, 3 stands for
points of interest near the user. The city guide uses maps and POI-database from
IPos [Ibrahim 2008], a free map based on the OpenStreetMap project and a map
from Norge Digital. The source of information used in the project is from UtGuiden
[UtGuiden 2010] that is also used in [Hansen 2007] as mentioned in last section for
providing current events, and Vibb [Vibb 2010] as information source of business. It
can use GPS data for localization, and Wi-Fi localization from the solution of
GeoPos [GeoPos 2010] that is a project and company initiated at NTNU.

Figure 2-3: Demonstration of [Blakstad 2008] on Nokia N95

 6

City Guide Over Android

2.1.3 Navigation Software

Standalone GPS device is popular today, especially for providing navigation when
driving, because it is easy to use without too many functions and more and more
people drive cars. It is so useful to direct people to arrive in their destinations. It
includes some information like driving routes, gas stations, points of interest.
Meanwhile, there are many mobile phone with GPS installed now, like Nokia 6110
Navigator [Nokia 6110]. Their manufacturers also provide navigation application
with such information as described above. Some third party software companies also
produce navigation software for mobile phones.

Wayfinder Navigator

Wayfinder is a leading supplier of location and navigation service for mobile phones.
Wayfinder Navigator [Wayfinder 2010] is its flagship product through some years
and transforms mobile phones to more useful than the ordinary GPS. In addition to
the functions of Vindigo [Vindigo 2010], it provides information about the real
traffic information, and even gives alternative route in the case of traffic jams. And
users get warned when there are speed cameras. Users also get voice instruction and
weather reports. The software helps users share their favorites with their friends or
family via SMS or Email. Finally, it can update information and latest map through
mobile internet. Regrettable, Wayfinder has stopped development and maintenance
of the product due to be acquired by Vodafone. Its relevant navigation product has
been installed into Vodafone 360 handsets. The Figure 2-4 below is a screen shot
from Wayfinder Navigator. Overall, Wayfinder Navigator is powerful and includes
many kinds of functions. It is a good model for my project.

Figure 2-4: Screenshot of Wayfinder Navigator

 7

City Guide Over Android

Ovi Map
Ovi map [Ovi map 2010] is the navigation application running on many Nokia
phones. It covers map of over 70 countries all over the world. It supports driving
navigation, walk navigation, map update, event guides, and Lonely Planet guide
[Lonely Planet 2010], which is the world largest provider of electronic tourist
guides.

2.1.4 Tailorable Software

myMytileneCity Guide
There is a J2ME-based mobile tourist guide application myMytileneCity Guide
presented in [Kenteris 2007]. Firstly the guide lets users input information that they
are interested in. Then the information is sent to remote server. The remote server
generalized JAR file including the information. Finally, it sends back to users, and
users installed it on their mobile devices. The architecture of the tourist guide is
showed in the Figure 2-5 below. Server notifies end users update information through
SMS message. If end users agree, their mobile devices connect to Server to download
new content. The mechanism of dynamic installing according to the interest of end
users meets the feature of tailorability well.

Figure 2-5: myMytileneCity Guide [Kenteris 2007]

 8

City Guide Over Android

GUIDE
GUIDE [Cheverst 2000] is a tourist guide, which has the important feature of being
tailorable. Users can tailor their visiting route based on their interests. In addition,
the guide can tailor information, provide special information to end users according
to their personal preference (e.g. somebody is interested in museum or architecture),
environmental context, and the time of the day. And the guide can notify users the
dynamic information, for example, when one tourist point is closed earlier than
planned due to emergency.

2.1.5 Others

AudioTravel [AudioTravel 2010] has mobile travel guide including some basic
functions as described above, especially, it provides audio player to guide users in
the map.

CityGuide [AOL 2010] enables users see categories of venue across US such as
restaurants, bars and clubs, all voted “Best” by visitors.

Traveldodo [Traveldodo 2010] provides a free mobile city guide, which covers over
500 cities in the world. It is compatible with almost all the mobile phones after 2006.
It is an off-line application. It allows users to add reviews.

Schmap [Schmap 2010] enables iPhone, iPod Touch, Nokia users to visit the website
www.schmap.com with the browser in their mobile devices to get city guide with
dynamic map, pictures, review, and local search.

 9

http://www.schmap.com/

City Guide Over Android

2.2 Mobile Application Development Technologies

There are three major mobile application development technologies presented in
[Read 2003]: Wireless Application Protocol (WAP) and NTT DoCoMo’s i-mode,
and Sun’s Java 2 Micro Edition (J2ME). The second technology i-mode is a kind of
wireless Internet service with strong business model, different with WAP that is a
protocol.

2. 2.1 WAP

WAP (www.wapforum.org) is a free, open specification that lets wireless devices
easily interact with service and each other. WAP 2.0 adopts existing web standards
and lets developers create applications that feature animation, streaming media, and
music download. In WAP 2.0, developers write content in XHTML using the
XHTML basic profile. WAP 2.0 is backward compatible with the previous standard,
WAP 1.x, which uses Wireless Markup Language (WML) rather than XHTML for
document formatting.

2.2.2 J2ME

J2ME is a popular mobile development platform now. J2ME is from Sun
Microsystems and targets on consumer electronics, portables and embedded devices.
The architecture of J2ME consists of three layers: Java Virtual Machine,
Configurations, and Profiles. There is the Figure 2-9 from [Helal 2002] describing
the architecture of J2ME. We can see there are two columns in the diagram. They
represent two sub architectures of J2ME respectively. Left is considered for devices
that are always connected but relatively resource poor such as set-top boxes (e.g.
satellite TV receiver). Right is for the devices such as mobile phones. The kilobyte
Virtual Machine at the bottom of right is smaller runtime environment for
resource-constrained devices. It is in the range of 40-80 Kbytes. On KVM,
Connected and Limited Device Configuration (CLDC) defines a standard Java
platform for small, resource-constrained, connected device and enables the dynamic
delivery of Java application and content to those devices. The top one is MIDP,
which is set of Java APIs related to interface, persistence storage, networking, and
application model.

J2ME application starts in MIDlet, which contains the constructor method as well as
the methods startApp(), pauseApp(), and destroyApp(). It calls the first method when

 10

http://www.wapforum.org/

City Guide Over Android

application starts or restarts. It calls the pauseApp() when the phone’s idle or paused
mode and calls destroyApp() right before it is unloaded.

J2ME is best used for complicated or interactive applications, or when WAP and
i-mode is not available and not suitable.

Figure 2-9: J2ME Architecture [Helal 2002]

 11

City Guide Over Android

2.3 Android

Android is Mobile Platform developed by Google. Developers create applications in
Java on the platform. It includes some important features like 3D graphics, Media
support for common audio, video, and still image formats (MPEG4, H.264, MP3,
AAC, AMR, JPG, PNG, GIF), GSM Telephony, Bluetooth, 3G, Wi-Fi, GPS
depending on hardware capability of mobile devices.

2.3.1 Highlights of Android

Firstly, Android is open-source platform. Secondly, Android enables reuse of
components. For example, there is one component for editing text files in one
application; other applications can make use of the component as needed, of course,
the application has released the permission that other applications can use it. In
J2ME [Sun 2010], one application implements most functionalities in a single midlet
extending from Midlet base class but Android contains different components types of
Activity, Service, Content Provider, Broadcast Receiver in one application and they
can communicate through sending intent message, J2ME is not easy as Android to
write modular code. Thirdly, Android can be native access to Google map
infrastructure. And it supports GPS localization. Fourthly, its network can work in
the way of Bluetooth, 3G or Wi-Fi. Finally, it provides Widgets classes and Layout
classes for designing UI. Developers can write UI in XML layout file as described in
APPENDIX D.

 12

City Guide Over Android

 2.3.2 Introduction of Android

Figure 2-6: Architecture of Android platform [Android 2010]

There is a figure (Figure 2-6) of the architecture of Android platform showed above.

For the layer Applications at the top, Android ship with some core applications
including Email, SMS, Calendar, Map, Browser, Contacts and others. Applications
are developed in Java.

Different from other mobile platforms like J2ME, Application Framework below
Applications enables reuse or replacement of components. For example, there is the
component of displaying image in one application; other applications can make use
of the component if needed. Of course, there is permit protocol between them.

Libraries include a set of C/C++ libraries used by various components of Android
system. These are exposed to developers through the application framework. The

 13

City Guide Over Android

core libraries includes browser engine library, 2D and 3D graphics libraries, media
libraries, SQLite that is a powerful and lightweight relational database engine
available to all applications and so on. For Android Runtime, [Android 2010] says
“Android includes a set of core libraries that provides most of the functionality
available in the core libraries of the Java programming language.” Each Android
application runs on its own process, with its own instance of Dalvik Virtual Machine.
[Android 2010] says “The Dalvik VM relies on the Linux kernel for underlying
functionality such as threading and low-level memory management.”

For Linux Kernel, [Android 2010] says “Android relies on Linux version 2.6 for
core system services such as security, memory management, process management,
network stack, and driver model. The kernel also acts as an abstraction layer between
the hardware and the rest of the software stack.”

 14

City Guide Over Android

2.3.3 Application Fundamentals

The part presents main concepts for application development. There are four types of
application components: Activity, Service, Broadcast Receivers, and Content
Provider. Android application may consist of one or several of these components
types.

Activity presents user interfaces that users will interact with. For example, in text
messaging application, one activity presents the user interface to let users write
message to others. All activities are written through extending Activity base class.

Service does not have user interface and run in background, for example, play
background music. Service extends Service base class.

The component Broadcast Receivers receives and reacts to broadcast
announcements. For example, when low battery is low, the information is needed to
inform users. All the receivers extend BroadcastReceiver base class.

The final one, Content Provider stores data and provide data. The content provider
extends ContentProvider base class but applications do not call directly to the
methods in ContentProvider, instead they call methods in the object
ContentResolver, which call ContentProvider. Android provides the following four
mechanisms for storing and retrieving data: Preferences, Files, Databases, and
Network.

The Android API contains support for creating and using SQLite databases. Each
database is private to the application that creates it. The SQLiteDatabase object
represents a database and has methods for interacting with it — making queries and
managing the data. To create the database, call SQLiteDatabase.create() and also
subclass SQLiteOpenHelper. All databases, SQLite and others are stored on the
device in /data/data/package_name/databases.

Except that the Content provider is activated by a request from ContentResolver,
other three components are activated by asynchronous messages called intents. There
is code example of triggering intent in APPENDIX B.

Android must know that application components exist before it can start the
application components. So, the components written in applications should be
registered in the manifest file, which is bundled into Android package, and is XML
structured, and named AndroidManifest.xml for all applications.

Next, I want to say some about the lifecycle of components; it is important to
understand lifecycle before developing applications. The Activity lifecycle is
showed below in Figure 2-7. The colorful ovals are major states of Activity. The

 15

http://developer.android.com/intl/de/guide/topics/data/data-storage.html#pref#pref
http://developer.android.com/intl/de/guide/topics/data/data-storage.html#files#files
http://developer.android.com/intl/de/guide/topics/data/data-storage.html#db#db
http://developer.android.com/intl/de/guide/topics/data/data-storage.html#netw#netw
http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html#create(android.database.sqlite.SQLiteDatabase.CursorFactory)
http://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html

City Guide Over Android

rectangles are possible operations in the process of transitions between different
states. There is a code example in APPENDIX B. The entire lifetime of one activity
starts at the onCreate() and finishes on onDestroy(), where release all the remaining
resources. If one activity is between onResume() and onPause(), it is foreground and
interact with users, at the most top of all the activities. When one activity is between
onStart() and onStop(), it is visible but may not be in the foreground and interact
with users. During the time, the activity can maintain resources.

Figure 2-7: The Lifetime of Activity

 16

City Guide Over Android

The lifetime of Service is divided into two kinds of ways. One is that it is started
standalone. The other one is that it is operated programmatically using an interface.

Broadcast Receiver is considered to be active while executing the method
OnReceive() in the component, otherwise it is inactive.

Finally, UI can be designed in XML layout document including layout and widgets,
there is an example showing in APPENDIX D.

 17

City Guide Over Android

2.4 Location sensing technologies

GPS (Global Positioning System) is the most widely known location-sensing
technology today. A GPS receiver estimates position by measuring satellite signal’s
time difference of arrival. The US Department of Defense maintains the expensive
satellite infrastructure in earth orbit. It is said in [Patterson 2003] that there are
several reasons why GPS is not a universally applicable location sensing mechanism.
Firstly, it does not work indoor, particularly in steel-framed building. Secondly, GPS
use an absolute coordinate system, whereas some applications (for example,
guidance systems for robotic equipment) require coordinate relative to specific
objects. Finally, the specific component needed for GPS impose weight, cost and
energy consumption requirements that are problematic for mobile hardware. In
addition, GPS’s performance degrades in high-rise urban areas, and receivers have a
relatively long start-up time.

As a consequence, other location sensing technologies is developed. Wi-Fi
Localization is one of them. It uses algorithms to compute localization based on data
from Wi-Fi access points. In [Hazas 2004], there is the Figure 2-8 showing
comparison of several location sensing technologies including GPS and Wi-Fi and
mobile phones. We can see from the figure that usually GPS has higher accuracy
than Wi-Fi and mobile phones. Actually, Wi-Fi accuracy depends on how dense the
access points are positioned. However, Wi-Fi can work indoor in a way that GPS
cannot do. And Wi-Fi also can cover across the whole large metropolitan area.

Figure 2-8: Location-sensing technologies [Hazas 2004]

 18

City Guide Over Android

Chapter 3: Research Method

 3.1 Research Method

The research method used in the project is Design Science. The fundamental
principle of design science research is that knowledge and understanding of a design
problem and its solution is acquired in the building and application of an artifact.
There is the table from [Hevner 2004] of design science research guidelines below
assisting researchers, reviewers, editors, and readers to understand the requirements
for effective design science research.

Guideline Description

Guideline 1: Design as an Artifact Design science research must produce a viable

artifact in the form of a construct, a model, a

method, or an instantiation.

Guideline 2: Problem Relevance The objective of design science research is to

develop technology-based solutions to important

and relevant business problems.

Guideline 3: Design Evaluation The utility, quality, and efficacy of a design

artifact must be rigorously demonstrated via

well-executed evaluation methods.

Guideline 4: Research Contributions Effective design-science research must provide

clear and verifiable contributions in the areas of

the design artifact, design foundations and/or

design methodologies.

Guideline 5: Research Rigor Design-science research relies upon the

application of rigorous methods in both the

construction and evaluation of the design

artifact.

Guideline 6: Design as a Search Process The search for an effective artifact requires

utilizing available means to reach desired ends

while satisfying laws in the problem

environment.

Guideline 7: Communication of Research Design-science research must be presented

effectively both to technology-oriented as well

as management-oriented audiences.

 Table 3-1: Guideline for Design Science Research [Hevner 2004]

 19

City Guide Over Android

Next, how the project matches the seven guidelines will be presented.

• Guideline 1 requires producing a viable artifact.
In the project, the artifact produced is the prototype of city guide covering basic
functions such as showing map, locating POIs on map, retrieving information of POIs
and so on.

• Guideline 2 says that objective of design science research is to develop
technology-based solutions to important and relevant business
problems.

Service engineering and ubiquitous computing is more and more popular now. The
project is given in the context of the project UbiCompForAll. The goal of
UbiCompForAll is to provide a solution to enable end users (non-IT professional)
compose services according to their personal needs in ubiquitous computing
environment. The platform of Android has been chosen to implement mobile services
in UbiCompForAll. The project is intended to explore the realization of a city guide
on the Android platform. The result of the project can be used as the start point for
service composition research, which meets the goal of UbiCompForAll.

• Guideline 3 requires rigorous and well-executed evaluation methods
For this project, the evaluation will be performed in four parts. One is platform
evaluation that presents how suitable the application is developed on the platform.
The second part is general functional evaluation that tests each functional requirement
such as users can move around the map and the city guide can retrieve information of
the points of interest and so on as said in 4.2 Requirement Specification. Thirdly, we
can test if the result of the project can execute scenarios provided in 4.1 Scenarios
such as Corporate Group. Lastly, we can evaluate each Non-Functional Requirement
such as software extendibility and usability as described in 4.2 Requirement
Specification;

• Guideline 4 requires that design science research can provide clear and
verifiable contributions

There are some existing mobile city guides, as described in 2.1 Existing Mobile City
Guides and Similar Solutions. But it is new that the project investigates realization of
city guide over Android, which is a new mobile platform with new features such as
open source and supporting reuse of components and native access to Google Map
infrastructure.

• Guideline 5 requires rigorous research methods in both construction and
evaluation of design artifacts.
In this project, the methods for construction and evaluation of prototype of city guide
are chosen based on the study of various options as exploring existing mobile city
guides and analyzing scenarios. Knowledge applied in the project refers to literature

 20

City Guide Over Android

such as introduction of location sensing technologies, wireless internet access and
mobile application development technologies.

• Guideline 6 says that the search for an effective artifact requires using available

methods to reach desired ends.

The result of the project is evaluated in Chapter 6 Evaluation and there are the
improvement suggestions given in the section 7.2 Further Work. They serve the
iterative process.

• Guideline 7 says that design science research should be presented not only to

technological personnel but also to management audiences.

Common technical terms will be used (e.g. points of interest is often written with
POIs) and keep intended audiences in mind while writing the report.

 21

City Guide Over Android

Chapter 4: Requirement Specification

The part first presents two scenarios based on the scenarios given in
[UbiCompForAll 2010]. It helps me understand the functional requirements of the
project. Of course, existing mobile city guides described in the Chapter 2
Background also help me understand the functional requirement of the project.
Finally, I will list the functional requirements in different priorities for
implementation and divide them to different groups.

4.1 Scenarios

Scenario is a good approach to generate design idea for new system. It can help
people understand better usage of the new system. In the part, I will present two
scenarios, which help me produce functional requirements of the project.

4.1.1 Scenario 1: Corporate Group

The Marketing Department of Statoil holds an annual conference in Trondheim.
Participants come from different places of the world. The conference finishes on
Friday. Some want to spend the weekend visiting the city of Trondheim before they
leave. They compose a group, download software of city guide from official website
of the local tourist office, and install it in their mobile phones. Then they plan their
route for tomorrow visit. They firstly create a group and add members into it. Then
they put points of interest that they want to visit into route. And they also create an
event reminder for lunch.

The visiting starts in the morning of the weekend. The group members start the city
guide on their mobile phones. Then they start “MyTour Plan”, the screen shows the
direction from current position to the first points of interest on the map. They go
under the help of guide. Moreover, the guide can support audio guide. They find the
first point of interest. For knowing more about it, they open the functionality of
retrieving information about it. Some of them want to stay more time here but others
want to go to the next stop.

So, they are separate. Some arrive at the second stop. They start to visit it and add
reviews about it. With the visiting going on, it is time to have lunch. The event
reminder alarms, each of them know that it is time to go to the restaurant as planned.
The guide shows how to go to the restaurant. But some of them want to delay it
because they hope firstly finish the visiting of the current point of interest. So they
start functionality of telephone to call other members or send SMS message to others
for informing them the delay.

 22

City Guide Over Android

4.1.2 Scenario 2: Family

One family including parent and their two kids plans to travel around the city of
Trondheim. They install the application of city guide on their mobile phones. They
plan their visit route before starting visit.

In the morning, they start visit, go to sights, and retrieve information about sights.
When kids feel hungry and thirsty, parent opens the functionality of “Find Nearest”
for finding the restaurant nearby. The guide shows the result and directs them to the
restaurant.

Parent’s interest and kids’ interest is often not the same. When the parent are visiting
art galleries, kids feel bored and want to be separate with their parent and go to other
places they are interested. Parent agrees with their requirement and gives them a
mobile phone installing the application of city guide. The parent can locate kids’
location and keep communication with them through the functionality of telephone
or SMS message. At the same time, both of them have set an event reminder on their
mobile phones for informing them where and when to meet together.

Parent continues visiting and adds reviews for some points of interest. The event
reminder alarms for reminding parent and kids to meet together at the proposed
location. But now, kids find that they are far away from the location. So they decide
to open the functionality of phone, they call Taxi and ask it come to their current
position. Finally they ride the Taxi to the location to meet their parent.

 23

City Guide Over Android

4.2 Requirement Specification

After exploring existing mobile city guides and scenarios, I list the functionalities in
different priorities. The priorities are given according to the importance of functions
for a city guide. For example, the function of showing map is very important for a
city guide. The priorities are divided into three different levels: High (H), Medium
(M), and Low (L). H is considered the most important for a city guide and
implemented firstly, M is less important and implemented after H, L is the least
important and considered to implement after the high and medium. Normally, city
guide should have basic functions: showing map and showing points of interest
(POIs) on map, providing some information about sights or events (e.g. when the
museum is open). In addition to them, we can add telephone function, the function of
adding review, the function of making tour plan, the function of event reminder and
so on. As well, I explore implementation of functionalities as many as possible based
on the features of powerful Android platform since investigating realization of a
tailorable City Guide application on the Android platform is the main purpose in the
project.

4.2.1 Functional Requirements

MAP
ID Requirement Priority
1 The city guide can show map of a city. H
2 The map can be zoomed in and out H

3 Users can move around the map H
4 The city guide can show user’s current

position on the map
H

5 The city guide can show the route between
different locations on the map

M

6 The city guide can see other users’ positions
in the same group on the map

L

7 The map can show points of interest (POIs) H
8 The map only shows the points of interest

users are interested in
M

Table 4-1: Map in Functional Requirements

 24

City Guide Over Android

Information Retrieval
ID Requirement Priority
9 The city guide can retrieve information of

points of interest
H

10 The city guide can retrieve information of
events, which will happen right now.

M

11 The city guide can retrieve information
about reviews of points of interest

M

12 Users can select what kind of POIs to show
on map (i.e. different classifications. e.g.
hotels, museums, restaurants events, and so
on).

M

Table 4-2: Information Retrieval in Functional Requirements

Communication
ID Requirement Priority
13 The city guide can support communication

between users in the same group through
telephone or short message.

M

Table 4-3: Communication in Functional Requirements

Review
ID Requirement Priority
14 Users can add review about points of interest. M
Table 4-4: Review in Functional Requirements

Reminder
ID Requirement Priority
15 The city guide can support event reminder

like lunch time
H

Table 4-5: Reminder in Functional Requirements

Plan tour
ID Requirement Priority
16 Users can make a tour plan. (i.e. users can

choose any POI and add it into their tour
plan.)

M

17 Share tour plan with other users L
Table 4-6: Plan Tour in Functional Requirements

 25

City Guide Over Android

4.2.2 Non-Functional Requirements

According to the goal of the project, the resulting prototype should be extendible,
tailorable, and explore and put existing innovational technologies as many as
possible as building blocks in the project. And user interface should be readable,
easy to understand, and easy to operate.

ID Requirement Priority
18 The resulting prototype should be flexible

(extendible and tailorable).
H

19 The user interface should be usable, easy to
understand and operate.

H

20 The prototype should combine existing
innovational technologies like Google Map
as many as possible.

H

Table 4-7: Non-Functional Requirements

 26

City Guide Over Android

Chapter 5: Solution

The chapter presents solution of the project from architecture of solution including
general architecture, components diagram, class diagram, and data model, to
implementation details of functions.

5.1 General Architecture

Figure 5-1: General Architecture of Solution

The diagram above presents the general architecture of the prototype. I build the
project based on the assumption that users use their Android phones in the
environment with wireless network and having the ability of getting GPS data. GPS
will be used for automatic localization since android phones are usually equipped
with GPS. MapActivity in red is the core and the start of application. MapActivity
imports Google Map as the map, and retrieves information of POIs from remote
Server. MapActivity calls MapOverlay to add POIs mark to Google Map. And
MapActivity calls Menu to present more functions such as reminder, search, and
contact and so on.

 27

City Guide Over Android

Google Map is chosen as the map of city guide, I consider it is easy to be
implemented on the platform of Android. Both Android and Google Map are
released by Google. And we can provide city maps not only for a specific city but
also almost all the cities in the world since Google Map show map of the whole
world. Therefore, we can provide the service of city guide for many cities only if
there is relevant database containing the information of points of interest in cities.

Server is responsible for providing points of interest (POIs) information or event
information including location, name, description, category, review, and enabling
users add reviews for POIs. The responsible that can feed this information could be
tourist office. City guide application visits Server to get this information, which
could be provided in the way of XML like below.

<sight>
 <name>Nidaros Cathedral</name>
 <link>http://cityguide.blog.com/2010/05/03/nidaros-cathedral/</link>
 <classfication>church</classfication>
 <latitude>63.4267</latitude>
 <longitude>10.3964</longitude>

 </sight>

The name is the name of POI or event, the link is the website on which there is
description and review of POIs&Events and users can add reviews. The
classification is the category of POIs such as museum, hotel and so on. The latitude
and longitude is the location of POI. When the application starts, it retrieves POIs
data from XML document as described in Appendix C and stores the data in the local
sights database.

Browser showed in the diagram above is triggered from onTap() of MapOverlay
and is used to open the website, on which there is description and review of POIs
and Events, and add review. There is one example of website on
http://cityguide.blog.com/2010/05/03/nidaros-cathedral/
(Email:hanjietongxue@163.com; password: hanjie111).
We also can see screenshots about the example in Figure 6-7: Description of POI
about Nidaros Cathedral; Figure 6-8: Review of POI; Figure 6-9: Add Review. The
website could be the third party or the one we build on our own in Server. It should
be better to choose the latter.

 28

http://cityguide.blog.com/2010/05/03/nidaros-cathedral/
http://cityguide.blog.com/2010/05/03/nidaros-cathedral/
mailto:hanjietongxue@163.com

City Guide Over Android

5.2 Implementation of Functions

Next, more details of how to implement functions will be presented. Firstly, a
component diagram will be presented and it describes all the components used in the
solution. Then, I will present implementation of functions of the city guide in the
consistent components names as the Component Diagram.

5.2.1 Component Diagram

Figure 5-2: Component Diagram

The component diagram above contains all the components in the system. The
components in grey already exist. Server in blue will not be implemented in the
project, but I give the idea of implementation as described in last section and emulate
Server for testing the final prototype. The remaining parts will be implemented.

The application starts at the component MapActivity in red. MapActivity imports
Google Map, retrieves points of interest (POIs) data from Server and store it in
LocalSightsDatabase that is created when application starts and destroyed when
application finishes, calls MapOverlay which is overlay object of Google Map to
draw POIs mark on map or further through Driving direction (more details in 5.2.7)
is to show route between user’s current location and any sight in tour plan on map,

 29

City Guide Over Android

and create Menu, which has 6 options: Some of the process described above can be
read in 5.2.2 in more details.

1. Search is to enable users choose what kind of POIs to show on map such as
museum, hotel and so on; it retrieves POIs data from LocalSightsDatabase. More
details in 5.2.5

2. Exit is to exit from the application, at the same time it deletes
LocalSightsDatabase.

3. MyTour plan is to show Tour plan list; it retrieves data from MyTourDatabase
storing tour plan. We make tour plan starting from AddToTourView containing two
functions of showing POI description information and review and adding review
through Browser, and adding the POI into tour plan. POI added will be stored in
MyTourDatabase. More details in 5.2.6.

4. Reminder is to enable users set reminder events, store and retrieve reminder data
in LocalCalendarDatabase that has been existed and shared by several applications
like local calendar application, and Google Calendar. More details in 5.2.4.

5. Communication is to enable users add contact, build group and have the function
of phone or sending short message. It imports directly the existed application. More
details in 5.2.8.

6. Get MyLocation is to get user’s location data from GPS_PROVIDER, which is
system service, provided by Android platform and providing the location data of
current position. More details in 5.2.3.

The diagram above also show some local database used. Some of them have been
existed, and are represented in grey. The rest is under construction.

 30

City Guide Over Android

5.2.2 Map and POIs and Review

 Figure 5-4: Message Sequence Chart of Map and POIs and Review

The Message Sequence chart above shows the process of how to show map, how
to add mark to map, how to get POIs data, how to set zoom control, how to show
description and review or add review. The grey parts have been existed or will not
be implemented in the project.

1. Firstly, MapActivity imports Google Map.
2. LocalSightsDatabase get POIs data from Server.
3. Then MapActivity gets POIs data from LocalSightsDatabase and add POIs

mark and tap event command to MapOverlay that is the overlay of the map.
4. If users tap the mark (red bubble) of POI, then it asks user to add the POI to

tour plan or show description and review about the POI from website, on
which users also can add review. There is one example of website on

http://cityguide.blog.com/2010/05/03/nidaros-cathedral/
(Email:hanjietongxue@163.com; password: hanjie111)

 31

http://cityguide.blog.com/2010/05/03/nidaros-cathedral/
http://cityguide.blog.com/2010/05/03/nidaros-cathedral/
mailto:hanjietongxue@163.com

City Guide Over Android

5.2.3 Get My Location

GPS_Provider MapActivity

SetLocationListener

UpdateLocationData

MapOverlay

start MapActivity

Menu

Start Menu

Get MyLocation

Start Localization

Update user location

User

ation sets location listener of GPS_PROVIDER, which is system

MyLocation the change of location data in
ple, 1minute) or how

much distance (e.g. 10 meters).
. Then MapActivity changes users’ current location on map.

Figure 5-5: Message Sequence Chart of Automatic Localization

The message sequence chart above shows implementation of the functionality of
showing user’s current position on map. The grey parts have been existed.
1. Get MyLoc

service provided by Android platform and providing location data of current
position.

2. GPS_PROVIDER informs Get
certain frequency, which could be how much time (for exam

3

 32

City Guide Over Android

5.2.4 Reminder

I create the reminder component on my own, not using the existed local calendar
application, because we can not import directly the application into the prototype of
city guide. Alternatively, we could choose to use browser to visit Google Calendar to
set reminder. I find it is possible through my test. But it leads to one issue that we
cannot be sure that each user has Google account. We have to login our Google
accounts before setting reminders in Google Calendar. Therefore, I decide to do it on
my own. We can use local calendar database for getting and storing reminder event
data. The database has been existed and is shared by several applications like local
calendar application, Google Calendar.

LocalCalendarDatabaseReminder
StartReminderActivity

Read Reminder Events

Add new Reminder

Menu

 Figure 5-6: Message Sequence Chart of Reminder

s data in local calendar database, which
as been existed and is shared by several applications. The diagram below describes
ore details about the implementation.

The sequence diagram above describes exchange of message to implement the
reminder component. The grey part has been existed. From Menu to start Reminder,
Reminder gets and stores reminder event
h
m

 33

City Guide Over Android

+SetEvent()
+GetEvent()

+ShowAddedEvent()
+ShowToAddEvent()

<<call>>

<<call>>

<<call>>

<<call>>

call specified view by findViewById(id)

Access calendar data

 Figure 5-7: Reminder Implementation

ReminderActivity as described in 5.3 Class Diagram is the core part in the reminder
solution. It calls XML layout for UI showing and calls ReminderData for getting
data from local calendar database. ContentResolver is the object which is used for
interacting with the content model. It is the API provided by SDK. The parts in blue
will be implemented.

 34

City Guide Over Android

5.2.5 Search

Users can choose what kind of POIs to show on map, the categories have museum,
church, theatre, hotel, restaurant, old building, event, and other. There is a message
sequence chart below showing how to implement the search functionality. From
Menu to start Search component, users choose what kind of POIs, and the Search
Component gets selected kind of POIs data from local sight database, then call
MapActivity to update map with the selected kind of POIs data.

Menu Search LocalSightsDatabase MapActivity

StartSearchActivity

GetSelectedPOIsData

UpdateMap

Users
Start Menu

Choose which Category of POIs

Figure 5-8: Message Sequence Chart of Search

 35

City Guide Over Android

5.2.6 My Tour plan

 Figure 5-9: Message Sequence Chart of My Tour Plan

The message sequence chart above shows the process of implementing the
functionality of making tour plan. The grey parts have been existed. Users tap mark
(red bubble) of POI, then interface will be directed to another view
AddToTourView. Users press button “add to my tour” which means adding selected
POI into My Tour Database. Then user starts My Tour Plan from Menu, read the
list of sights in the tour plan.

 36

City Guide Over Android

5.2.7 Driving Direction

It meets Functional Requirement 5; the component will show the route from user’s
current position to any sight in my tour plan. The DrivingDirection package
(com.google.googlenav.DrivingDirection) is removed since Android SDK 1.1. There
is a different way to finish the function. The message sequence chart below shows
how to realize the function. The grey parts have been existed. User starts MyTour
Plan from Menu and chooses one sight in tour plan. The selected sight data will be
sent to MapActivity, which then sends request to Google Map Sever with start
location data (user’s current position) and destination location data (selected POI’s
position) for getting route data in the way of KML file, then draw it on the map.

 Figure 5-10: Message Sequence Chart of Driving Direction

 37

City Guide Over Android

5.2.8 Communication

In the part, I start Contact application; the code of implementation is showed below:
Uri uri=Uri.parse("content://contacts/people");

 Intent intent=new Intent(Intent.ACTION_VIEW,uri);
 startActivity(intent);
“content://contacts/people” is uri of the content provider contacts. Contact
application will direct user to add new contact, build group, and have a call and send
short message.

 38

City Guide Over Android

5.3 Class Diagram

+writeCalendar()()
+readCalendar() : Reminder

+onCreate()
+onRestart()
+onResume()
+onPause()
+onStop()
+onDestroy()

+addSight()
+readSight()
+delete (int id)()

+onCreate()

+addEvent(Sight)()
+getEvent() : Sight

-sightID
-name
-link
-classfication
-latitude
-longitude

-eventID
-title
-location
-time
-date

+SearchCategory() : Sight +requestLocationUpdates()

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>> <<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

Figure 5-11: Class Diagram of Solution

The figure above presents the class diagram of solution, the grey classes are APIs.
Map in red is the core and the start of the whole application. The most of the source
code of Map is attached in Appendix E. Map extends MapActivity from the library
com.google.android.maps. And MapActivity extends Activity. Activity starts on the
method onCreate(), and can creates a window for you in which you can place your
UI with setContentView(View). Then Map starts several Activities such as
SearchActivity: start the function of search, its most source code is attached in
Appendix E.
MyTourActivity: start showing my tour plan;
ReminderActivity: start the function of reminder;
GpsActivity: to get user’s location, its source code is attached in Appendix E.
Or Map can create Intent managing interaction between different components such
as Activity and ContentProvider here. For example, we start contact application in
the project like below:
Uri uri=Uri.parse("content://contacts/people");

Intent intent=new Intent(Intent.ACTION_VIEW,uri);

startActivity(intent);

 39

http://developer.android.com/reference/android/app/Activity.html#setContentView(android.view.View)

City Guide Over Android

ContentProvider helps retrieve and store data. Here, we use the existing content
providers calendar data (content://calendar/calendars) and contact data
(content://contacts/people). However, application does not interact directly
with ContentProvider, it is through ContentResolver. Then ContentResolver
interacts with ContentProvider. We can see the source code of the class
ReadWriteCalendar in Appendix E.

Android uses SQLite database system. SQLiteOpenHelper is a helper class to
manage database creation and version management. In the project, we need to build
two databases classes extending SQLiteOpenHelper. They are
LocalSightDatabase handling POIs data and MyTourDatabase handling data of
tour plan. EventDataSQLHelper.java is attached in Appendix E and it is for building
local sight database. SQLHandle.java is also seen in Appendix E and it is for adding
sight data into local sight database and get data from local sight database.

The class Sight holds sight data and it is implemented in MapLocation.java that is
seen in Appendix E.

The class Reminder holds reminder event data and it is implemented in
ReminderData.java that can be read in Appendix E.

 40

City Guide Over Android

5.4 Data Model

-sightID
-name
-link
-classfication
-latitude
-longitude

-sights : List<Sight>

-eventID
-title
-location: Sight or String
-time
-date

-peopleID
-name
-phone number

-groupName
-members: List<People>

-sight : Sight
-username
-reviewContent

Figure 5-3: Data Model

There is a logical data model represented in Figure 5-3 above and the data model
describes the main data used in the project. There are six classes in the model. The
grey class means it has been existed.

Sight describes POI information including its name, the link that is the website
address where there is the description of POI, the classification that POI belongs to,
and latitude and longitude that stands for location of POI; It will be stored in the
database “sights.db”, which is built at the beginning of application and is destroyed

 41

City Guide Over Android

at the finish of application.

Reminder describes reminder event like lunch reminder, which includes event title,
location, time, date; it stores in existed local calendar database shared by several
applications like local Calendar application, outlook express, Google Calendar. The
attribute location could be one sight. Therefore, its type may be Sight or String.

TourPlan shows tour plan with the list of sights; the sights’ data type are all Sight.
The tour plan stores in the database “mytour1.db”.

Review describes the review about POIs. It has three attributes. The attribute sight
represents POI that will be reviewed. The attribute username is the name of the
person publishing review. The attribute reviewContent is the review content.

People present group member’s name, phone number. The part directly uses the
existed database, so it indicates grey.

Group presents group name and the list of members. Member’s data type is People.

 42

City Guide Over Android

Chapter 6: Evaluation

The chapter presents evaluation of the project including platform evaluation,
functional evaluation and non-functional evaluation, and scenario evaluation.

6.1 Platform Evaluation

The project mainly investigates realization of city guide over Android. I consider
that it is important to evaluate what features of Android have been used and how to
use them when developing the city guide. We can see that I have used API SQLite to
create some databases for storing data like points of interest (POIs) data and tour
plan. I applied existing content provider local calendar database rather than local
calendar application into reminder component (It is not possible to import directly
local calendar application into the prototype of city guide). Retrieving and storing
data in ContentProvider is through ContentResolver. As well I applied the existing
applications like Browser and Contacts and Phone. Moreover, I used XML layout
file to build user interface. And I used API LocationManager to get GPS data from
cell phones. Finally, several Activities have been built for presenting different user
interfaces that can interact with users. Activity manage lifetime of application.

6.2 General Functional Evaluation

Next, I will give a general functional evaluation. I test each functional requirement.
There is the table below showing result of test.

Functional Requirements
MAP
ID Requirement Fulfilled?
1 The city guide can show map of a city. Yes
2 The map can zoom in and out Yes

3 Users can move around the map Yes
4 The city guide can show user’s current

position on the map
Yes

5 The city guide can show the route between
different locations on the map

Yes but only show user’s
current location and sights
in tour plan.

6 The city guide can see other users’ positions
in the same group on the map

No

7 The map can show points of interest Yes
8 The map only shows points of interest users

are interested in
Yes

Table 6-1: Map Evaluation

 43

City Guide Over Android

Information Retrieval
ID Requirement Fulfilled?
9 The city guide can retrieve information of

points of interest
Yes

10 The city guide can retrieve information of
events, which will happen right now.

Yes

11 The city guide can retrieve information about
reviews of points of interest

Yes

12 Users can select what kind of POIs to show on
map (i.e. different classifications. e.g. hotels,
museums, restaurants, events, and so on).

Yes

Table 6-2: Information Retrieval Evaluation

Communication
ID Requirements Fulfilled?
13 The city guide can support communication

between users in the same group through
telephone or short message.

Yes

Table 6-3: Communication Evaluation

Review
ID Requirements Fulfilled?
14 Users can add reviews for points of interest. Yes but we have to provide

the website containing the
function of adding review.

Table 6-4: Review Evaluation

Reminder
ID Requirements Fulfilled?
15 The city guide can support event reminder

like lunch time
Yes

Table 6-5: Reminder Evaluation

Plan tour
ID Requirements Fulfilled?
16 Users can make a tour plan. (i.e. users can

choose any POI and add it into their tour
plan.)

Yes

17 Share tour plan with other users No
Table 6-6: Plan Tour Evaluation

 44

City Guide Over Android

We can see that most of functions are implemented except 6 and 17. Due to the
limited time, the two functions have not been done in the project, but here I give
my ideas about how to implement them. For 6, it should set listener listening to
request of location information from a request side, and then send the location data
to the request side. For 17, it can upload tour plan to Server, which enables other
users see the tour plan.

6.3 Scenario Evaluation

There is the test performed on the scenario of Corporate Group described in 4.1.1.
In the test, we use POIs and Events data in APPEDIX C, which is now uploaded as
the file ‘test.xml’ to http://folk.ntnu.no/hanjie/. And POIs and Events information
and review are provided in the website http://cityguide.blog.com.

Employees from Statoil Company run the application City Guide (current
application City Guide is for the city of Trondheim) on HTC Hero with the version
1.5 platform. They login to wireless network. Firstly, they plan their route for
tomorrow visit. They start the application City Guide. It shows like Figure 6-1
below: (POIs and Events data are provided as described in Appendix C). We can
see showing of Google Map; it is in the Trondheim now. And on the map there are
some points of interest such as Kristiansten Fortress, NTNU Gløshaugen and so on,
and events like Uka Festival. We also can see zooming bar.

Figure 6-1: Start Application

 45

http://folk.ntnu.no/hanjie/
http://cityguide.blog.com/

City Guide Over Android

Then they press the key “menu” on the mobile phone. It shows like Figure 6-3. We
can see that there are 6 options in menu. Reminder is for setting reminder events
like having lunch, Contact is for adding new contact, building group, calling and
sending short message, MyTour plan is for showing tour plan, Search is for
choosing what kind of POIs to show on map, Get MyLocation is for showing user’s
current position on map, and Exit is for exiting from the application.

Figure 6-3: Menu

 46

City Guide Over Android

Now they choose Contact in the menu for building group and add each one’s
contact information. After pressing “Contact”, it shows like Figure 6-2. They want
to add new contact, so they press “Add contact”. It shows like Figure 6-22. We can
see the text field of name, and phone number. They move to the icon ’group’ at the
bottom in Figure 6-2; it shows like Figure 6-23. They press “Add group”, it shows
like Figure 6-24, we can see the text field of group name. After pressing ‘add
contact to group’, it shows like Figure 6-25. They can choose contact and add it
into group.

Figure 6-2: Contact Figure 6-22: New Contact

 47

City Guide Over Android

Figure 6-23: Group Figure 6-24: new group

Figure 6-25: Add contact to group.

 48

City Guide Over Android

After add contacts to group, they choose the “Search” in the menu for getting
specific sights to show on map. After pressing the option “Search”, it shows like
Figure 6-4. We can see that there are several classifications such as church, museum,
events and so on. They press the button “church”, it shows like Figure 6-5. We can
see ‘Nidaros Cathedral’ showed on map.

Figure 6-4: Search Figure 6-5: Result of Search about Church

 49

City Guide Over Android

They want to know more about the POI ‘Nidaros Cathedral’, so they tap red bubble
of the POI, then it shows like Figure 6-6. We can see there are two buttons ‘Show
Description and Review’ for accessing information about description and review of
POIs and ‘Add to My Tour’ for adding the POI to tour plan. They press “Show
Description and Review” it shows like Figure 6-7 that is description of POI, Figure
6-8 that is the reviews of POI, and Figure 6-9 for adding review.

Figure 6-6: Tap on bubble of POI Figure 6-7: Description of POI about Nidaros Cathedral

Figure 6-8: Review of POI Figure 6-9: Add Review

 50

City Guide Over Android

They feel that they should add the POI into Tour plan, so they are back to Figure 6-6
and press ”Add to My Tour”. They also select other POIs like Kristiansten Fortress,
NTNU Gløshaugen and add them into tour plan. Then they start MyTour Plan in the
menu as presented in Figure 6-3 and check it. It shows like Figure 6-10 below. We
can see that there is a list of sights. They are Nidaros Cathedral, Kristiansten Fortress
and NTNU Gløshaugen.

Figure 6-10: My Tour Plan

They also feel that they should add reminder for lunch, so they start reminder in the
menu. It shows like Figure 6-11 below. They press the button ‘ADD NEW
REMINDER’. It shows like Figure 6-12. We can see that there are the text fields of
Title and Location, and two buttons for setting time and date. They input title and
location, and set time and date as presented in Figure 6-13, 6-14, 6-15, 6-16. Finally,
they find that the reminder event they set is added, it is showed in Figure 6-17.

Figure 6-11: Reminder

 51

City Guide Over Android

Figure 6-12: Add new Reminder Figure 6-13: Add title of Reminder

Figure 6-14: Add Location of Reminder Figure 6-15: Set time of Reminder

 52

City Guide Over Android

Figure 6-16: Set Date of Reminder

Figure 6-17: Show Reminder Result

 53

City Guide Over Android

In the second day, they start travel the city. They start the application City Guide and
they want to get their location, they press “Get MyLocation” in the menu (Figure
6-3). The result shows like Figure 6-26 below for informing fail to get location or
Figure 6-18 showing user’s location on map.

Figure 6-26: Unsuccessful to get Location Figure 6-18: Get My Location

They want to go to one sight in the tour plan Figure 6-10. They start MyTour Plan in
the menu (Figure 6-3); they choose the sight item Nidaros Cathedral. Then it shows
like Figure 6-19. We can see that there are three options “Show Description and
Review” for showing the information about the description and review of POI,
‘Show Direction’ for showing route on map between user’s current position and
selected sight, and ‘DELETE’ for deleting the sight from tour plan.

Figure 6-19: The result after choosing one Sight in Tour plan

 54

City Guide Over Android

Now they press” Show Direction”. The result shows like Figure 6-27 asking users to
go to get current location firstly, or like Figure 6-20. We can see that there is the blue
line indicating the route from user’s current position represented by the blue Android
to Nidaros Cathedral.

Figure 6-20: Show Direction to one Sight Figure 6-27: Firstly go to get current position

 55

City Guide Over Android

In the noon, the reminder alarms. The alarm voice can be set by the system
configuration. Tom is separate from the group after visiting Nidaros Cathedral. The
rest in the group want to contact him, they start Contact in the menu and find him; it
shows as below:

Figure 6-21: Contact with somebody

It looks that the city guide can basically finish all the activities in the scenario
description. Therefore, we can say that it is useful.

 56

City Guide Over Android

6.4 Non-Functional Evaluation

6.4.1 Flexibility

The application is easy to extend functions through adding more options in Menu.
Each option starts one function. Of course, if you do not need some functions, you
can remove them easily from Menu.

The application is easy to change the service from one city to another city since
Google Map provides the map of the whole world. We can move the map to next
cities by configuring it in the code like below: mapView.getController().setCenter(new

GeoPoint()); GeoPoint represents location.

Of course, we have to enter POIs information of the city into Server side, for
example, the tourist office can do it.

The application can get the latest information of POIs since each time it starts it
retrieves information from server side. We only need to change data in Server side.

6.4.2 User Interface Friendly

Some icons are used. is used to mark POIs. is used to represent user.
Menu options are clear to provide more functions to users as described in Figure 6-3.
Touch button and text fields for triggering next event are also useful. It should be
better if I ask some real users to use the service and get feedback from them for
evaluation of the part. Due to limited time, I have not done it this time. It should be
done in the future. However, the application adheres to the user interface paradigms
used in Android. Therefore I expect that it will be easy for a user that is familiar with
Android to use the application.

6.4.3 Combination of Existing Innovational Technologies

In the project, I use the Google Map as the map of city, and integrate Browser to get
more information, and build reminder with local calendar database, which can
synchronize with Google Calendar when login with the same account like Gmail
account. At the same time, I integrate the function of phone and SMS in mobile
phones.

 57

City Guide Over Android

Chapter 7: Conclusion and Further work

 7.1 Achievements

In the project, I have investigated realization of city guide over Android. The
investigation covers basic functions of city guide as described in the section 4.2
Requirement Specification. There are functions such as showing map, showing POIs
on map, showing direction, showing user’s location on map and so on. Moreover,
during the investigation, I try to integrate current innovational technologies as many
as possible. Now I put Google Map, Browser, Contacts application, and Phone
application into the project. Google Calendar is explored but it does not suit for the
project as explained in 5.2.4 Reminder. We are not sure if each user has Google
Account. Users have to login to Google Calendar with Google Account if they want
to set reminders in Google Calendar. Finally, the prototype is presented. I make a
video to show it on
http://www.youtube.com/watch?v=31rB23vjQ6U&feature=PlayList&p=BA6556A0
C8EB8EC4&playnext_from=PL&index=1. The video contains 6 files which present
how to start application, how to build a group, how to make a tour plan, how to set
reminder, how to show direction, and how to contact with others.

And I have used some features of Android when developing the city guide. We can
see that I have used API SQLite to create some databases for storing data like points
of interest (POIs) data and tour plan. I applied existing content provider like
Calendar data into reminder function, and retrieve or store data in ContentProvider is
through ContentResolver. As well I applied existing applications like Browser and
Contacts and Phone. Moreover, I used XML layout file to build user interface. And I
used API LocationManager to get GPS data from cell phones. Finally, several
Activities have been built for presenting different user interfaces that can interact
with users. Activity manages lifetime of application.

Finally, I have created some XML elements for communicating POIs and Events
data such as name, link, classification, latitude and longitude as described in
APPENDIX C.

 58

http://www.youtube.com/watch?v=31rB23vjQ6U&feature=PlayList&p=BA6556A0C8EB8EC4&playnext_from=PL&index=1
http://www.youtube.com/watch?v=31rB23vjQ6U&feature=PlayList&p=BA6556A0C8EB8EC4&playnext_from=PL&index=1

City Guide Over Android

 7.2 Further Work

However, there is further work needed to be done.

Firstly, two unimplemented functions (locating others’ locations and share tour plan
with others) need to be implemented.

Secondly, in the reminder component, it does not distinguish between reminder
events related to the application and other reminder events related to other
applications sharing the same local calendar database. As a consequence, it also
shows reminder events from other applications. The issue should be considered.

Thirdly, we need to consider other location sensing technology like Wi-Fi location
since GPS has some shortcomings such as doesn’t work indoor, as mentioned in
section 2.4 Location Sensing Technologies.

Fourthly, we should consider if the application can contain an off-line way, keep it
use even if no Internet access. If so, we have to use offline map and keep
LocalSightDatabase mentioned in 5.2.1 in your mobile devices rather than now the
database is created when starting the application and destroyed when application is
finished. And when Internet can be accessed, the application can update the
database.

Fifthly, we should use different marks of POIs & Events to distinguish different
classifications rather than using the same mark red bubble in the current solution.

Finally, user evaluation of the city guide prototype should be done in the future.

 59

City Guide Over Android

APPENDIX

A: References

[Android2010]Android;Android—DevGuide,http://developer.android.com/guide/ind
ex.html, accessed Feb.28th 2010

[AudioTravel,2010]AudioTravel;AudioTravel--MobileTravelGuide,http://www.audi
otravel.com/mobile-travel-guide, accessed Feb.27th 2010

[AOL,2010]AOL;AOL—CityGuide,http://mobile.aol.com/aolproducts/cityguide-mo
bile, accessed Feb.27th 2010

[Blakstad 2008] Eirik Blakstad; Creating a Mobile City Guide, Project Report,
Norwegian University of Science and Technology, 2008

[Cheverst 2000] Cheverst, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C.;
Developing a Context-aware Electronic Tourist Guide: Some Issues and Experiences.
Proceedings of CHI 2000, Netherlands, April 2000, pp 17-24.
http://www.guide.lancs.ac.uk/CHIpaper.pdf, accessed Feb. 27th 2010.

[GeoPos 2010] GeoPos; GeoPos NTNU, http://dellgeopos.item.ntnu.no/, accessed
May 21th 2010

[Helal 2002] Sumi Helal, Pervasive Java, IEEE Pervasive Computing Magazine,
January-March 2002

[Hazas 2004] Mike Hazas, James Scott and John Krumm, Location-Aware
Computing Comes of Age, IEEE Computer Magazine, February 2004

[Hansen 2007] T. S. Hansen; A cultural guide for mobile devices, Project Report,
Norwegian University of Science and Technology, 2007

[Hevner 2004] Hevner, March and Jinsoo; Design Science in Information Systems
Research, MIS Quarterly Vol. 28 2004, pp. 75-105.

[Ibrahim 2008] M. A. Ibrahim; Utvikling og evaluering av ulike mobile,
lokasjonsbaserte tjenester, Master’s thesis, Norwegian University of Science and
Technology, 2008

[Kenteris 2007] Kenteris, M., Gavalas, D., Economou, D. (2007); An innovative

 60

http://developer.android.com/guide/index.html
http://developer.android.com/guide/index.html
http://www.audiotravel.com/mobile-travel-guide
http://www.audiotravel.com/mobile-travel-guide
http://mobile.aol.com/aolproducts/cityguide-mobile
http://mobile.aol.com/aolproducts/cityguide-mobile

City Guide Over Android

mobile electronic tourist guide application. Personal and Ubiquitous Computing, Vol.
13,No.2,February,2009,p.103-118.http://www.springerlink.com/content/887gj23517
7w7781/, accessed Feb. 27th, 2010.

[LonelyPlanet,2010]LonelyPlanet;LonelyPlanet--Home,http://www.lonelyplanet.co
m/uk, accessed Feb.27th, 2010

[Nokia6110,2010]Wikipedia;Nokia6110,http://en.wikipedia.org/wiki/Nokia_6110_N
avigator, accessed Feb.27th 2010

[Ovimap,2010]Nokia;Ovimap,http://maps.nokia.com/ovi-services-and-apps/ovi-map
s/ovi-maps-main, accessed Feb. 27th 2010

[Patterson 2003] Cynthia A. Patterson, Richard R. Muntz and Cherri M. Pancake,
Challenges in Location-Aware Computing, IEEE Pervasive Computing, 03, 2003

[Read 2003] Kris Read and Frank Maurer; Developing Mobile Wireless Applications,
IEEE Internet Computing, January/February 2003.

[Schmap,2010]Schmap; Schmap—Mobile, http://www.schmap.com/mobile/,
accessed Feb. 27th 2010

[Sun 2010]Sun; Sun-Java ME, http://java.sun.com/javame/index.jsp, accessed
Feb.28th 2010

[Traveldodo,2010]Traveldodo;Trvaeldodo--MobileCityGuide,http://www.traveldodo
.com/content/free_mobile_city_guide/, accessed Feb.27th 2010

[UbiCompForAll2010]UbiCompForAll;UbiCompForAll-Home,
http://www.ubicompforall.org, accessed March 17th, 2010.

[UtGuide 2010]UtGuiden; adressa.no – utguiden,
http://www.adressa.no/kultur/utguiden/, accessed May 21th, 2010

[Vindigo 2010] Vindigo; Vindigo: Demo,
http://www.vindigo.com/demo/demo01.html, accessed Feb. 26th 2010

[Vibb 2010] Vibb; Trondheim-guide, http://vibb.no/, accessed May 21th, 2010

[Wayfinder,2010]Wayfinder;Wayfinder–WayfiderNavigatorOnline,http://wayfinder.c
om/?id=3991&lang=nl-BE, accessed Feb. 27th 2010

 61

http://www.lonelyplanet.com/uk
http://www.lonelyplanet.com/uk
http://en.wikipedia.org/wiki/Nokia_6110_Navigator
http://en.wikipedia.org/wiki/Nokia_6110_Navigator
http://www.schmap.com/mobile/
http://java.sun.com/javame/index.jsp
http://www.traveldodo.com/content/free_mobile_city_guide/
http://www.traveldodo.com/content/free_mobile_city_guide/
http://www.ubicompforall.org/

City Guide Over Android

B: Code Examples

Activity

 public class Activity extends ApplicationContext {

protected void onCreate(Bundle savedInstanceState);

 protected void onStart();

 protected void onRestart();

 protected void onResume();

 protected void onPause();

 protected void onStop();

 protected void onDestroy();
 }

Intent

Example 1:
Intent intent=new Intent(Context context, Activity Class);
intent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
context.startActivity(intent);

Example 2:
Intent intent = new Intent();
intent.setComponent(new ComponentName(package, package.class));
startActivity(intent);

Examp 3(Show web page):
Uri uri = Uri.parse("http://google.com");
Intent it = new Intent(Intent.ACTION_VIEW, uri);
startActivity(it);

 62

City Guide Over Android

Example 4(call phone):
Uri uri = Uri.parse("tel:0800000123");
Intent it = new Intent(Intent.ACTION_DIAL, uri);
startActivity(it);

Example 5(send SMS):
Uri uri = Uri.parse("tel:0800000123");
Intent it = new Intent(Intent.ACTION_VIEW, uri);
it.putExtra("sms_body", "The SMS text");
it.setType("vnd.android-dir/mms-sms");
startActivity(it);

 63

City Guide Over Android

C: POIs and Events XML Document Example

<?xml version="1.0" encoding="UTF-8"?>

<!-- generator="FeedCreator 1.7.2" -->

<rss version="2.0">

 <sight>

 <name>Nidaros Cathedral</name>

 <link>http://cityguide.blog.com/2010/05/03/nidaros-cathedral</link>

 <classfication>church</classfication>

 <latitude>63.4267</latitude>

 <longitude>10.3964</longitude>

 </sight>

 <sight>

 <name>Ringve Museum</name>

 <link>http://cityguide.blog.com</link>

 <classfication>museum</classfication>

 <latitude>63.2651</latitude>

 <longitude>10.2715</longitude>

 </sight>

 <sight>

 <name>Trondheim Theatre</name>

 <link>http://cityguide.blog.com</link>

 <classfication>theatre</classfication>

 <latitude>63.425</latitude>

 64

City Guide Over Android

 <longitude>10.35</longitude>

 </sight>

 <sight>

 <name>Scandic Solsiden</name>

 <link>http://cityguide.blog.com</link>

 <classfication>hotel</classfication>

 <latitude>63.434512 </latitude>

 <longitude>10.413795</longitude>

 </sight>

 <sight>

 <name>Szechuan Restaurant</name>

 <link>http://cityguide.blog.com</link>

 <classfication>restaurant</classfication>

 <latitude>63.434</latitude>

 <longitude>10.395</longitude>

 </sight>

 <sight>

 <name>Kristiansten Fortress</name>

 <link>http://cityguide.blog.com</link>

 <classfication>oldbuilding</classfication>

 <latitude>63.4275</latitude>

 <longitude>10.4083</longitude>

 </sight>

 65

City Guide Over Android

 <sight>

 <name>Uka Festival</name>

 <link>http://cityguide.blog.com</link>

 <classfication>event</classfication>

 <latitude>63.42</latitude>

 <longitude>10.4</longitude>

 </sight>

 <sight>

 <name>NTNU Gløshaugen</name>

 <link>http://cityguide.blog.com</link>

 <classfication>other</classfication>

 <latitude>63.418611</latitude>

 <longitude>10.403056</longitude>

 </sight>

 <sight>

 <name>Trondheim Airport</name>

 <link>http://cityguide.blog.com</link>

 <classfication>other</classfication>

 <latitude>63.45000</latitude>

 <longitude>10.9333</longitude>

 </sight>

</rss>

 66

City Guide Over Android

D: UI Design in XML document

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >
 <TextView android:id="@+id/text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello, I am a TextView" />
 <Button android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello, I am a Button" />
</LinearLayout>

 67

City Guide Over Android

E: Relevant Source Code

Map.java

The class Map is the start and the core of the whole application. It imports map, gets
POIs data from Server, and create menu.

package cityguide.map;

import java.io.IOException;

import java.net.HttpURLConnection;

import java.net.MalformedURLException;

import java.net.URL;

import java.util.ArrayList;

import java.util.List;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Document;

import org.xml.sax.SAXException;

import android.content.Context;

import android.content.Intent;

import android.graphics.Color;

import android.net.Uri;

import android.os.Bundle;

import android.util.Log;

import android.view.KeyEvent;

import android.view.Menu;

import android.view.MenuItem;

import com.google.android.maps.GeoPoint;

import com.google.android.maps.MapActivity;

import com.google.android.maps.MapView;

import cityguide.informationRetrieval.Message;

import cityguide.informationRetrieval.SQLHandle;

import cityguide.informationRetrieval.Search;

import cityguide.informationRetrieval.XmlPullFeedParser;

import cityguide.map.MapLocation;

import cityguide.map.MapLocationOverlay;

public class Map extends MapActivity {

 private static MapLocationOverlay overlay;

 68

City Guide Over Android

 private static MapView mapView;

 public static List<MapLocation> mapLocations;

 public static List<Message> searches;

 private Context context;

 public static Map map=new Map();

 public SQLHandle SqlHandle=new SQLHandle(this);

 public Search searching=new Search(this);

 final private int menuReminder = Menu.FIRST;

 final private int menuCom = Menu.FIRST+1;

 final private int menuMyTour = Menu.FIRST + 2;

 final private int search=Menu.FIRST+3;

 final private int getMyLocation=Menu.FIRST+4;

 final private int exit=Menu.FIRST+5;

 public static boolean visit=false;

 public static boolean mylocation=false;

 private boolean reminder=false;

 private boolean contact=false;

 private boolean tour=false;

 public static boolean add=false;

 public static boolean searched=false;

 public Map(){

 69

City Guide Over Android

 map=this;

 }

 // the start of the activity

 public void onCreate(Bundle icicle) {

 super.onCreate(icicle);

 setContentView(R.layout.main);

 context=this.getApplicationContext();

 mapView = (MapView) findViewById(R.id.mapview1);

 // draw route between user's location and POI.

if(MyTourActivity.tour){

double src_lat =GpsActivity.currentLocation.getLatitude();

double src_long =GpsActivity.currentLocation.getLongitude();

GeoPoint srcGeoPoint=new GeoPoint((int) (src_lat * 1E6),(int)

(src_long * 1E6));

double dest_lat=

MyTourActivity.tourlist.get(MyTourActivity.arg).getLatitude();

 double dest_long=

MyTourActivity.tourlist.get(MyTourActivity.arg).getLongitude();

GeoPoint destGeoPoint =new GeoPoint((int) (dest_lat * 1E6), (int)

(dest_long * 1E6));

DrawPath(srcGeoPoint, destGeoPoint, Color.GREEN, mapView);

mapView.setBuiltInZoomControls(true);

 70

City Guide Over Android

mapView.getController().animateTo(srcGeoPoint);

mapView.getController().setZoom(15);

}

 // update the map

else {

 overlay=new MapLocationOverlay(map);

 updateView(overlay);

 }

}

 // update map

 public static void updateView(MapLocationOverlay overlay){

 mapView.getOverlays().add(overlay);

 mapView.setBuiltInZoomControls(true);

 mapView.getController().setZoom(12);

 // only show user’s current position on map

 if(mylocation){

mapView.getController().setCenter(GpsActivity.currentLocat

ion.getPoint());

 }

 else{

 GeoPoint city=new

GeoPoint((int)(63.4267*1E6),(int)(10.3964*1E6));

 mapView.getController().setCenter(city);

 }

 mapView.invalidate();

 }

 // get the list of POIs&Events data including location, category, name,

 71

City Guide Over Android

and website of description and review.

 public List<MapLocation> getMapLocations() {

 mapLocations = new ArrayList<MapLocation>();

 //only get user's current position

 if(mylocation){

 mapLocations.add(GpsActivity.currentLocation);

 }

 //get the list of all the POIs & Events or part of them after Searching

 else{

 if(!visit){

XmlPullFeedParser a=new

XmlPullFeedParser("http://folk.ntnu.no/hanjie/tes

t.xml");

 List<Message> messages=a.parse();

 for(int i=0;i<messages.size();i++){

 SqlHandle.addEvent(messages.get(i));

 }

 visit=true;

 }

 if(!searched){

 List<Message> sql=SqlHandle.getEvents();

 for(int j=0;j<sql.size();j++)

 mapLocations.add(new MapLocation(sql.get(j)));

 }

 else{

 for(int k=0;k<searches.size();k++)

 {

 mapLocations.add(new

MapLocation(Search.messages.get(k)));

 }

 }

 }

 return mapLocations;

 72

City Guide Over Android

 }

// create menu

 public boolean onCreateOptionsMenu(Menu menu) {

 menu.add(0, menuReminder, 0, "Reminder");

 menu.add(0, menuCom, 1, "Contact");

 menu.add(0, menuMyTour, 2, "MyTour Plan");

 menu.add(0,search,3,"Search");

 menu.add(0,getMyLocation,4,"Get MyLocation");

 menu.add(0,exit,5,"Exit");

 return super.onCreateOptionsMenu(menu);

 }

 // add functions to each menu option

 public boolean onOptionsItemSelected(MenuItem item) {

 switch(item.getItemId()) {

 // trigger the function of reminder

 case menuReminder:

 reminder=true;

 Intent intent1=new Intent(context,ReminderList.class);

 intent1.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

 context.startActivity(intent1);

 break;

 //start the function of phone or message

 case menuCom:

 contact=true;

 Uri uri=Uri.parse("content://contacts/people");

 Intent intent=new Intent(Intent.ACTION_VIEW,uri);

 startActivity(intent);

 break;

 //see the list of my tour plan

 case menuMyTour:

 tour=true;

 Intent intent3=new Intent(context,MyTourActivity.class);

 intent3.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

 context.startActivity(intent3);

 break;

 // start the function of search in different classifications such

as museum, church......

 case search:

 MyTourActivity.tour=false;

 73

City Guide Over Android

 mylocation=false;

 Intent intent4=new Intent(context,SearchActivity.class);

 intent4.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

 context.startActivity(intent4);

 break;

 // to get user's current position

 case getMyLocation:

 MyTourActivity.tour=false;

 //visit=true;

 Intent intent5=new Intent(context,GpsActivity.class);

 intent5.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

 context.startActivity(intent5);

 break;

 // exit the whole application

 case exit:

 context.deleteDatabase("sights.db");

 visit=false;

 searched=false;

 mylocation=false;

 MyTourActivity.tour=false;

 onStop();

 //finish();

 android.os.Process.killProcess(android.os.Process.myPid());

 break;

 }

 return super.onOptionsItemSelected(item);

 }

 // finish the activity when the activity is not in the foreground

 public void onStop() {

 if(reminder|contact|tour|add){

 super.onStop();

 }

 else{

 finish();

 super.onStop();

 }

 tour=false;

 reminder=false;

 contact=false;

 add=false; }

}

 74

City Guide Over Android

MapLocation.java

The class holds location information including name, classification, latitude, longitude
and link.

package cityguide.map;

import java.net.URL;

import cityguide.informationRetrieval.Message;

import com.google.android.maps.GeoPoint;

public class MapLocation {

 private GeoPoint point;

 private String name;

 private URL link;

 private String link2;

 private String classfication;

 double latitude;

 double longitude;

 public MapLocation(double latitude, double longitude){

 point = new GeoPoint((int)(latitude*1e6),(int)(longitude*1e6));

 }

 public MapLocation(Message message){

 this.name = message.getName();

 link=message.getLink();

 point = new

GeoPoint((int)(message.getLatitude()*1e6),(int)(message.getLon

gitude()*1e6));

 latitude=message.getLatitude();

 longitude=message.getLongitude();

 classfication=message.getClassfication();

 }

 public MapLocation(String name,double latitude1, double longitude1){

 this.name = name;

 latitude=latitude1;

 longitude=longitude1;

 point = new GeoPoint((int)(latitude*1e6),(int)(longitude*1e6));

 }

 75

City Guide Over Android

public MapLocation(String name,double latitude, double longitude,

String link1) {

 this.name = name;

 point = new GeoPoint((int)(latitude*1e6),(int)(longitude*1e6));

 link2=link1;}

 public GeoPoint getPoint() {

 return point;

 }

 public String getName() {

 return name;

 }

 public String getLink1() {

 return link2;

 }

 public URL getLink() {

 return link;

 }

 public double getLongitude() {

 // TODO Auto-generated method stub

 return longitude;

 }

 public double getLatitude() {

 // TODO Auto-generated method stub

 return latitude;

 }

 public String getClassfication() {

 // TODO Auto-generated method stub

 return classfication;

 }

}

 76

City Guide Over Android

Message.java

The class also holds the data of POIs&Events.

package cityguide.informationRetrieval;

import java.net.MalformedURLException;

import java.net.URL;

// the class for holding the data of POIs&Events after parsing XML document

public class Message {

 private String name;

 private URL link;

 private String classfication;

 private double latitude;

 private double longitude;

 private int id;

 public void setLink(String link) {

 try {

 this.link = new URL(link);

 } catch (MalformedURLException e) {

 throw new RuntimeException(e);

 }

 }

 public URL getLink(){

 return link;

 }

 public void setName(String nextText) {

 name=nextText;

 // TODO Auto-generated method stub

 }

 public String getName(){

 return name;

 }

 public void setClassfication(String nextText) {

 classfication=nextText;

 // TODO Auto-generated method stub

 77

City Guide Over Android

 }

 public String getClassfication() {

 return classfication;

 // TODO Auto-generated method stub

 }

 public void setLatitude(String nextText) {

 latitude=Double.valueOf(nextText).doubleValue();

 // TODO Auto-generated method stub

 }

 public double getLatitude() {

 return latitude;

 // TODO Auto-generated method stub

 }

 public void setLongitude(String nextText) {

 longitude=Double.valueOf(nextText).doubleValue();

 // TODO Auto-generated method stub

 }

 public double getLongitude() {

 return longitude;

 // TODO Auto-generated method stub

 }

 public void setID(int int1) {

 id=int1;

 // TODO Auto-generated method stub

 }

 public int getID(){

 return id;

 }

}

 78

City Guide Over Android

GpsActivity.java

The class is for getting user's current position.

package cityguide.map;

import java.util.ArrayList;

import java.util.List;

import com.google.android.maps.MapActivity;

import android.app.Dialog;

import android.content.Context;

import android.content.Intent;

import android.location.Location;

import android.location.LocationListener;

import android.location.LocationManager;

import android.os.Bundle;

import android.view.View;

import android.view.View.OnClickListener;

import android.widget.Button;

import android.widget.TextView;

public class GpsActivity extends MapActivity {

 private LocationManager lm;

 private LocationListener locationListener;

 public static MapLocation currentLocation;

 public static Context context;

 public static GpsActivity map=new GpsActivity();

 public static List<MapLocation> mapLocations;

 public GpsActivity(){

 map=this;

 }

 protected void onDestroy(){

 super.onDestroy();

 }

 protected void onStop(){

 finish();

 super.onStop();

 }

 public void onCreate(Bundle icicle) {

 79

City Guide Over Android

 super.onCreate(icicle);

 lm = (LocationManager)

getSystemService(Context.LOCATION_SERVICE);

 locationListener = new MyLocationListener(this);

 lm.requestLocationUpdates(

 LocationManager.GPS_PROVIDER,

 0,

 10,

 locationListener);

 if (currentLocation!=null){

 Map.mylocation=true;

 Intent intent=new Intent(this,Map.class);

 intent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

 startActivity(intent);

 }

 // if the data of current location is not available.

 else{

 //set up dialog

 Dialog dialog = new Dialog(this);

 dialog.setContentView(R.layout.gpsdialogue);

 dialog.setTitle("Waiting!!");

 dialog.setCancelable(true);

 //set up text

 TextView text = (TextView) dialog.findViewById(R.id.TextViewgps);

 text.setText("Unsuccessful to get Location data!Please try again

or check if open GPS in Setting");

 //set up button

 Button button = (Button) dialog.findViewById(R.id.Buttongps1);

 button.setOnClickListener(new OnClickListener() {

 public void onClick(View v) {

 Intent intent4=new Intent(GpsActivity.this,GpsActivity.class);

 intent4.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

 startActivity(intent4);

 }

 });

 Button button2 = (Button) dialog.findViewById(R.id.Buttongps);

 button2.setOnClickListener(new OnClickListener() {

 80

City Guide Over Android

 public void onClick(View v) {

 finish();

 }});

//now that the dialog is set up, it's time to show it

 dialog.show();

 }

 }

 public List<MapLocation> getMapLocations() {

 mapLocations = new ArrayList<MapLocation>();

 mapLocations.add(currentLocation);

 return mapLocations;

 }

// set the listener for change of location

 public static class MyLocationListener implements LocationListener

 {

 public MyLocationListener(Context context1) {

 context=context1;

 }

 @Override

 public void onLocationChanged(Location loc) {

 if (loc != null){

 currentLocation=new MapLocation("I am

here!!!!",loc.getLatitude(), loc.getLongitude());

 }

}}

 81

City Guide Over Android

SearchActivity.java

The class is for implementing the function of search.

package cityguide.map;

import cityguide.informationRetrieval.Search;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

public class SearchActivity extends Activity {

 public void onDestroy(){

 super.onDestroy();

 }

 public void onStop()

 {

 super.onStop();

 finish();

 }

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle icicle) {

super.onCreate(icicle);

 setContentView(R.layout.search);

 // read the class Search below

 final Search search=new Search(this);

 Button tutorial1Button =

(Button)findViewById(R.id.button_view_tutorial_1);

 tutorial1Button.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {

 Map.searched=true;

 Map.searches=search.SearchCategory("church");

 Intent intent4=new Intent(SearchActivity.this,Map.class);

 intent4.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

 startActivity(intent4);

 }});

 Button tutorial2Button =

 82

City Guide Over Android

(Button)findViewById(R.id.button_view_tutorial_2);

 tutorial2Button.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {

 Map.searches=search.SearchCategory("museum");

 Map.searched=true;

 Intent intent4=new Intent(SearchActivity.this,Map.class);

 intent4.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

 startActivity(intent4);

 }});

 //other categories are omitted here…

}

Search.java

The class is for getting the list of POIs as the searched result.

package cityguide.informationRetrieval;

import java.util.ArrayList;

import java.util.List;

import android.app.Activity;

import android.content.Context;

import android.database.Cursor;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteOpenHelper;

public class Search extends Activity{

 public static ArrayList<Message> messages;

 private SQLiteOpenHelper eventsData;

 public Context context;

 public Search(Context context1){

 context=context1;

 eventsData = new EventDataSQLHelper(context);

 }

 public List<Message> SearchCategory(String category){

 messages=new ArrayList<Message>();

 SQLiteDatabase db = eventsData.getReadableDatabase();

 Cursor cursor = db.query(EventDataSQLHelper.TABLE, null,

null, null, null,null, null);

 83

City Guide Over Android

 startManagingCursor(cursor);

 while (cursor.moveToNext()) {

 if(category.equals("all")){

 Message message=new Message();

 message.setName(cursor.getString(1));

 message.setLink(cursor.getString(2));

 message.setClassfication(cursor.getString(3));

 message.setLatitude(cursor.getString(4));

 message.setLongitude(cursor.getString(5));

 messages.add(message);

 }

 else{

 if(cursor.getString(3).equals(category)){

 Message message=new Message();

 message.setName(cursor.getString(1));

 message.setLink(cursor.getString(2));

message.setClassfication(cursor.getString(3));

 message.setLatitude(cursor.getString(4));

 message.setLongitude(cursor.getString(5));

 messages.add(message);

 }

 }

 }

 return messages;

 }

}

 84

City Guide Over Android

ReadWriteCalendar.java

The class is for getting reminder events or writing reminder events from or to local
calendar database

package cityguide.reminder;

import java.util.ArrayList;

import java.util.Date;

import java.util.List;

import cityguide.map.ReminderActivity;

import android.app.Activity;

import android.content.ContentResolver;

import android.content.ContentUris;

import android.content.ContentValues;

import android.content.Context;

import android.database.Cursor;

import android.net.Uri;

import android.text.format.DateUtils;

public class ReadWriteCalendar extends Activity{

 private static int mHour;

 private static int mMinute;

 private static int mDay;

 private static int mMonth;

 private static int mYear;

 public static void writeCalendar(Context context){

 ContentResolver contentResolver=context.getContentResolver();

 contentResolver.query(Uri.parse("content://calendar/calendars"),

(new String[] { "_id", "displayName", "selected" }), null, null, null);

 ContentValues event = new ContentValues();

 event.put("calendar_id", "1");

event.put("title",ReminderActivity.title.getText().toString());

 event.put("description", "");

 event.put("eventLocation",

ReminderActivity.location.getText().toString());

 event.put("visibility", 3);

 event.put("eventStatus", 1);

 event.put("allDay", 0);

 85

City Guide Over Android

 Date startTime =new Date(mYear-1900,mMonth,mDay,mHour,mMinute);

 event.put("dtstart",startTime.getTime());

 event.put("hasAlarm", 1);

 final ContentResolver cr = context.getContentResolver();

 Uri newEvent = cr.insert(Uri.parse("content://calendar/events"),

event);

 long id = Long.parseLong(newEvent.getLastPathSegment());

if(newEvent != null) {

 ContentValues values = new ContentValues();

 values.put("event_id", id);

 values.put("method", 1);

 values.put("minutes",0);

 cr.insert(Uri.parse("content://calendar/reminders"), values);

 values = new ContentValues();

 values.put("event_id", id);

 values.put("begin", startTime.getTime());

 //values.put("end", item.getEndTime());

 values.put("alarmTime", startTime.getTime());

 values.put("state", 0);

 values.put("minutes", 0);

 cr.insert(Uri.parse("content://calendar/calendar_alerts"),

values);

 }

}

 public static List<ReminderData> readCalendar(Context context) {

 ContentResolver contentResolver=context.getContentResolver();

 contentResolver= context.getContentResolver();

// display all the events from the previous week to the end of next week

Uri.Builder builder =

Uri.parse("content://calendar/instances/when").buildUpon();

 long now = new Date().getTime();

 ContentUris.appendId(builder, now - DateUtils.WEEK_IN_MILLIS);

 ContentUris.appendId(builder, now + DateUtils.WEEK_IN_MILLIS);

 86

City Guide Over Android

Cursor eventCursor = contentResolver.query(builder.build(),

new String[] { "title", "begin", "end", "allDay","eventLocation"},

"Calendar_ID="+"1",null,"startDay ASC, startMinute ASC");

 List<ReminderData> reminderlist=new ArrayList<ReminderData>();

 while (eventCursor.moveToNext()) {

 final String title = eventCursor.getString(0);

 final Date begin = new Date(eventCursor.getLong(1));

 final Date end = new Date(eventCursor.getLong(2));

 final Boolean allDay =

eventCursor.getString(3).equals("0");

 final String location=eventCursor.getString(4);

 ReminderData reminderItem=new

ReminderData(title,begin,end,location);

 reminderlist.add(reminderItem);

 }

 return reminderlist;

 }

 void delete(int arg, Context context){

 ContentResolver contentResolver=context.getContentResolver();

 contentResolver= context.getContentResolver();

 Uri.Builder builder =

Uri.parse("content://calendar/instances/when").buildUpon();

 long now = new Date().getTime();

 ContentUris.appendId(builder, now - DateUtils.WEEK_IN_MILLIS);

 ContentUris.appendId(builder, now + DateUtils.WEEK_IN_MILLIS);

 Cursor eventCursor = contentResolver.query(builder.build(),

 new String[] { "title", "begin", "end",

"allDay","eventLocation"}, "Calendar_ID="+"1",

 null,

 "startDay ASC, startMinute ASC");

 }

 public static void setHour(int hourOfDay) {

 mHour=hourOfDay;

 // TODO Auto-generated method stub

 }

 public static void setMinute(int Minute) {

 mMinute=Minute;

 // TODO Auto-generated method stub

 87

City Guide Over Android

 }

 public static void setDay(int day) {

 // TODO Auto-generated method stub

 mDay=day;

 }

 public static void setMonth(int month) {

 // TODO Auto-generated method stub

 mMonth=month;

 }

 public static void setYear(int year) {

 // TODO Auto-generated method stub

 mYear=year;

 }}

ReminderData.java

The class holds reminder event data.

package cityguide.reminder;

import java.util.Date;

public class ReminderData {

 String title;

 String description;

 String location;

 Date startTime;

 long endTime;

 boolean hasAlarm;

 boolean allDay;

 public ReminderData(String title2, Date begin, Date end,String

location1) {

 title=title2;

 startTime=begin;

 endTime=end.getTime();

 location=location1;

 }

 public void setTitle(String title1){

 88

City Guide Over Android

 title=title1;

 }

 public String getTitle(){

 return title;

 }

 public String getLoation(){

 return location;

 }

 public Date getDate(){

 return new Date();

 }

 public void setDescription(String description1){

 description=description1;

 }

 public String getDescription(){

 return description;

 }

 public void setStartTime(Date startTime1){

 startTime=startTime1;

 }

 public Date getStartTime(){

 return startTime;

 }

 public void setEndTime(long endTime1){

 endTime=endTime1;

 }

 public long getEndTime(){

 return endTime;

 }

 public void setAlarm(boolean hasAlarm1){

 hasAlarm=hasAlarm1;

 }

 public boolean getAlarm(){

 return hasAlarm;

 }

 public void setAllday(boolean allday){

 allDay=allday;

 }

 public boolean getAllday(){

 89

City Guide Over Android

 return allDay;

 }

 public CharSequence getLocation() {

 return location;

 }

 public CharSequence getTime() {

 // TODO Auto-generated method stub

 return null;

 }

}

EventDataSQLHelper.java

The class is for creating the database that stores sights data.

package cityguide.informationRetrieval;

import android.content.Context;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteOpenHelper;

import android.provider.BaseColumns;

import android.util.Log;

public class EventDataSQLHelper extends SQLiteOpenHelper {

 private static final String DATABASE_NAME = "sights.db";

 private static final int DATABASE_VERSION = 1;

 // Table name

 public static final String TABLE = "events";

 // Columns

 public static final String NAME = "name";

 public static final String LINK = "link";

 public static final String CLASSFICATION = "classfication";

 public static final String LATITUDE = "latitude";

 public static final String LONGITUDE = "longitude";

 public EventDataSQLHelper(Context context) {

 90

City Guide Over Android

 super(context, DATABASE_NAME, null, DATABASE_VERSION);

 }

 @Override

 public void onCreate(SQLiteDatabase db) {

 String sql = "create table " + TABLE + "(" +

 BaseColumns._ID+ " integer primary key autoincrement, "

+

 NAME+ " text not null, "+

 LINK+ " text not null, "+

 CLASSFICATION+ " text not null, "+

 LATITUDE+" double, "+

 LONGITUDE + " double);";

 Log.d("EventsData", "onCreate: " + sql);

 db.execSQL(sql);

 }

 public void onClose(){

 super.close();

 }

}

SQLHandle.java

The class contains the method of getting sight data from the sights database and the
method of adding sight data into the sights database

package cityguide.informationRetrieval;

import java.util.ArrayList;

import java.util.List;

import cityguide.map.Map;

import android.app.Activity;

import android.content.ContentValues;

import android.content.Context;

import android.database.Cursor;

 91

City Guide Over Android

import android.database.sqlite.SQLiteDatabase;

import android.os.Bundle;

import android.widget.TextView;

public class SQLHandle extends Activity {

 TextView output;

 Message message;

 EventDataSQLHelper eventsData;

 List<Message> messages;

 public Context context;

@Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 }

 @Override

 public void onStop() {

 eventsData.onClose();

 }

 public void addEvent(Message message) {

 eventsData = new EventDataSQLHelper(context);

 SQLiteDatabase db = eventsData.getWritableDatabase();

 ContentValues values = new ContentValues();

 values.put(EventDataSQLHelper.NAME,message.getName());

 values.put(EventDataSQLHelper.LINK,message.getLink().toString());

values.put(EventDataSQLHelper.CLASSFICATION,message.getClassfication(

));

 values.put(EventDataSQLHelper.LATITUDE,message.getLatitude());

 values.put(EventDataSQLHelper.LONGITUDE,message.getLongitude());

 db.insert(EventDataSQLHelper.TABLE, null, values);

 eventsData.close();

 }

 public List<Message> getEvents(){

 92

City Guide Over Android

 messages=new ArrayList<Message>();

SQLiteDatabase db = eventsData.getReadableDatabase();

Cursor cursor = db.query(EventDataSQLHelper.TABLE, null, null, null, null,

null, null);

startManagingCursor(cursor);

while (cursor.moveToNext()) {

 Message message=new Message();

 message.setID(cursor.getInt(0));

 message.setName(cursor.getString(1));

 message.setLink(cursor.getString(2));

 message.setClassfication(cursor.getString(3));

 message.setLatitude(cursor.getString(4));

 message.setLongitude(cursor.getString(5));

 messages.add(message);

}

eventsData.close();

return messages;

}

}

 93

City Guide Over Android

XmlPullFeedParser.java

The class is for parsing POIs&Events XML data

package cityguide.informationRetrieval;

import java.util.ArrayList;

import java.util.List;

import org.xmlpull.v1.XmlPullParser;

import android.util.Xml;

// parse the POIs&Events XML data

public class XmlPullFeedParser extends BaseFeedParser {

 public XmlPullFeedParser(String feedUrl) {

 super(feedUrl);

}

 public List<Message> parse() {

 List<Message> messages = null;

 XmlPullParser parser = Xml.newPullParser();

 try {

 // auto-detect the encoding from the stream

 parser.setInput(this.getInputStream(), null);

 int eventType = parser.getEventType();

 Message currentMessage = null;

 boolean done = false;

 while (eventType != XmlPullParser.END_DOCUMENT && !done){

 String name = null;

 switch (eventType){

 case XmlPullParser.START_DOCUMENT:

 messages = new ArrayList<Message>();

 break;

 case XmlPullParser.START_TAG:

 name = parser.getName();

 System.out.println(name);

 if (name.equalsIgnoreCase(SIGHT)){

 currentMessage = new Message();

 } else if (currentMessage != null){

 if (name.equalsIgnoreCase(LINK)){

 currentMessage.setLink(parser.nextText());

 } else if

 94

City Guide Over Android

 95

(name.equalsIgnoreCase(CLASSFICATION)){

currentMessage.setClassfication(parser.nextText());

 } else if (name.equalsIgnoreCase(LATITUDE)){

currentMessage.setLatitude(parser.nextText());

 } else if (name.equalsIgnoreCase(LONGITUDE)){

currentMessage.setLongitude(parser.nextText());

 } else if (name.equalsIgnoreCase(NAME)){

 currentMessage.setName(parser.nextText());

 }

 }

 break;

 case XmlPullParser.END_TAG:

 name = parser.getName();

 if (name.equalsIgnoreCase(SIGHT) &&

currentMessage != null){

 messages.add(currentMessage);

 }

 else

 if(name.equalsIgnoreCase(RSS)){

 done=true;

 }

 break;

 }

 eventType = parser.next();

 }

 } catch (Exception e) {

 throw new RuntimeException(e);

 }

 return messages;

 }}

